Functional Analysis of the Protein Tyrosine Phosphatase Family in Mammary Epithelial Cell Models of Breast Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Functional Analysis of the Protein Tyrosine Phosphatase Family in Mammary Epithelial Cell Models of Breast Cancer SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Functional analysis of the protein tyrosine phosphatase family in mammary epithelial cell models of breast cancer A Dissertation Presented by Guang Lin to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Molecular and Cellular Biology Stony Brook University December 2010 Stony Brook University The Graduate School Guang Lin We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Nicholas K. Tonks – Dissertation Advisor Professor, Cold Spring Harbor Laboratory Scott Powers – Chairperson of Defense Associate Professor, Cold Spring Harbor Laboratory Gregory J. Hannon Professor, Cold Spring Harbor Laboratory Senthil K. Muthuswamy Associate Professor, Cold Spring Harbor Laboratory Mark M. Moasser – Outside Member Professor in Residence, Dept. of Medicine, Division of Hematology/Oncology, University of California, San Francisco This dissertation is accepted by the Graduate School Lawrence Martin Dean of the Graduate School ii Abstract of the Dissertation Functional analysis of the protein tyrosine phosphatase family in mammary epithelial cell models of breast cancer by Guang Lin Doctor of Philosophy in Molecular and Cellular Biology Stony Brook University 2010 The protein tyrosine phosphatase (PTP) superfamily of enzymes is encoded by ~100 genes. In coordinating with protein tyrosine kinases (PTK), they regulate signaling pathways that control a broad spectrum of fundamental physiological processes and their disruption underlie human diseases. To date, however, the functional analysis of PTPs is not as advanced as for PTKs. Therefore, the ultimate goal of this dissertation is to develop the tools for global analysis of the function of PTPs through RNAi-mediated loss-of-function screens. I constructed a PTP short-hairpin RNA (shRNA) library, which contains ~5 shRNAs specifically designed to target each of the PTPs. In collaboration with Min Yu, I studied the function of PTPRO in mammary epithelial cell morphogenesis by using these shRNAs. We found that suppression of PTPRO promoted cell proliferation and by recognizing the oncoprotein tyrosine kinase ErbB2 as a direct substrate, PTPRO augmented the ability of ErbB2 to induce multi-acinar structure in 3D culture. Preliminary analysis of other PTPs revealed different phenotypes consistent with distinct mechanisms of the enzymes. I also employed an RNAi mediated loss-of-function screen to study systematically the role of the PTP family in mammary epithelial cell motility, in the absence or presence of ErbB2. I identified PTPs that either promoted or inhibited mammary epithelial cell motility. I further characterized 3 PTPs, PRPN23, PTPRG and PTPRR, which function to inhibit cell motility. I found that suppression of PTPN23, but not PTPRG or PTPRR, induced cell invasion. Suppression of PTPN23 increased E-cadherin internalization, impaired early endosome forward trafficking of E-cadherin and induced the expression of mesenchymal proteins. Moreover, I identified E-cadherin, β-catenin and Src as iii direct substrates of PTPN23, and demonstrated that Src mediates the effects of suppressing PTPN23 on control cell motility and invasion. In this dissertation, I have revealed novel functions for members of the PTP family. In addition, I illustrate how RNAi-mediated loss-of-function screen reveals new roles for PTPs in mammary epithelial cell motility and invasion. These findings highlight the specificity of PTPs in breast cancer, suggesting PTPs or the signaling controlled by them could be biomarkers or therapeutic targets for the treatment of breast cancer. vi Table of Contents List of Figures…………………………………………………………………………....x Acknowledgments……………………………………………………………………xiii Chapter 1: General Introduction……………………………………………………….1 Preface…………………………………………………………………………..1 1.1 Protein Phosphorylation…………………………………………………2 1.1.1 Protein phosphorylation is reversible……………………………2 1.1.2 Protein tyrosine phosphorylation…………………………………3 1.1.3 PTKs as therapeutic targets of human cancers………………4 1.2 Protein Tyrosine Phosphatases…………………………………………5 1.2.1 The Classical PTP…………………………………………………6 1.2.2 The Dual Specificity Phosphatases…………………………...…8 1.2.3 Pseudophosphatases……………………………………………11 1.3 PTPs and cancer…………………………………………………………12 1.3.1 PTEN, a well known tumor suppressor…………………..……13 1.3.2 SHP2, an oncogenic PTP………………………………………13 1.3.3 CDC25s and cancer……………………………………………..15 1.3.4 PTPs and breast cancer…………………………………………15 1.4 PTPs characterized in this dissertation………………………………...16 1.4.1 PTPRO…………………………………………………………….16 1.4.2 DEP1………………………………………………………………17 1.4.3 PTPN23…………………………………………………………...18 1.4.4 PTPRG…………………………………………………………….20 v 1.4.5 PTPRR……………………………………………………………21 1.4.6 PTP1B…………………………………………………………….22 1.5 Study the function of PTP in an in vitro model of breast cancer…….23 1.5.1 The MCF10A 3D culture system…………………………….…24 1.5.2 MCF10A 3D culture system for the study of cell signaling and breast tumorigenesis………………………………………….…25 1.6 ErbB2 signaling and breast cancer……………………………………26 1.6.1 ErbB2 signaling………………………………………………..…26 1.6.2 ErbB2 and breast cancer……………………………………..…27 1.6.3 ErbB2 as therapeutic target…………………………………..…28 1.6.4 Regulation of ErbB2 signaling by PTPs…………………….…30 1.7 Loss of E-cadherin and cancers……………………………………..…31 1.7.1 Functions of E-cadherin…………………………………………31 1.7.2 Loss of E-cadherin and cancers………………………………..32 1.7.3 Internalization of E-cadherin disrupts adherens junctions…...33 1.7.4 Regulation of E-cadherin internalization……………………….34 1.7.5 Regulation of E-cadherin recycling………………………….…35 1.8 Implications of this dissertation to understanding the function of the PTP family…………………………………………………………..……35 Chapter 2: Construction of the PTP shRNA library…………………………...……45 2.1 RNA Interference…………………………………………………………45 2.1.1 microRNAs……………………………………………………..…45 2.1.2 Biogenesis of miRNA………………………………………….…46 2.2 Application of RNAi in loss-of-function studies……………………..…47 2.3 Short hairpin RNA expression constructs………………………...……49 2.4 Results and Discussions……………………………………………...…50 vi 2.4.1 The design of the PTP shRNA library……………………….…50 2.4.2 The construction of the PTP shRNA library………………...…51 Chapter 3: Functional studies of PTPRO in MCF10A three-dimensional culture system……………………………………………………………………..59 3.1 Materials and methods……………………………………………..……61 3.2 Results……………………………………………………………………65 3.2.1 The expression of PTPRO is up-regulated in matured MCF10A acini………………………………………………………………65 3.2.2 Suppression of PTPRO increases the size of MCF10A acini ……………………………………………………………………………65 3.2.3 Suppression of PTPRO delays cell proliferation arrest, but does not affect cell apoptosis……………………………..……66 3.2.4 Suppression of PTPRO augments the effect of ErbB2 activation……………………………………………………….…67 3.2.5 Suppression PTPRO enhances ErbB2-induced cell proliferation………………………………………………………68 3.2.6 Suppression PTPRO enhances ErbB2 phosphorylation…….68 3.2.7 ErbB2 is a direct substrate of PTPRO…………………………69 3.2.8 Suppression of DEP1 induces the formation of multi-acinar structures independent of ErbB2 activation………………..…70 3.3 Discussion…………………………………………………………………71 Chapter 4: Identification of PTPs involved in MCF10A/ErbB2 cells motility and invasiveness………………………………………………………………83 4.1 Materials and methods………………………………………………..…85 4.2 Results………………………………………………………………….…92 4.2.1 Loss-of-function screening of the PTPome to identify regulators of mammary epithelial cell motility……………...………………………………………92 vii 4.2.2 Suppression of PTPRG, PTPN23 and PTPRR induce distinct stimulatory effects on mammary epithelial cell motility………93 4.2.3 Suppression of PTPN23, but not PTPRG or PTPRR, promotes mammary epithelial cell invasion………………………………94 4.2.4 Suppression of PTPN23 induces mammary epithelial cell scattering and impairs cell-cell adhesion………………...……95 4.2.5 Suppression of PTPN23 induces caveolin-1 mediated endocytosis of E-cadherin and causes accumulation of E- cadherin in early endosomes……………………………...……97 4.2.6 Suppression of PTPN23 induces expression of the mesenchymal proteins……………………………………..……98 4.2.7 Suppression of PTPN23 enhances downstream signaling through activation of Src Family Kinases……………………100 4.2.8 Src is a direct substrate of PTPN23………………………..…101 4.2.9 Inhibition of SFKs activity impairs shN23-induced phenotypes ……………………………………………………………………102 4.2.10 Characterization of PTP1B as a negative regulator of mammary epithelial cell motility………………………………103 4.3 Discussion……………………………………………………………….105 Chapter 5: Conclusion and future directions………………………………………134 5.1 Construction of the PTP shRNA library and the design of RNAi- mediated loss-of-function screen…………………………………..…135 5.2 Validation of the identified PTPs………………………………………137 5.3 Characterization of the Identified PTPs individually…………...……138 5.4 Future directions………………………………………………….….…139 5.4.1 PTPRO……………………………………………………..……140 5.4.2 PTPN23………………………………………………….………142 5.4.3 DEP1……………………………………………………….….…144 viii 5.4.4 PTPRG and PTPRR……………………………………………145 5.4.5 Systematic characterization of downstream signaling of PTPs by quantitative phosphoproteomics-SILAC………………….145 5.4.6 Study the function of PTPs in vivo by using mosaic mouse
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Methylation and Silencing of Protein Tyrosine Phosphatase Receptor
    Human Cancer Biology Methylation and Silencing of Protein Tyrosine Phosphatase Receptor Type O in Chronic Lymphocytic Leukemia Tasneem Motiwala,1Sarmila Majumder,1Huban Kutay,1David Spencer Smith,1Donna S. Neuberg,4 David M. Lucas,2 John C. Byrd,2,3 Michael Grever,2,3 and Samson T.Jacob1, 2 , 3 Abstract Purpose: Previous studies in our laboratory have shown the progressive methylation and suppression of the gene encoding protein tyrosine phosphatase, PTPRO, in the livers of rats fed a methyl-deficient diet that induces hepatocarcinogenesis. Subsequently, we observed the methylation of PTPRO in primary human lung tumors and also showed its potential tumor suppressor characteristics. The present study was undertaken to investigate whether the truncated form of PTPRO (PTPROt), specifically expressed in naI«ve B lymphocytes, was also methylated and suppressed in chronic lymphocytic leukemia (CLL), a disease generally affecting B lymphocytes. Experimental Design and Results: Initial screening showed that 60% of the 52 CLL samples analyzed using methylation-specific PCR assay were methylated compared with B lymphocytes from normal individuals, which were not methylated. The expression of PTPROt, as measured by semiquantitative reverse transcription-PCR, inversely correlated with methylation in the few samples tested. Analysis of additional samples (n = 50) by combined bisulfite restriction analysis showed that the PTPRO CpG island was methylated in 82% of patients with CLL compared with B lymphocytes from normal individuals. Furthermore, overall expression of PTPRO was reduced in CLL relative to normal lymphocytes. The PTPRO gene was also suppressed by methylation in the CLL cell lineWaC3CD5, where it could be reactivated upon treatment with the DNA hypome- thylating agent 5-AzaC.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Evidence for Microrna Involvement in Exercise-Associated Neutrophil Gene Expression Changes
    J Appl Physiol 109: 252–261, 2010. First published January 28, 2010; doi:10.1152/japplphysiol.01291.2009. HIGHLIGHTED TOPIC Epigenetics in Health and Disease Evidence for microRNA involvement in exercise-associated neutrophil gene expression changes Shlomit Radom-Aizik, Frank Zaldivar, Jr., Stacy Oliver, Pietro Galassetti, and Dan M. Cooper Pediatric Exercise Research Center, Department of Pediatrics, University Children’s Hospital, University of California-Irvine, Orange, California Submitted 17 November 2009; accepted in final form 27 January 2010 Radom-Aizik S, Zaldivar F Jr, Oliver S, Galassetti P, Cooper DM. miRNAs are a group of small noncoding RNA molecules Evidence for microRNA involvement in exercise-associated neutrophil ϳ22 nucleotides (nt) in length that are now known to regulate gene expression changes. J Appl Physiol 109: 252–261, 2010. First a variety of immune functions (1, 3, 24). In general, the published January 28, 2010; doi:10.1152/japplphysiol.01291.2009.—Ex- miRNAs function to mitigate or silence protein translation (2). ercise leads to a rapid change in the profile of gene expression in A growing number of animal-model and human studies point circulating neutrophils. MicroRNAs (miRNAs) have been discovered toward key regulatory roles for miRNAs in the neutrophil (1, to play important roles in immune function and often act to attenuate or silence gene translation. We hypothesized that miRNA expression 24). For example, miRNA-223 has been shown to influence in circulating neutrophils would be affected by brief exercise. Eleven granulocyte development in humans (14). Johnnidus and co- healthy men (19–30 yr old) performed 10, 2-min bouts of cycle workers (21) found marked neutrophilia and abnormal nuclear ergometer exercise interspersed with 1-min rest at a constant work morphology in miRNA-223-deficient transgenic mice.
    [Show full text]
  • The Expression Patterns and the Prognostic Roles of PTPN Family Members in Digestive Tract Cancers
    Preprint: Please note that this article has not completed peer review. The expression patterns and the prognostic roles of PTPN family members in digestive tract cancers CURRENT STATUS: UNDER REVIEW Jing Chen The First Affiliated Hospital of China Medical University Xu Zhao Liaoning Vocational College of Medicine Yuan Yuan The First Affiliated Hospital of China Medical University Jing-jing Jing The First Affiliated Hospital of China Medical University [email protected] Author ORCiD: https://orcid.org/0000-0002-9807-8089 DOI: 10.21203/rs.3.rs-19689/v1 SUBJECT AREAS Cancer Biology KEYWORDS PTPN family members, digestive tract cancers, expression, prognosis, clinical features 1 Abstract Background Non-receptor protein tyrosine phosphatases (PTPNs) are a set of enzymes involved in the tyrosyl phosphorylation. The present study intended to clarify the associations between the expression patterns of PTPN family members and the prognosis of digestive tract cancers. Method Expression profiling of PTPN family genes in digestive tract cancers were analyzed through ONCOMINE and UALCAN. Gene ontology enrichment analysis was conducted using the DAVID database. The gene–gene interaction network was performed by GeneMANIA and the protein–protein interaction (PPI) network was built using STRING portal couple with Cytoscape. Data from The Cancer Genome Atlas (TCGA) were downloaded for validation and to explore the relationship of the PTPN expression with clinicopathological parameters and survival of digestive tract cancers. Results Most PTPN family members were associated with digestive tract cancers according to Oncomine, Ualcan and TCGA data. For esophageal carcinoma (ESCA), expression of PTPN1, PTPN4 and PTPN12 were upregulated; expression of PTPN20 was associated with poor prognosis.
    [Show full text]
  • The Regulatory Roles of Phosphatases in Cancer
    Oncogene (2014) 33, 939–953 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW The regulatory roles of phosphatases in cancer J Stebbing1, LC Lit1, H Zhang, RS Darrington, O Melaiu, B Rudraraju and G Giamas The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3--kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies. Oncogene (2014) 33, 939–953; doi:10.1038/onc.2013.80; published online 18 March 2013 Keywords: cancer; phosphatases; solid tumours GASTROINTESTINAL MALIGNANCIES abs in sera were significantly associated with poor survival in Oesophageal cancer advanced ESCC, suggesting that they may have a clinical utility in Loss of PTEN (phosphatase and tensin homologue deleted on ESCC screening and diagnosis.5 chromosome 10) expression in oesophageal cancer is frequent, Cao et al.6 investigated the role of protein tyrosine phosphatase, among other gene alterations characterizing this disease. Zhou non-receptor type 12 (PTPN12) in ESCC and showed that PTPN12 et al.1 found that overexpression of PTEN suppresses growth and protein expression is higher in normal para-cancerous tissues than induces apoptosis in oesophageal cancer cell lines, through in 20 ESCC tissues.
    [Show full text]
  • Targeting Protein Tyrosine Phosphatases in Cancer Lakshmi Reddy Bollu, Abhijit Mazumdar, Michelle I
    Published OnlineFirst January 13, 2017; DOI: 10.1158/1078-0432.CCR-16-0934 Molecular Pathways Clinical Cancer Research Molecular Pathways: Targeting Protein Tyrosine Phosphatases in Cancer Lakshmi Reddy Bollu, Abhijit Mazumdar, Michelle I. Savage, and Powel H. Brown Abstract The aberrant activation of oncogenic signaling pathways is a act as tumor suppressor genes by terminating signal responses universal phenomenon in cancer and drives tumorigenesis and through the dephosphorylation of oncogenic kinases. More malignant transformation. This abnormal activation of signal- recently, it has become clear that several PTPs overexpressed ing pathways in cancer is due to the altered expression of in human cancers do not suppress tumor growth; instead, they protein kinases and phosphatases. In response to extracellular positively regulate signaling pathways and promote tumor signals, protein kinases activate downstream signaling path- development and progression. In this review, we discuss both ways through a series of protein phosphorylation events, ulti- types of PTPs: those that have tumor suppressor activities as mately producing a signal response. Protein tyrosine phospha- well as those that act as oncogenes. We also discuss the tases (PTP) are a family of enzymes that hydrolytically remove potential of PTP inhibitors for cancer therapy. Clin Cancer Res; phosphate groups from proteins. Initially, PTPs were shown to 23(9); 1–7. Ó2017 AACR. Background in cancer and discuss the current status of PTP inhibitors for cancer therapy. Signal transduction is a complex process that transmits extra- PTPs belong to a superfamily of enzymes that hydrolytically cellular signals effectively through a cascade of events involving remove phosphate groups from proteins (2).
    [Show full text]
  • Genetic Alterations of Protein Tyrosine Phosphatases in Human Cancers
    Oncogene (2015) 34, 3885–3894 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc REVIEW Genetic alterations of protein tyrosine phosphatases in human cancers S Zhao1,2,3, D Sedwick3,4 and Z Wang2,3 Protein tyrosine phosphatases (PTPs) are enzymes that remove phosphate from tyrosine residues in proteins. Recent whole-exome sequencing of human cancer genomes reveals that many PTPs are frequently mutated in a variety of cancers. Among these mutated PTPs, PTP receptor T (PTPRT) appears to be the most frequently mutated PTP in human cancers. Beside PTPN11, which functions as an oncogene in leukemia, genetic and functional studies indicate that most of mutant PTPs are tumor suppressor genes. Identification of the substrates and corresponding kinases of the mutant PTPs may provide novel therapeutic targets for cancers harboring these mutant PTPs. Oncogene (2015) 34, 3885–3894; doi:10.1038/onc.2014.326; published online 29 September 2014 INTRODUCTION tyrosine/threonine-specific phosphatases. (4) Class IV PTPs include Protein tyrosine phosphorylation has a critical role in virtually all four Drosophila Eya homologs (Eya1, Eya2, Eya3 and Eya4), which human cellular processes that are involved in oncogenesis.1 can dephosphorylate both tyrosine and serine residues. Protein tyrosine phosphorylation is coordinately regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases 1 THE THREE-DIMENSIONAL STRUCTURE AND CATALYTIC (PTPs). Although PTKs add phosphate to tyrosine residues in MECHANISM OF PTPS proteins, PTPs remove it. Many PTKs are well-documented oncogenes.1 Recent cancer genomic studies provided compelling The three-dimensional structures of the catalytic domains of evidence that many PTPs function as tumor suppressor genes, classical PTPs (RPTPs and non-RPTPs) are extremely well because a majority of PTP mutations that have been identified in conserved.5 Even the catalytic domain structures of the dual- human cancers are loss-of-function mutations.
    [Show full text]
  • Application of Microrna Database Mining in Biomarker Discovery and Identification of Therapeutic Targets for Complex Disease
    Article Application of microRNA Database Mining in Biomarker Discovery and Identification of Therapeutic Targets for Complex Disease Jennifer L. Major, Rushita A. Bagchi * and Julie Pires da Silva * Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; [email protected] * Correspondence: [email protected] (R.A.B.); [email protected] (J.P.d.S.) Supplementary Tables Methods Protoc. 2021, 4, 5. https://doi.org/10.3390/mps4010005 www.mdpi.com/journal/mps Methods Protoc. 2021, 4, 5. https://doi.org/10.3390/mps4010005 2 of 25 Table 1. List of all hsa-miRs identified by Human microRNA Disease Database (HMDD; v3.2) analysis. hsa-miRs were identified using the term “genetics” and “circulating” as input in HMDD. Targets CAD hsa-miR-1 Targets IR injury hsa-miR-423 Targets Obesity hsa-miR-499 hsa-miR-146a Circulating Obesity Genetics CAD hsa-miR-423 hsa-miR-146a Circulating CAD hsa-miR-149 hsa-miR-499 Circulating IR Injury hsa-miR-146a Circulating Obesity hsa-miR-122 Genetics Stroke Circulating CAD hsa-miR-122 Circulating Stroke hsa-miR-122 Genetics Obesity Circulating Stroke hsa-miR-26b hsa-miR-17 hsa-miR-223 Targets CAD hsa-miR-340 hsa-miR-34a hsa-miR-92a hsa-miR-126 Circulating Obesity Targets IR injury hsa-miR-21 hsa-miR-423 hsa-miR-126 hsa-miR-143 Targets Obesity hsa-miR-21 hsa-miR-223 hsa-miR-34a hsa-miR-17 Targets CAD hsa-miR-223 hsa-miR-92a hsa-miR-126 Targets IR injury hsa-miR-155 hsa-miR-21 Circulating CAD hsa-miR-126 hsa-miR-145 hsa-miR-21 Targets Obesity hsa-mir-223 hsa-mir-499 hsa-mir-574 Targets IR injury hsa-mir-21 Circulating IR injury Targets Obesity hsa-mir-21 Targets CAD hsa-mir-22 hsa-mir-133a Targets IR injury hsa-mir-155 hsa-mir-21 Circulating Stroke hsa-mir-145 hsa-mir-146b Targets Obesity hsa-mir-21 hsa-mir-29b Methods Protoc.
    [Show full text]
  • Pharmacological Targeting of the Mitochondrial Phosphatase PTPMT1 by Dahlia Doughty Shenton Department of Biochemistry Duke
    Pharmacological Targeting of the Mitochondrial Phosphatase PTPMT1 by Dahlia Doughty Shenton Department of Biochemistry Duke University Date: May 1 st 2009 Approved: ___________________________ Dr. Patrick J. Casey, Supervisor ___________________________ Dr. Perry J. Blackshear ___________________________ Dr. Anthony R. Means ___________________________ Dr. Christopher B. Newgard ___________________________ Dr. John D. York Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biochemistry in the Graduate School of Duke University 2009 ABSTRACT Pharmacological Targeting of the Mitochondrial Phosphatase PTPMT1 by Dahlia Doughty Shenton Department of Biochemistry Duke University Date: May 1 st 2009 Approved: ___________________________ Dr. Patrick J. Casey, Supervisor ___________________________ Dr. Perry J. Blackshear ___________________________ Dr. Anthony R. Means ___________________________ Dr. Christopher B. Newgard ___________________________ Dr. John D. York An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biochemistry in the Graduate School of Duke University 2009 Copyright by Dahlia Doughty Shenton 2009 Abstract The dual specificity protein tyrosine phosphatases comprise the largest and most diverse group of protein tyrosine phosphatases and play integral roles in the regulation of cell signaling events. The dual specificity protein tyrosine phosphatases impact multiple
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Protein Phosphatases Cat. no. 330231 PAHS-045ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Protein Phosphatases RT² Profiler PCR Array profiles the gene expression of the 84 most important and well-studied phosphatases in the mammalian genome. By reversing the phosphorylation of key regulatory proteins mediated by protein kinases, phosphatases serve as a very important complement to kinases and attenuate activated signal transduction pathways. The gene classes on this array include both receptor and non-receptor tyrosine phosphatases, catalytic subunits of the three major protein phosphatase gene families, the dual specificity phosphatases, as well as cell cycle regulatory and other protein phosphatases.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]