Serendipity in Dark Photon Searches
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Searches for the Dark Photon at Fixed Target Experiments
New Physics: Sae Mulli, Vol. 66, No. 8, August 2016, pp. 1036∼1044 http://dx.doi.org/10.3938/NPSM.66.1036 Searches for the Dark Photon at Fixed Target Experiments Suyong Choi∗ Department of Physics, Korea University, Seoul 02841, Korea (Received 3 July 2016 : revised 12 July 2016 : accepted 12 July 2016) Recent astrophysical observations provided indirect evidences for sub-GeV, light, dark-matter (DM). A new gauge particle in this mass range could exist as an extra U(1) gauge particle, called the dark photon. The dark photon can mix weakly with a ordinary photon and can mediate interactions of DM. If the dark photon is massive enough, it can decay into a pair of standard- model (SM) particles or DM particles. Light dark-matter particles in the MeV to GeV mass range, as well as in other mass ranges, have not been the subjects of intensive experimental researches. Large statistics is needed to search for dark-photon-mediated interactions. Therefore, high-power accelerators can be used to look for the dark photon. In this article, we review the current status of the experimental searches at various fixed-target experiments and the experiments planned in the near term future. PACS numbers: 12.60.-i, 14.70.Pw Keywords: Dark matter, Standard model, Dark photon, Accelerator, Fixed target experiment I. INTRODUCTION TO DARK PHOTON the regions of interest. Depending on the mass ranges, different experimental techniques are required. For the In 2008, PAMELA experiment reported on the rise WIMP DM, high-energy accelerators, such as the LHC, of the positron to electron ratio in cosmic rays start- are required to extend the mass reach and to have suf- ing from 10 GeV onwards, subsequently confirmed by ficiently high production cross-sections. -
Search for Dark Sector Physics with NA64 Arxiv:2003.07257V1 [Hep-Ph
Search for dark sector physics with NA64 S.N.Gninenko1, N.V. Krasnikov1;2 and V.A.Matveev1;2 1 INR RAS, 117312 Moscow, Russia 2 Joint Institute for Nuclear Research, 141980 Dubna, Russia Аннотация The NA64 experiment consists of two detectors which are planned to be located at the electron (NA64e) and muon (NA64µ) beams of the CERN SPS and start operation after the LHC long-stop 2 in 2021. Its main goals include searches for dark sector physics - particularly light dark matter (LDM), visible and invisible decays of dark photons (A0), and new light particles that could explain the 8Be and gµ − 2 anomalies. Here we review these physics goals, the current status of NA64 including recent results and perspectives of further searches, as well as other ongoing or planned experiments in this field. The main theoretical results on LDM, the problem of the origin of the γ − A0 mixing term and its connection to loop 0 corrections, possible existence of a new light Z coupled to Lµ − Lτ current are also discussed. arXiv:2003.07257v1 [hep-ph] 16 Mar 2020 1 1 Introduction At present the most striking evidence in favour of new physics beyond the Standard model (SM) is the observation of Dark Matter (DM) [1, 2]. The nature of DM is one of challenging questions in physics. If DM is a thermal relic from the hot early Universe then its existence motivates to look for models with nongravitational interactions between dark and ordinary matter. There is a lot of candidates for the role of dark matter [1, 2]. -
Physics Opportunities for the Fermilab Booster Replacement
FNAL Pub No. goes here Physics Opportunities for the Fermilab Booster Replacement John Arrington,1 Joshua Barrow,2 Brian Batell,3 Robert Bernstein,4 S. J. Brice,4 Ray Culbertson,4 Patrick deNiverville,5 Jeff Eldred,4 Angela Fava,4 Laura Fields,6 Alex 7 4 8 4, 4, 9 Friedland, Andrei Gaponenko, Stefania Gori, Roni Harnik, ∗ Richard J Hill, Daniel M. Kaplan,10 Kevin J. Kelly,4 Tom Kobilarcik,4 Gordan Krnjaic,4 Gabriel Lee,11, 12, 13 B. R. Littlejohn,10 W. C. Louis,5 Pedro Machado,4 William M. Morse,14 David Neuffer,4 Zarko Pavlovic,4 William Pellico,4 Ryan Plestid,4, 9 Maxim Pospelov,15 Eric Prebys,16 Yannis K. Semertzidis,17, 18 M. H. Shaevitz,19 P. Snopok,10 Rex Tayloe,20 R. T. Thornton,5 Oleksandr Tomalak,4, 9 M. Toups,4 Nhan Tran,4 Richard Van de Water,5 Katsuya Yonehara,4 Jacob Zettlemoyer,4 Yi-Ming Zhong,21 Robert Zwaska,4 and Anna Mazzacane4 1Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 2The University of Tennessee at Knoxville, Department of Physics and Astronomy, 1408 Circle Drive, Knoxville, TN 37996, USA 3University of Pittsburgh, Pittsburgh, PA 15260 4Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA 5Los Alamos National Laboratory, Los Alamos, NM 87545 6Notre Dame 7SLAC 8Department of Physics and Santa Cruz Institute for Particle Physics University of California, Santa Cruz, CA 95064, USA 9University of Kentucky, KY, 40506, USA 10Illinois Institute of Technology, Chicago, IL 60616, USA 11Department of Physics, LEPP, Cornell University, Ithaca, NY 14853, USA 12Department of Physics, Korea -
NA64 Status Report 2018
Prepared for submission to SPSC NA64 Status Report 2018 The NA64 Collaboration1 Abstract: The experiment NA64 is aimed at a search for a sub-GeV vector mediator (called dark photon A0) of Dark Matter production at the CERN SPS. The main goal in 2017 was to probe a region of the A0 parameter space of the thermal dark matter model. Ongoing activities on the detector and data analysis are reviewed. The status and results from the NA64 runs in 2016 and 2017 are reported. First results on the search for the X ! e+e− decay of a 17 MeV X boson, which could explain the recently observed excess of e+e− pairs from the excited 8Be nucleus transitions, and A0 ! e+e− decays are also presented. Ongoing analysis on the decays of axion-like particles and plans for further searches beyond LS2 are also discussed. CERN-SPSC-2018-015 / SPSC-SR-231 29/05/2018 1http://webna64.cern.ch Contents Table of Contents2 1 Introduction3 2 NA64 status from the 2017 run4 2.1 The detector and ongoing activities4 2.2 Data sample from 2016-2017 runs7 3 Search for the A0 ! invisible decay8 3.1 Exact tree-level cross section calculations and signal simulation.9 3.2 Data analysis and selection criteria 11 3.3 Background 15 3.4 Results and calculation of limits 22 3.5 Constraints on light thermal Dark Matter 24 3.6 Preliminary results from the 2017 run 27 4 Search for a new 17 MeV gauge boson from the 8Be anomaly and dark photon decays A0 ! e+e− 28 4.1 The search method and the detector 29 4.2 Event selection and background evaluation 30 4.3 First results on the X ! e+e− and -
Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report
Journal of Physics G: Nuclear and Particle Physics J. Phys. G: Nucl. Part. Phys. 47 (2020) 010501 (114pp) https://doi.org/10.1088/1361-6471/ab4cd2 Major Report Physics beyond colliders at CERN: beyond the Standard Model working group report J Beacham1 , C Burrage2,30, D Curtin3 , A De Roeck4, J Evans5, J L Feng6, C Gatto7,8, S Gninenko9, A Hartin10, I Irastorza11, J Jaeckel12, K Jungmann13,30, K Kirch14,30, F Kling6, S Knapen15, M Lamont4, G Lanfranchi4,16,30,31 , C Lazzeroni17, A Lindner18, F Martinez-Vidal19, M Moulson16, N Neri20, M Papucci4,21, I Pedraza22, K Petridis23, M Pospelov24,30, A Rozanov25,30, G Ruoso26,30, P Schuster27, Y Semertzidis28, T Spadaro16, C Vallée25 and G Wilkinson29 1 Duke University, Durham, NC 27708, United States of America 2 University of Nottingham, Nottingham, United Kingdom 3 Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada 4 European Organization for Nuclear Research (CERN), Geneva, Switzerland 5 Department of Physics, University of Cincinnati, Cincinnati, OH 45221, United States of America 6 Department of Physics and Astronomy, University of California, Irvine, CA 92697- 4575, United States of America 7 Sezione di Napoli, INFN, Napoli, Italy 8 Northern Illinois University, United States of America 9 Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia 10 University College London, Gower Street, London WC1E 6BT, United Kingdom 11 Grupo de Física Nuclear y Altas Energías, Universidad de Zaragoza, Zaragoza, Spain 12 Institute for Theoretical -
Hunting Down the X17 Boson at the CERN SPS
Research Collection Journal Article Hunting down the X17 boson at the CERN SPS Author(s): NA64 Collaboration; Depero, Emilio; Crivelli, Paolo; Molina Bueno, Laura; Radics, Balint; Rubbia, André; Sieber, Henri; et al. Publication Date: 2020-12 Permanent Link: https://doi.org/10.3929/ethz-b-000457972 Originally published in: The European Physical Journal C 80(12), http://doi.org/10.1140/epjc/s10052-020-08725-x Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Eur. Phys. J. C (2020) 80:1159 https://doi.org/10.1140/epjc/s10052-020-08725-x Regular Article - Experimental Physics Hunting down the X17 boson at the CERN SPS NA64 Collaboration E. Depero1, Yu. M. Andreev2, D. Banerjee3,4, J. Bernhard3, V. E. Burtsev5, N. Charitonidis3, A. G. Chumakov6, D. Cooke7, P. Crivelli1,a , A. V. Dermenev2, S. V. Donskov8, R. R. Dusaev9,T.Enik5, A. Feshchenko5,V.N.Frolov5, A. Gardikiotis10, S. G. Gerassimov11,12,S.Girod3, S. N. Gninenko2, M. Hösgen13, V. A. Kachanov8, A. E. Karneyeu2, G. Kekelidze5, B. Ketzer13, D. V. Kirpichnikov2, M. M. Kirsanov2,V.N.Kolosov8, I. V. Konorov11,12, S. G. Kovalenko14, V. A. Kramarenko5,15, L. V. Kravchuk2, N. V. Krasnikov2,5, S. V. Kuleshov14, V. E. Lyubovitskij6,16, V. Lysan5,V.A.Matveev5, Yu. V. Mikhailov8, L. Molina Bueno1, D. V. Peshekhonov5, V. A. Polyakov8, B. Radics1, R. Rojas16, A. Rubbia1, V. D. Samoylenko8, D. Shchukin12, H. Sieber1, V. O. Tikhomirov12, vI. -
Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report
Journal of Physics G: Nuclear and Particle Physics J. Phys. G: Nucl. Part. Phys. 47 (2020) 010501 (114pp) https://doi.org/10.1088/1361-6471/ab4cd2 Major Report Physics beyond colliders at CERN: beyond the Standard Model working group report J Beacham1 , C Burrage2,30, D Curtin3 , A De Roeck4, J Evans5, J L Feng6, C Gatto7,8, S Gninenko9, A Hartin10, I Irastorza11, J Jaeckel12, K Jungmann13,30, K Kirch14,30, F Kling6, S Knapen15, M Lamont4, G Lanfranchi4,16,30,31 , C Lazzeroni17, A Lindner18, F Martinez-Vidal19, M Moulson16, N Neri20, M Papucci4,21, I Pedraza22, K Petridis23, M Pospelov24,30, A Rozanov25,30, G Ruoso26,30, P Schuster27, Y Semertzidis28, T Spadaro16, C Vallée25 and G Wilkinson29 1 Duke University, Durham, NC 27708, United States of America 2 University of Nottingham, Nottingham, United Kingdom 3 Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada 4 European Organization for Nuclear Research (CERN), Geneva, Switzerland 5 Department of Physics, University of Cincinnati, Cincinnati, OH 45221, United States of America 6 Department of Physics and Astronomy, University of California, Irvine, CA 92697- 4575, United States of America 7 Sezione di Napoli, INFN, Napoli, Italy 8 Northern Illinois University, United States of America 9 Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia 10 University College London, Gower Street, London WC1E 6BT, United Kingdom 11 Grupo de Física Nuclear y Altas Energías, Universidad de Zaragoza, Zaragoza, Spain 12 Institute for Theoretical -
JHEP04(2021)025 Springer April 2, 2021 : August 27, 2020 Mev
Published for SISSA by Springer Received: August 27, 2020 Revised: November 30, 2020 Accepted: February 22, 2021 Published: April 2, 2021 JHEP04(2021)025 Atomki anomaly in gauged U(1)R symmetric model Osamu Setoa,b and Takashi Shimomurac aInstitute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0817, Japan bDepartment of Physics, Hokkaido University, Sapporo 060-0810, Japan cFaculty of Education, Miyazaki University, Miyazaki, 889-2192, Japan E-mail: [email protected], [email protected] Abstract: The Atomki collaboration has reported that unexpected excesses have been observed in the rare decays of Beryllium nucleus. It is claimed that such excesses can suggest the existence of a new boson, called X, with the mass of about 17 MeV. To solve the Atomki anomaly, we consider a model with gauged U(1)R symmetry and identify the new gauge boson with the X boson. We also introduce two SU(2) doublet Higgs bosons and one singlet Higgs boson, and discuss a very stringent constraint from neutrino-electron scattering. It is found that the U(1)R charges of the doublet scalars are determined to evade the constraint. In the end, we find the parameter region in which the Atomki signal and all experimental constraints can be simultaneously satisfied. Keywords: Beyond Standard Model, Gauge Symmetry ArXiv ePrint: 2006.05497 Open Access, c The Authors. https://doi.org/10.1007/JHEP04(2021)025 Article funded by SCOAP3. Contents 1 Introduction1 2 Model 3 2.1 Lagrangian4 2.2 Gauge boson masses and mass eigenstates7 -
Pos(LHCP2019)182 ∗† [email protected] Speaker
Dark sector searches in non-LHC experiments PoS(LHCP2019)182 Jürgen Engelfried∗y Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico E-mail: [email protected] We will present recently published and soon to be expected results for dark matter searches in non-LHC experiments, namely BABAR, NA62, NA64, BELLE II, and PADME. 7th Annual Conference on Large Hadron Collider Physics - LHCP2019 20-25 May, 2019 Puebla, Mexico ∗Speaker. yThanks to the organizers for the invitation to give this presentation. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Dark sector searches in non-LHC experiments Jürgen Engelfried 1. Introduction The need for an extension of the Standard Model (SM) – the dark sector – is well known and will not be discussed here. Introducing new particles and interactions depend on the type of fields used, and are usually separated into Scalars (also called “dark Higgs”), Axial particles called “Axions” and ALP’s (Axion like particles), and new Vector Interactions, with a new vector boson called the “Dark Photon”. Other possible candidates for dark sector particles are heavy neutral leptons (heavy neutrinos), and some other solutions. In this presentation we will present recent already public results and expectations from non- PoS(LHCP2019)182 LHC experiments which are already running or will start in the near future, namely from BABAR, NA62, NA64, Belle II, and PADME. 2. Dark Photons A simple and natural extension of the SM is the introduction of a new interaction with a U(1) symmetry [1,2], with the new boson, the “dark photon” A0, interacting with the SM sector through a kinetic mixing e QED mn Lmix = F F −2 mn dark where e is the kinetic mixing strength. -
Prospects for Exploring the Dark Sector Physics and Rare Processes with NA64 at the CERN SPS
Prepared for submission as input to the European Particle Physics Strategy Prospects for exploring the Dark Sector physics and rare processes with NA64 at the CERN SPS The NA64 Collaboration1 Abstract: The CERN SPS offers a unique opportunity for exploring new physics due to the availability of high-quality and high-intensity secondary beams. In the 2016-18 runs, the NA64 experiment has successfully performed sensitive searches for Dark Sector and other rare processes in missing energy events using high energy electron interactions in an active dump. The NA64 Collaboration plans to continue such searches to fully exploit the potential of the experiment and increase its discovery reach with high-energy muon and hadron beams. Our research program with e− - beam aims at a high sensitivity search for visible and invisible decays of dark photons, A0, and the exploration of the parameter space for the sub-GeV Dark matter production in invisible decays of A0 mediator motivated by thermal Dark Matter models. It also includes clarification of the origin of the 8Be anomaly, observed by the Atomki experiment, and searches for Axion Like Particles (ALP) particles. With the M2 muon beam, we propose to focus on the unique possibility to search for new states weakly coupled predominantly to muons, in particular a new gauge Zµ boson of Lµ − Lτ symmetry, which can resolve the long standing muon (g-2)µ discrepancy. Further, more sensitive searches for the Zµ as a vector mediator of Dark Matter production, LFV µ − τ conversion and millicharged particles are also planned. Finally, the program includes probing Dark Sector with π; K beams, by 0 0 0 0 looking for invisible decays π ; η; η ;KS;KL ! invisible of neutral mesons, which is complementary to the current CERN program in the kaon sector.