Calcul De Groupes De Classes D'un Corps De Nombres Et Applications

Total Page:16

File Type:pdf, Size:1020Kb

Calcul De Groupes De Classes D'un Corps De Nombres Et Applications THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité Informatique École Doctorale Informatique, Télécommunications et Électronique (Paris) Présentée par Alexandre GÉLIN Pour obtenir le grade de DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE Calcul de Groupes de Classes d’un Corps de Nombres et Applications à la Cryptologie Thèse dirigée par Antoine JOUX et Arjen LENSTRA soutenue le vendredi 22 septembre 2017 après avis des rapporteurs : M. Andreas ENGE Directeur de Recherche, Inria Bordeaux-Sud-Ouest & IMB M. Claus FIEKER Professeur, Université de Kaiserslautern devant le jury composé de : M. Karim BELABAS Professeur, Université de Bordeaux M. Andreas ENGE Directeur de Recherche, Inria Bordeaux-Sud-Ouest & IMB M. Claus FIEKER Professeur, Université de Kaiserslautern M. Louis GOUBIN Professeur, Université de Versailles-St-Quentin-en-Yvelines M. Antoine JOUX Chaire de Cryptologie à la Fondation UPMC, Paris M. Arjen LENSTRA Professeur, École Polytechnique Fédérale de Lausanne Mme Ariane MÉZARD Professeur, Université Pierre et Marie Curie, Paris M. Nigel SMART Professeur, Université de Bristol Class Group Computations in Number Fields and Applications to Cryptology Alexandre GÉLIN Team ALMASTY, Laboratoire d’Informatique de Paris 6 UPMC Sorbonne Universités Laboratoire d’Informatique de Paris 6 Université Pierre et Marie Curie Équipe ALMASTY École doctorale EDITE – ED 130 UPMC - Sorbonne Universités Faculté d’ingénierie – UFR 919 4, place Jussieu 4, place Jussieu 75005 Paris, FRANCE 75005 Paris, FRANCE Mathematics may be defined as the subject where we never know what we are talking about, nor whether what we are saying is true. — Bertrand Russell À tous ceux qui ne pourront lire ces mots. Abstract A common way to construct public-key cryptosystems is to use the discrete exponentiation in a finite group where the inverse problem, the discrete logarithm problem, is considered difficult. Several groups are commonly used: multiplicative group of finite fields or Jacobians of algebraic curves defined over finite fields. The class group of a number field is another candidate which was sometimes proposed. To study its viability, it is important to identify the difficulty for this kind of group to determine its cardinality, its structure and the possible hardness of the discrete logarithm problem. Irrespective of cryptologic applications, methods to determine the properties of these groups is of independent mathematical interest. In this thesis, we focus on class group computations in number fields. We start by de- scribing an algorithm for reducing the size of a defining polynomial of a number field. There exist infinitely many polynomials that define a specific number field, with arbitrarily large coefficients, but our algorithm constructs the one that has the absolutely smallest coefficients. The advantage of knowing such a “small” defining polynomial is that it makes calculations in the number field easier because smaller values are involved. In addition, thanks to such a small polynomial, one can use specific algorithms that are more efficient than the general ones for class group computations. The generic algorithm to determine the structure of a class group is based on ideal reduc- tion, where ideals are viewed as lattices. We describe and simplify the algorithm presented by Biasse and Fieker in 2014 at ANTS and provide a more thorough complexity analysis for it. We also examine carefully the case of number fields defined by a polynomial with small coeffi- cients. We describe an algorithm similar to the Number Field Sieve, which, depending on the ¡ 1 ¢ field parameters, may reach the hope for complexity L 3 . Finally, our results can be adapted to solve an associated problem: the Principal Ideal Problem. Given any basis of a principal ideal (generated by a unique element), we are able to find such a generator. As this problem, known to be hard, is the key-point in several homomorphic cryptosystems, the slight modifications of our algorithms provide efficient attacks against these cryptographic schemes. i Résumé L’une des voies privilégiées pour la construction de cryptosystèmes à clé publique est l’uti- lisation dans des groupes finis de l’exponentiation discrète, dont le problème inverse, celui du logarithme discret, est réputé difficile. Plusieurs groupes sont classiquement utilisés : le groupe multiplicatif d’un corps fini ou la Jacobienne d’une courbe algébrique définie sur un corps fini. Le groupe de classes d’un corps de nombres est un autre candidat qui a parfois été proposé. Pour étudier sa viabilité, il est important de bien cerner la difficulté de déterminer la cardinalité et la structure du groupe, ainsi que la difficulté éventuelle du problème du logarithme discret. Indépendamment de ces applications cryptographiques, les méthodes utilisées pour résoudre ces problèmes ont aussi un intérêt mathématique. Dans cette thèse, nous nous intéressons au calcul du groupe de classes d’un corps de nombres. Nous débutons par décrire un algorithme de réduction du polynôme de définition d’un corps de nombres. Il existe une infinité de polynômes qui définissent un corps de nombres fixé, avec des coefficients arbitrairement gros. Notre algorithme calcule celui qui a les plus petits coefficients. L’avantage de connaître un petit polynôme de définition est qu’il simplifie les calculs entre éléments de ce corps de nombres, en impliquant des quantités plus petites. En outre, la connaissance d’un tel polynôme permet l’utilisation d’algorithmes plus efficaces que dans le cas général pour calculer le groupe de classes. L’algorithme général pour calculer la structure du groupe de classes repose sur la réduction d’idéaux, vus comme des réseaux. Nous décrivons et simplifions l’algorithme présenté par Biasse et Fieker en 2014 à ANTS et approfondissons l’analyse de complexité. Nous nous sommes aussi intéressés au cas des corps de nombres définis par un polynôme à petits coefficients. Nous décrivons un algorithme similaire au crible par corps de nombres (NFS) ¡ 1 ¢ dont la complexité en fonction des paramètres du corps de nombres peut atteindre L 3 . Enfin, nos algorithmes peuvent être adaptés pour résoudre un problème lié : le Problème de l’Idéal Principal. Étant donné n’importe quelle base d’un idéal principal (généré par un seul élément), nous sommes capables de retrouver ce générateur. Cette application de nos algorithmes fournit une attaque efficace contre certains schémas de chiffrement homomorphe basés sur ce problème. iii Contents Abstract i (French) Résumé iii (French) Introduction1 1 Motivation.........................................1 2 Organisation de la thèse et résultats..........................6 Introduction 13 1 Motivation......................................... 13 2 Contributions & Organization.............................. 17 I Preliminaries 23 1 Algebraic Number Theory Tools 25 1.1 Linear algebra & Lattices................................. 26 1.2 Number fields & Polynomials.............................. 31 1.3 Orders & Ideals...................................... 38 1.4 Norms & Smoothness.................................. 41 1.5 Ideal classes & Units................................... 48 2 Previous work on class group computations and related problems 53 2.1 Exponential strategies for quadratic number fields................. 54 2.2 Class group generation.................................. 60 2.3 Subexponential complexity, using index calculus method............. 61 2.4 Algorithms related to number fields.......................... 69 v Contents II Reducing the complexity of Class Group Computation 73 3 Reduction of the defining polynomial 75 3.1 Motivations and link with class group computation................. 76 3.2 An optimal algorithm for NF defining polynomial reduction............ 79 3.3 Complexity analysis................................... 84 3.4 Application to class group computation........................ 87 4 Refinements for complexities appearing in the literature for the general case 93 4.1 The classification defined by classes D is sufficient................. 94 4.2 The relation collection.................................. 97 4.3 Complexity analyses................................... 102 4.4 Using HNF to get an even smaller complexity.................... 104 5 Reducing the complexity using good defining polynomials 109 5.1 Motivation......................................... 110 5.2 Deriving relations by sieving.............................. 111 5.3 Complexity analyses................................... 114 5.4 Conclusion on sieving strategy............................. 118 5.5 Application to Principal Ideal Problem........................ 119 III Applications to Cryptology 129 6 PIP solution in cyclotomic fields and cryptanalysis of an FHE scheme 131 6.1 Situation of the problem and cryptosystems that rely on SPIP........... 132 6.2 Solving the PIP or how to perform a full key recovery?............... 134 6.3 Description of the algorithm.............................. 135 6.4 Complexity analysis................................... 145 6.5 Implementation results................................. 146 Bibliography 151 vi Introduction 1 Motivation Cryptographie. La cryptographie moderne se divise en deux grandes sous-familles. La plus ancienne est la cryptographie symétrique. L’idée principale est que l’émetteur et le desti- nataire d’un message partagent un secret commun, appelé clé secrète. En 1976, Diffie et Hellman introduisent la cryptographie asymétrique — aussi appelée cryptographie à clé pu- blique — dans leur article intitulé New Directions in Cryptography
Recommended publications
  • Class Group Computations in Number Fields and Applications to Cryptology Alexandre Gélin
    Class group computations in number fields and applications to cryptology Alexandre Gélin To cite this version: Alexandre Gélin. Class group computations in number fields and applications to cryptology. Data Structures and Algorithms [cs.DS]. Université Pierre et Marie Curie - Paris VI, 2017. English. NNT : 2017PA066398. tel-01696470v2 HAL Id: tel-01696470 https://tel.archives-ouvertes.fr/tel-01696470v2 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité Informatique École Doctorale Informatique, Télécommunications et Électronique (Paris) Présentée par Alexandre GÉLIN Pour obtenir le grade de DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE Calcul de Groupes de Classes d’un Corps de Nombres et Applications à la Cryptologie Thèse dirigée par Antoine JOUX et Arjen LENSTRA soutenue le vendredi 22 septembre 2017 après avis des rapporteurs : M. Andreas ENGE Directeur de Recherche, Inria Bordeaux-Sud-Ouest & IMB M. Claus FIEKER Professeur, Université de Kaiserslautern devant le jury composé de : M. Karim BELABAS Professeur, Université de Bordeaux M. Andreas ENGE Directeur de Recherche, Inria Bordeaux-Sud-Ouest & IMB M. Claus FIEKER Professeur, Université de Kaiserslautern M.
    [Show full text]
  • 6 Ideal Norms and the Dedekind-Kummer Theorem
    18.785 Number theory I Fall 2017 Lecture #6 09/25/2017 6 Ideal norms and the Dedekind-Kummer theorem In order to better understand how ideals split in Dedekind extensions we want to extend our definition of the norm map to ideals. Recall that for a ring extension B=A in which B is a free A-module of finite rank, we defined the norm map NB=A : B ! A as ×b NB=A(b) := det(B −! B); the determinant of the multiplication-by-b map with respect to an A-basis for B. If B is a free A-module we could define the norm of a B-ideal to be the A-ideal generated by the norms of its elements, but in the case we are most interested in (our \AKLB" setup) B is typically not a free A-module (even though it is finitely generated as an A-module). To get around this limitation, we introduce the notion of the module index, which we will use to define the norm of an ideal. In the special case where B is a free A-module, the norm of a B-ideal will be equal to the A-ideal generated by the norms of elements. 6.1 The module index Our strategy is to define the norm of a B-ideal as the intersection of the norms of its localizations at maximal ideals of A (note that B is an A-module, so we can view any ideal of B as an A-module). Recall that by Proposition 2.6 any A-module M in a K-vector space is equal to the intersection of its localizations at primes of A; this applies, in particular, to ideals (and fractional ideals) of A and B.
    [Show full text]
  • NORM GROUPS with TAME RAMIFICATION 11 Is a Homomorphism, Which Is Equivalent to the first Equation of Bimultiplicativity (The Other Follows by Symmetry)
    LECTURE 3 Norm Groups with Tame Ramification Let K be a field with char(K) 6= 2. Then × × 2 K =(K ) ' fcontinuous homomorphisms Gal(K) ! Z=2Zg ' fdegree 2 étale algebras over Kg which is dual to our original statement in Claim 1.8 (this result is a baby instance of Kummer theory). Npo te that an étale algebra over K is either K × K or a quadratic extension K( d)=K; the former corresponds to the trivial coset of squares in K×=(K×)2, and the latter to the coset defined by d 2 K× . If K is local, then lcft says that Galab(K) ' Kd× canonically. Combined (as such homomorphisms certainly factor through Galab(K)), we obtain that K×=(K×)2 is finite and canonically self-dual. This is equivalent to asserting that there exists a “suÿciently nice” pairing (·; ·): K×=(K×)2 × K×=(K×)2 ! f1; −1g; that is, one which is bimultiplicative, satisfying (a; bc) = (a; b)(a; c); (ab; c) = (a; c)(b; c); and non-degenerate, satisfying the condition if (a; b) = 1 for all b; then a 2 (K×)2 : We were able to give an easy definition of this pairing, namely, (a; b) = 1 () ax2 + by2 = 1 has a solution in K: Note that it is clear from this definition that (a; b) = (b; a), but unfortunately neither bimultiplicativity nor non-degeneracy is obvious, though we will prove that they hold in this lecture in many cases. We have shown in Claim 2.11 that a less symmetric definition of the Hilbert symbol holds, namely that for all a, p (a; b) = 1 () b is a norm in K( a)=K = K[t]=(t2 − a); which if a is a square, is simply isomorphic to K × K and everything is a norm.
    [Show full text]
  • Electromagnetic Time Reversal Electromagnetic Time Reversal
    Electromagnetic Time Reversal Electromagnetic Time Reversal Application to Electromagnetic Compatibility and Power Systems Edited by Farhad Rachidi Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland Marcos Rubinstein University of Applied Sciences of Western Switzerland, Yverdon, Switzerland Mario Paolone Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland This edition first published 2017 © 2017 John Wiley & Sons, Ltd All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions. The right of Farhad Rachidi, Marcos Rubinstein, and Mario Paolone to be identified asthe authors of the editorial material in this work has been asserted in accordance with law. Registered Offices John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Office The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com. Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats. Limit of Liability/Disclaimer of Warranty The publisher and the authors make no representations or warranties with respect tothe accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose.
    [Show full text]
  • LECTURES on COHOMOLOGICAL CLASS FIELD THEORY Number
    LECTURES on COHOMOLOGICAL CLASS FIELD THEORY Number Theory II | 18.786 | Spring 2016 Taught by Sam Raskin at MIT Oron Propp Last updated August 21, 2017 Contents Preface......................................................................v Lecture 1. Introduction . .1 Lecture 2. Hilbert Symbols . .6 Lecture 3. Norm Groups with Tame Ramification . 10 Lecture 4. gcft and Quadratic Reciprocity. 14 Lecture 5. Non-Degeneracy of the Adèle Pairing and Exact Sequences. 19 Lecture 6. Exact Sequences and Tate Cohomology . 24 Lecture 7. Chain Complexes and Herbrand Quotients . 29 Lecture 8. Tate Cohomology and Inverse Limits . 34 Lecture 9. Hilbert’s Theorem 90 and Cochain Complexes . 38 Lecture 10. Homotopy, Quasi-Isomorphism, and Coinvariants . 42 Lecture 11. The Mapping Complex and Projective Resolutions . 46 Lecture 12. Derived Functors and Explicit Projective Resolutions . 52 Lecture 13. Homotopy Coinvariants, Abelianization, and Tate Cohomology. 57 Lecture 14. Tate Cohomology and Kunr ..................................... 62 Lecture 15. The Vanishing Theorem Implies Cohomological lcft ........... 66 Lecture 16. Vanishing of Tate Cohomology Groups. 70 Lecture 17. Proof of the Vanishing Theorem . 73 Lecture 18. Norm Groups, Kummer Theory, and Profinite Cohomology . 76 Lecture 19. Brauer Groups . 81 Lecture 20. Proof of the First Inequality . 86 Lecture 21. Artin and Brauer Reciprocity, Part I. 92 Lecture 22. Artin and Brauer Reciprocity, Part II . 96 Lecture 23. Proof of the Second Inequality . 101 iii iv CONTENTS Index........................................................................ 108 Index of Notation . 110 Bibliography . 113 Preface These notes are for the course Number Theory II (18.786), taught at mit in the spring semester of 2016 by Sam Raskin. The original course page can be found online here1; in addition to these notes, it includes an annotated bibliography for the course, as well as problem sets, which are frequently referenced throughout the notes.
    [Show full text]
  • Notes on the Theory of Algebraic Numbers
    Notes on the Theory of Algebraic Numbers Steve Wright arXiv:1507.07520v1 [math.NT] 27 Jul 2015 Contents Chapter 1. Motivation for Algebraic Number Theory: Fermat’s Last Theorem 4 Chapter 2. Complex Number Fields 8 Chapter 3. Extensions of Complex Number Fields 14 Chapter 4. The Primitive Element Theorem 18 Chapter 5. Trace, Norm, and Discriminant 21 Chapter 6. Algebraic Integers and Number Rings 30 Chapter 7. Integral Bases 37 Chapter 8. The Problem of Unique Factorization in a Number Ring 44 Chapter 9. Ideals in a Number Ring 48 Chapter 10. Some Structure Theory for Ideals in a Number Ring 57 Chapter 11. An Abstract Characterization of Ideal Theory in a Number Ring 62 Chapter 12. Ideal-Class Group and the Class Number 65 Chapter 13. Ramification and Degree 71 Chapter 14. Ramification in Cyclotomic Number Fields 81 Chapter 15. Ramification in Quadratic Number Fields 86 Chapter 16. Computing the Ideal-Class Group in Quadratic Fields 90 Chapter 17. Structure of the Group of Units in a Number Ring 100 Chapter 18. The Regulator of a Number Field and the Distribution of Ideals 119 Bibliography 124 Index 125 3 CHAPTER 1 Motivation for Algebraic Number Theory: Fermat’s Last Theorem Fermat’s Last Theorem (FLT). If n 3 is an integer then there are no positive ≥ integers x, y, z such that xn + yn = zn. This was first stated by Pierre de Fermat around 1637: in the margin of his copy of Bachet’s edition of the complete works of Diophantus, Fermat wrote (in Latin): “It is impossible to separate a cube into two cubes or a bi-quadrate into two bi-quadrates, or in general any power higher than the second into powers of like degree; I have discovered a truly remarkable proof which this margin is too small to contain.” FLT was proved (finally!) by Andrew Wiles in 1995.
    [Show full text]
  • Will Fithian: Q P and Its Extensions
    Qp and its Extensions Math 129 Final Project William Fithian 18 May 2005 1 Introduction This paper is intended as an introduction to the field Qp of p-adic numbers, and some of the ways in which it relates to the theory we have been building up over the course of the semester. We will leave a few small facts unproven, in the interest of being able to attack larger things without getting bogged down in all the gory details of norms and topology. The content of the paper is divided into three sections, the first of which will introduce the reader to the p-adic numbers and motivate their further study, and the next two of which are intended give the reader some perspective on how some the topics we studied this semester about Number Fields relate to the p-adics, and what similar theory we can build up around Qp. Much of this paper, and in particular the construction of Qp, Hensel’s Lemma, and the sections on extensions of norms and the generalized ring of integers, follows more or less loosely the presentation in Koblitz [3]. The section on viewing Zp as a tree is from Holly [1]. p Some of the random little facts such as e ∈ Qp and the generalization of | · |p in Section 3.4 came from [5]. 2 The p-adic Numbers There are various ways to construct the p-adic numbers. One very intuitive one involves n defining Zp to be the projective limit of Z/p Z for a prime p with n going to infinity, and then taking Qp to be the fraction field of that limit, which is an integral domain.
    [Show full text]
  • Algebraic Number Theory
    Algebraic Number Theory George D. Torres Math 390C - Fall 2017 1 Number Fields 2 1.1 Norm, Trace, and Discriminant . .3 1.2 Algebraic Integers . .5 2 Dedekind Rings 7 2.1 Fractional Ideals and Unique Factorization . .8 2.2 The Ideal Class Group . 10 3 Geometry of Numbers 14 3.1 Lattices . 14 3.2 Minkowski’s Theorem . 17 3.3 Dirichlet’s Theorem . 20 4 Ramification and Decomposition of Primes 23 4.1 Prime ideals in Galois Extensions . 26 4.1.1 Decomposition and Inertia Groups . 27 4.1.2 The Abelian, Unramified Case . 28 5 Local Fields 29 5.1 Defining Local Fields . 30 5.2 Finite extensions of Qp ........................................... 32 5.2.1 Ramification in p-adic fields . 34 5.2.2 Krasner’s Lemma . 35 5.3 The Approximation Theorem and Ostrowski’s Theorem . 36 6 Analytic Methods in Number Fields 39 6.1 The Zeta Function of a Number Field . 40 6.2 Dirichlet Characters and L-Functions . 44 6.2.1 Quadratic Characters and Quadratic Fields . 46 7 Introduction to Global Class Field Theory 50 7.1 Moduli and the Ray Class Group . 50 7.2 The Artin Symbol . 51 ————————————————– These are lecture notes from Mirela Çiperiani’s Algebraic Number Theory course M390C given Fall 2017. The reader should be comfortable with the essential notions of commutative algebra, general field theory, and Galois theory. Please forward any typos to [email protected]. Last updated: February 13, 2019 1 1. Number Fields v A number field is a finite extension of Q. To be more precise, we’ll begin with some review of field extensions and algebraic elements.
    [Show full text]
  • Part III — Local Fields
    Part III | Local Fields Based on lectures by H. C. Johansson Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine. The p-adic numbers Qp (where p is any prime) were invented by Hensel in the late 19th century, with a view to introduce function-theoretic methods into number theory. They are formed by completing Q with respect to the p-adic absolute value j − jp , defined −n n for non-zero x 2 Q by jxjp = p , where x = p a=b with a; b; n 2 Z and a and b are coprime to p. The p-adic absolute value allows one to study congruences modulo all powers of p simultaneously, using analytic methods. The concept of a local field is an abstraction of the field Qp, and the theory involves an interesting blend of algebra and analysis. Local fields provide a natural tool to attack many number-theoretic problems, and they are ubiquitous in modern algebraic number theory and arithmetic geometry. Topics likely to be covered include: The p-adic numbers. Local fields and their structure. Finite extensions, Galois theory and basic ramification theory. Polynomial equations; Hensel's Lemma, Newton polygons. Continuous functions on the p-adic integers, Mahler's Theorem. Local class field theory (time permitting). Pre-requisites Basic algebra, including Galois theory, and basic concepts from point set topology and metric spaces.
    [Show full text]
  • Daniel A. Marcus Number Fields Second Edition Universitext Universitext
    Universitext Daniel A. Marcus Number Fields Second Edition Universitext Universitext Series editors Sheldon Axler San Francisco State University Carles Casacuberta Universitat de Barcelona Angus MacIntyre Queen Mary University of London Kenneth Ribet University of California, Berkeley Claude Sabbah École polytechnique, CNRS, Université Paris-Saclay, Palaiseau Endre Süli University of Oxford Wojbor A. Woyczyński Case Western Reserve University Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal even experimental approach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolution of teaching curricula, into very polished texts. Thus as research topics trickle down into graduate-level teaching, first textbooks written for new, cutting-edge courses may make their way into Universitext. More information about this series at http://www.springer.com/series/223 Daniel A. Marcus Number Fields Second Edition Typeset in LATEX by Emanuele Sacco 123 Daniel A. Marcus (Deceased) Columbus, OH USA ISSN 0172-5939 ISSN 2191-6675 (electronic) Universitext ISBN 978-3-319-90232-6 ISBN 978-3-319-90233-3 (eBook) https://doi.org/10.1007/978-3-319-90233-3 Library of Congress Control Number: 2018939311 Mathematics Subject Classification (2010): 12-01, 11Rxx, 11Txx 1st edition: © Springer-Verlag, New
    [Show full text]
  • Natural &Applied Sciences JOURNAL
    IZMIR DEMOCRACY UNIVERSITY Natural &Applied Sciences JOURNAL IDUNAS E-ISSN: 2645-9000 Year: 2020 Volume:Volume: 1, 3 ,Issue: Issue: 1 2 Natural & Applied Sciences Journal Volume:3 Issue: 2 Table of Contents Sayfa 1. Review Article 1 a. A Novel Hybrid: Neuro-Immuno-Engineering 1 b. Bioinks for Bioprinting Tissues and Organs 13 2. Research Article 34 a. RF Marker Simulation Model for Interventional MRI Application 34 b. Determination of Exchangeable Cations and Residual Concentration of Herbicide Treated Soils and Analysis of The In-Vitro Biodegradation of The Herbicides 49 c. Biogas Potentials of Anaerobic Co-Digestion of Rumen Contents and Sewage Sludge 64 1 DOI: 10.38061/idunas.754647 2020 NATURAL & APPLIED SCIENCES IDUNAS Vol. 3 JOURNAL No. 2 (1-12) A Novel Hybrid: Neuro-Immuno-Engineering Review Article Arzu L. Aral1* , Gönül Ö. Peker2 1 Department of Immunology, Faculty of Medicine, Izmir Democracy University, Izmir, Turkey 2 Department of Physiology, Faculty of Medicine, Ege University, Izmir, Turkey (retired) Author E-mails [email protected] *Correspondance to: Assoc. Prof. Dr. Arzu Latife Aral, Department of Immunology, Faculty of Medicine, Izmir Democracy University, Izmir, Turkey Tel: +90 232 260 1001 DOI: 10.38061/idunas.754647 Received:18.06.2020; Accepted:01.12.2020 Abstract Although the central nervous system has been known as immune-privileged for many decades, the psycho- neuro-endocrine-immune relationships studied in integrity, in recent years has opened a new era called neuroimmunology. Illumination of the bi-directional cross-talk between immune and central nervous systems, both of which are of cardinal importance for homeostasis, survival, progress and wellbeing, and, is highly expected to provide an integrated understanding of neuropathological and degenerative processes.
    [Show full text]
  • 25 Global Class Field Theory, the Chebotarev Density Theorem
    18.785 Number theory I Fall 2015 Lecture #25 12/10/2015 25 Global class field theory, the Chebotarev density theorem 25.1 Global fields Recall that a global field is a field with a product formula whose completion at any nontrivial absolute value is a local field. As proved on Problem Set 7, every such field is one of: • number field: finite extension of Q (characteristic 0, has an archimedean place); • global function field: finite extension of Fp(t) (characteristic p, no archimedean places). An equivalent characterization of a global function field is that it is the function field of a smooth projective (geometrically integral) curve over a finite field. In Lecture 22 we defined the adele ring AK of a global field K as the restricted product aY Y AK := (Kv; Ov) = (av) 2 Kv : av 2 Ov for almost all v ; over all of its places (equivalence classes of absolute values) v; here Kv denotes the com- pletion of K at v (a local field), and Ov is the valuation ring of Kv if v is nonarchimedean, and Ov = Kv otherwise. As a topological ring, AK is locally compact and Hausdorff. The field K is canonically embedded in AK via the diagonal map x 7! (x; x; x; : : :) whose image is discrete, closed, and cocompact; see Theorem 22.12. In Lecture 23 we defined the idele group aY × × Y × × IK := (Kv ; Ov ) = (av) 2 Kv : av 2 Ov for almost all v ; which coincides with the unit group of AK as a set but not as a topological space (the restricted product topology ensures that a 7! a−1 is continuous, which is not true of the subspace topology).
    [Show full text]