Notes on the Theory of Algebraic Numbers

Total Page:16

File Type:pdf, Size:1020Kb

Notes on the Theory of Algebraic Numbers Notes on the Theory of Algebraic Numbers Steve Wright arXiv:1507.07520v1 [math.NT] 27 Jul 2015 Contents Chapter 1. Motivation for Algebraic Number Theory: Fermat’s Last Theorem 4 Chapter 2. Complex Number Fields 8 Chapter 3. Extensions of Complex Number Fields 14 Chapter 4. The Primitive Element Theorem 18 Chapter 5. Trace, Norm, and Discriminant 21 Chapter 6. Algebraic Integers and Number Rings 30 Chapter 7. Integral Bases 37 Chapter 8. The Problem of Unique Factorization in a Number Ring 44 Chapter 9. Ideals in a Number Ring 48 Chapter 10. Some Structure Theory for Ideals in a Number Ring 57 Chapter 11. An Abstract Characterization of Ideal Theory in a Number Ring 62 Chapter 12. Ideal-Class Group and the Class Number 65 Chapter 13. Ramification and Degree 71 Chapter 14. Ramification in Cyclotomic Number Fields 81 Chapter 15. Ramification in Quadratic Number Fields 86 Chapter 16. Computing the Ideal-Class Group in Quadratic Fields 90 Chapter 17. Structure of the Group of Units in a Number Ring 100 Chapter 18. The Regulator of a Number Field and the Distribution of Ideals 119 Bibliography 124 Index 125 3 CHAPTER 1 Motivation for Algebraic Number Theory: Fermat’s Last Theorem Fermat’s Last Theorem (FLT). If n 3 is an integer then there are no positive ≥ integers x, y, z such that xn + yn = zn. This was first stated by Pierre de Fermat around 1637: in the margin of his copy of Bachet’s edition of the complete works of Diophantus, Fermat wrote (in Latin): “It is impossible to separate a cube into two cubes or a bi-quadrate into two bi-quadrates, or in general any power higher than the second into powers of like degree; I have discovered a truly remarkable proof which this margin is too small to contain.” FLT was proved (finally!) by Andrew Wiles in 1995. One can show FLT if and only if one can prove FLT for primes. If p is an odd prime then there are no nonzero integers x, y, z, such that xp + yp + zp =0. Modern algebraic number theory essentially began in an attack on FLT by the great German number theorist Ernst Eduard Kummer in 1840. In order to explain Kummer’s strategy, we need to recall the notion of a unique factorization domain (UFD). Definitions. Let D be an integral domain, i.e., a commutative ring with identity 1 that contains no zero divisors, i.e., no elements x, y such that x =0 = y and xy = 0. 6 6 (i) if a, b D and if there exists c D such that b = ac, then a divides b, or a is a factor ∈ ∈ of b, denoted a b. | (ii) u D is a unit in D if u has a mulitiplicative inverse in D. ∈ If U(D) denotes the set of all units in D then 1, 1 U(D) and U(D) is an abelian {− } ⊆ group under multiplication in D; U(D) is the group of units in D. (iii) a, b D are associates if there exists u U(D) such that a = bu. ∈ ∈ (iv) 0 = p D is prime (or irreducible) if p U(D) and p = ab for a, b D implies that 6 ∈ 6∈ ∈ either a or b is a unit. 4 1. MOTIVATION FOR ALGEBRAIC NUMBER THEORY: FERMAT’S LAST THEOREM 5 1 If a D, u U(D) then a = (au− )u, i.e., every element of D has a factorization of ∈ ∈ the form (unit) (element of D). Such factorizations are hence said to be trivial. Primes in × D are precisely the elements of D with only trivial factorizations. If Z denotes the ordinary ring of integers then U(Z)= 1, 1 , {− } and the primes in Z, according to (iv) in the above definitions, are precisely the prime numbers, together with their negatives. Hence a prime in an integral domain is the analog of a prime number in Z. N.B. In order to avoid ambiguity that may arise from the terminology with regard to primes that we have introduced, we will refer to a positive prime number in Z as a rational prime. Definition. An integral domain D is a unique factorization domain (UFD) if (i) every element in D 0 U(D) can be factored into a product of primes in D, and \ { } ∪ (ii) If p p and q q are factorizations into primes of the same element of D then 1 ··· r 1 ··· s r = s and the qj’s can be reindexed so that pi and qi are associates for i =1,...,r. Kummer’s strategy for proving Fermat’s Last Theorem Assume that p is an odd rational prime and that there exits nonzero integers x, y, z such that ( ) xp + yp = zp. ∗ We want to derive a contradiction from this assumption. In order to do this Kummer split the situation into the following two cases: Case I: p divides none of x, y, z. Case II: p divides at least one of x, y, z. We will discuss what Kummer did only for Case I. Notation. In the sequel, if S is a set and n is a positive integer then Sn will denote the Cartesian product of S with itself taken n times, i.e., the set of all n-tuples (s1,...,sn), where s S for all i. i ∈ It’s easy to derive a contradiction for p = 3. If neither x, y, nor z is divisible by 3, then x3, y3 and z3 are each 1 mod 9, and so x3 + y3 2, 0, or 2 mod 9, whence x3 + y3 z3 ≡ ± ≡ − 6≡ mod 9, contrary to ( ) with p = 3. ∗ Hence suppose that p> 3. Let 2π 2π ω = ω = e2πi/p = cos + i sin , p p p 1. MOTIVATION FOR ALGEBRAIC NUMBER THEORY: FERMAT’S LAST THEOREM 6 a p-th root of unity. It can be shown (see Proposition 25, infra) that the set Z[ω] of complex numbers defined by p 2 − i p 1 Z[ω]= aiω :(a0,...,ap 2) Z − − ∈ ( i=0 ) X is a subring of the set of complex numbers C, i.e., Z[ω] is closed under addition, subtraction, and multiplication of complex numbers, and is also clearly an integral domain. Now, suppose that Z[ω] is a UFD. Kummer then proved that ( ) there exists a unit u Z[ω] and α Z[ω] such that x + yω = uαp. ∗∗ ∈ ∈ He then used ( ), ( ), and the assumption that p does not divide x or y (Case I) to show ∗ ∗∗ that x y mod p. ≡ Applying the same argument using xp +( z)p =( y)p, he also got that − − x z mod p. ≡ − But then 2xp xp + yp = zp xp mod p, ≡ ≡ − and so 3xp 0 mod p, ≡ i.e., p (3xp), hence p x or p 3. Because p > 3, it follows that p x, and this contradicts the | | | | hypothesis of Case I. Thus Kummer had shown that if Z[ω] is a UFD then Case I cannot be true, i.e., if ( ) is true and Z[ω] is a UFD then p must divide at least one of x, y, or z. Kummer ∗ was thus led to ask is Z[ωp] a UFD, for all rational primes p> 3? The answer, unfortunately, is no: Kummer was able to prove that Z[ω23] is in fact not a UFD. So the next question must be for what p is Z[ωp] a UFD? Answer: all p 19 and no others! This is very difficult to prove, and was not done until ≤ 1971. For some discussion of the ideas that Kummer used to derive a contradiction in Case I when Z[ωp] is not a unique factorization domain, see Marcus [9], Chapter 1. 1. MOTIVATION FOR ALGEBRAIC NUMBER THEORY: FERMAT’S LAST THEOREM 7 Let Q denote the set of all rational numbers, and let Q[ωp] denote the set of complex numbers defined by p 2 − i p 1 Q[ωp]= aiωp :(a0,...,ap 2) Q − . − ∈ ( i=0 ) X Clearly Z[ωp] Q[ωp], and we will eventually prove that Q[ωp] is a subfield of C, i.e., Q[ωp] ⊆ is closed under addition, subtraction, multiplication, and division of complex numbers. It turns out that arithmetic properties of Z[ωp] such as unique factorization and the existence of units with useful algebraic properties are closely tied to algebraic properties of Q[ωp]; indeed, much of Kummer’s own work in number theory turns on a deep study of this connection. We are hence arrived at the fundamental questions of algebraic number theory: (a) What are the subfields F of C which have a distinguished subring R such that (i) the arithmetic, i.e., ring-theoretic, structure of R can be used to solve interesting and important problems in number theory and such that (ii) the arithmetic structure of R can be effectively studied by means of the field-theoretic structure of F ? (b) Given a class of fields F and subrings R of F which answer question (a), what is the mathematical technology which can be used to get the ring-theoretic structure of R from the field-theoretic structure of F ? We will spend our time in these notes getting some good answers to these very important questions. CHAPTER 2 Complex Number Fields Definition. A complex number field is a nonempty set F of complex numbers such that F = 0 and F is closed under addition, subtraction, multiplication, and division of complex 6 { } numbers, i.e., F is a nonzero subfield of C.
Recommended publications
  • Local-Global Methods in Algebraic Number Theory
    LOCAL-GLOBAL METHODS IN ALGEBRAIC NUMBER THEORY ZACHARY KIRSCHE Abstract. This paper seeks to develop the key ideas behind some local-global methods in algebraic number theory. To this end, we first develop the theory of local fields associated to an algebraic number field. We then describe the Hilbert reciprocity law and show how it can be used to develop a proof of the classical Hasse-Minkowski theorem about quadratic forms over algebraic number fields. We also discuss the ramification theory of places and develop the theory of quaternion algebras to show how local-global methods can also be applied in this case. Contents 1. Local fields 1 1.1. Absolute values and completions 2 1.2. Classifying absolute values 3 1.3. Global fields 4 2. The p-adic numbers 5 2.1. The Chevalley-Warning theorem 5 2.2. The p-adic integers 6 2.3. Hensel's lemma 7 3. The Hasse-Minkowski theorem 8 3.1. The Hilbert symbol 8 3.2. The Hasse-Minkowski theorem 9 3.3. Applications and further results 9 4. Other local-global principles 10 4.1. The ramification theory of places 10 4.2. Quaternion algebras 12 Acknowledgments 13 References 13 1. Local fields In this section, we will develop the theory of local fields. We will first introduce local fields in the special case of algebraic number fields. This special case will be the main focus of the remainder of the paper, though at the end of this section we will include some remarks about more general global fields and connections to algebraic geometry.
    [Show full text]
  • Algebraic Number Theory
    Algebraic Number Theory William B. Hart Warwick Mathematics Institute Abstract. We give a short introduction to algebraic number theory. Algebraic number theory is the study of extension fields Q(α1; α2; : : : ; αn) of the rational numbers, known as algebraic number fields (sometimes number fields for short), in which each of the adjoined complex numbers αi is algebraic, i.e. the root of a polynomial with rational coefficients. Throughout this set of notes we use the notation Z[α1; α2; : : : ; αn] to denote the ring generated by the values αi. It is the smallest ring containing the integers Z and each of the αi. It can be described as the ring of all polynomial expressions in the αi with integer coefficients, i.e. the ring of all expressions built up from elements of Z and the complex numbers αi by finitely many applications of the arithmetic operations of addition and multiplication. The notation Q(α1; α2; : : : ; αn) denotes the field of all quotients of elements of Z[α1; α2; : : : ; αn] with nonzero denominator, i.e. the field of rational functions in the αi, with rational coefficients. It is the smallest field containing the rational numbers Q and all of the αi. It can be thought of as the field of all expressions built up from elements of Z and the numbers αi by finitely many applications of the arithmetic operations of addition, multiplication and division (excepting of course, divide by zero). 1 Algebraic numbers and integers A number α 2 C is called algebraic if it is the root of a monic polynomial n n−1 n−2 f(x) = x + an−1x + an−2x + ::: + a1x + a0 = 0 with rational coefficients ai.
    [Show full text]
  • 6. PID and UFD Let R Be a Commutative Ring. Recall That a Non-Unit X ∈ R Is Called Irreducible If X Cannot Be Written As A
    6. PID and UFD Let R be a commutative ring. Recall that a non-unit x R is called irreducible if x cannot be written as a product of two non-unit elements of R i.e.∈x = ab implies either a is an unit or b is an unit. Also recall that a domain R is called a principal ideal domain or a PID if every ideal in R can be generated by one element, i.e. is principal. 6.1. Lemma. (a) Let R be a commutative domain. Then prime elements in R are irreducible. (b) Let R be a PID. Then an irreducible in R is a prime element. Proof. (a) Let (p) be a prime ideal in R. If possible suppose p = uv.Thenuv (p), so either u (p)orv (p), if u (p), then u = cp,socv = 1, that is v is an unit. Similarly,∈ if v (p), then∈ u is an∈ unit. ∈ ∈(b) Let p R be irreducible. Suppose ab (p). Since R is a PID, the ideal (a, p)hasa generator, say∈ x, that is, (x)=(a, p). Then ∈p (x), so p = xu for some u R. Since p is irreducible, either u or x must be an unit and we∈ consider these two cases seperately:∈ In the first case, when u is an unit, then x = u−1p,soa (x) (p), that is, p divides a.Inthe second case, when x is a unit, then (a, p)=(1).So(∈ ab,⊆ pb)=(b). But (ab, pb) (p). So (b) (p), that is p divides b.
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • 9. Gauss Lemma Obviously It Would Be Nice to Have Some More General Methods of Proving That a Given Polynomial Is Irreducible. T
    9. Gauss Lemma Obviously it would be nice to have some more general methods of proving that a given polynomial is irreducible. The first is rather beau- tiful and due to Gauss. The basic idea is as follows. Suppose we are given a polynomial with integer coefficients. Then it is natural to also consider this polynomial over the rationals. Note that it is much easier to prove that this polynomial is irreducible over the integers than it is to prove that it is irreducible over the rationals. For example it is clear that x2 − 2 is irreducible overp the integers. In fact it is irreducible over the rationals as well, that is, 2 is not a rational number. First some definitions. Definition 9.1. Let R be a commutative ring and let a1; a2; : : : ; ak be a sequence of elements of R. The gcd of a1; a2; : : : ; ak is an element d 2 R such that (1) djai, for all 1 ≤ i ≤ k. 0 0 (2) If d jai, for all 1 ≤ i ≤ k, then d jd. Lemma 9.2. Let R be a UFD. Then the gcd of any sequence a1; a2; : : : ; ak of elements of R exists. Proof. There are two obvious ways to proceed. The first is to take a common factorisation of each ai into a product of powers of primes, as in the case k = 2. The second is to recursively construct the gcd, by setting di to be the gcd of di−1 and ai and taking d1 = a1. In this case d = dk will be a gcd for the whole sequence a1; a2; : : : ; ak.
    [Show full text]
  • Class Group Computations in Number Fields and Applications to Cryptology Alexandre Gélin
    Class group computations in number fields and applications to cryptology Alexandre Gélin To cite this version: Alexandre Gélin. Class group computations in number fields and applications to cryptology. Data Structures and Algorithms [cs.DS]. Université Pierre et Marie Curie - Paris VI, 2017. English. NNT : 2017PA066398. tel-01696470v2 HAL Id: tel-01696470 https://tel.archives-ouvertes.fr/tel-01696470v2 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité Informatique École Doctorale Informatique, Télécommunications et Électronique (Paris) Présentée par Alexandre GÉLIN Pour obtenir le grade de DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE Calcul de Groupes de Classes d’un Corps de Nombres et Applications à la Cryptologie Thèse dirigée par Antoine JOUX et Arjen LENSTRA soutenue le vendredi 22 septembre 2017 après avis des rapporteurs : M. Andreas ENGE Directeur de Recherche, Inria Bordeaux-Sud-Ouest & IMB M. Claus FIEKER Professeur, Université de Kaiserslautern devant le jury composé de : M. Karim BELABAS Professeur, Université de Bordeaux M. Andreas ENGE Directeur de Recherche, Inria Bordeaux-Sud-Ouest & IMB M. Claus FIEKER Professeur, Université de Kaiserslautern M.
    [Show full text]
  • NOTES on UNIQUE FACTORIZATION DOMAINS Alfonso Gracia-Saz, MAT 347
    Unique-factorization domains MAT 347 NOTES ON UNIQUE FACTORIZATION DOMAINS Alfonso Gracia-Saz, MAT 347 Note: These notes summarize the approach I will take to Chapter 8. You are welcome to read Chapter 8 in the book instead, which simply uses a different order, and goes in slightly different depth at different points. If you read the book, notice that I will skip any references to universal side divisors and Dedekind-Hasse norms. If you find any typos or mistakes, please let me know. These notes complement, but do not replace lectures. Last updated on January 21, 2016. Note 1. Through this paper, we will assume that all our rings are integral domains. R will always denote an integral domains, even if we don't say it each time. Motivation: We know that every integer number is the product of prime numbers in a unique way. Sort of. We just believed our kindergarden teacher when she told us, and we omitted the fact that it needed to be proven. We want to prove that this is true, that something similar is true in the ring of polynomials over a field. More generally, in which domains is this true? In which domains does this fail? 1 Unique-factorization domains In this section we want to define what it means that \every" element can be written as product of \primes" in a \unique" way (as we normally think of the integers), and we want to see some examples where this fails. It will take us a few definitions. Definition 2. Let a; b 2 R.
    [Show full text]
  • 6 Ideal Norms and the Dedekind-Kummer Theorem
    18.785 Number theory I Fall 2017 Lecture #6 09/25/2017 6 Ideal norms and the Dedekind-Kummer theorem In order to better understand how ideals split in Dedekind extensions we want to extend our definition of the norm map to ideals. Recall that for a ring extension B=A in which B is a free A-module of finite rank, we defined the norm map NB=A : B ! A as ×b NB=A(b) := det(B −! B); the determinant of the multiplication-by-b map with respect to an A-basis for B. If B is a free A-module we could define the norm of a B-ideal to be the A-ideal generated by the norms of its elements, but in the case we are most interested in (our \AKLB" setup) B is typically not a free A-module (even though it is finitely generated as an A-module). To get around this limitation, we introduce the notion of the module index, which we will use to define the norm of an ideal. In the special case where B is a free A-module, the norm of a B-ideal will be equal to the A-ideal generated by the norms of elements. 6.1 The module index Our strategy is to define the norm of a B-ideal as the intersection of the norms of its localizations at maximal ideals of A (note that B is an A-module, so we can view any ideal of B as an A-module). Recall that by Proposition 2.6 any A-module M in a K-vector space is equal to the intersection of its localizations at primes of A; this applies, in particular, to ideals (and fractional ideals) of A and B.
    [Show full text]
  • Algebraic Number Theory Summary of Notes
    Algebraic Number Theory summary of notes Robin Chapman 3 May 2000, revised 28 March 2004, corrected 4 January 2005 This is a summary of the 1999–2000 course on algebraic number the- ory. Proofs will generally be sketched rather than presented in detail. Also, examples will be very thin on the ground. I first learnt algebraic number theory from Stewart and Tall’s textbook Algebraic Number Theory (Chapman & Hall, 1979) (latest edition retitled Algebraic Number Theory and Fermat’s Last Theorem (A. K. Peters, 2002)) and these notes owe much to this book. I am indebted to Artur Costa Steiner for pointing out an error in an earlier version. 1 Algebraic numbers and integers We say that α ∈ C is an algebraic number if f(α) = 0 for some monic polynomial f ∈ Q[X]. We say that β ∈ C is an algebraic integer if g(α) = 0 for some monic polynomial g ∈ Z[X]. We let A and B denote the sets of algebraic numbers and algebraic integers respectively. Clearly B ⊆ A, Z ⊆ B and Q ⊆ A. Lemma 1.1 Let α ∈ A. Then there is β ∈ B and a nonzero m ∈ Z with α = β/m. Proof There is a monic polynomial f ∈ Q[X] with f(α) = 0. Let m be the product of the denominators of the coefficients of f. Then g = mf ∈ Z[X]. Pn j Write g = j=0 ajX . Then an = m. Now n n−1 X n−1+j j h(X) = m g(X/m) = m ajX j=0 1 is monic with integer coefficients (the only slightly problematical coefficient n −1 n−1 is that of X which equals m Am = 1).
    [Show full text]
  • Gaussian Integers
    Gaussian integers 1 Units in Z[i] An element x = a + bi 2 Z[i]; a; b 2 Z is a unit if there exists y = c + di 2 Z[i] such that xy = 1: This implies 1 = jxj2jyj2 = (a2 + b2)(c2 + d2) But a2; b2; c2; d2 are non-negative integers, so we must have 1 = a2 + b2 = c2 + d2: This can happen only if a2 = 1 and b2 = 0 or a2 = 0 and b2 = 1. In the first case we obtain a = ±1; b = 0; thus x = ±1: In the second case, we have a = 0; b = ±1; this yields x = ±i: Since all these four elements are indeed invertible we have proved that U(Z[i]) = {±1; ±ig: 2 Primes in Z[i] An element x 2 Z[i] is prime if it generates a prime ideal, or equivalently, if whenever we can write it as a product x = yz of elements y; z 2 Z[i]; one of them has to be a unit, i.e. y 2 U(Z[i]) or z 2 U(Z[i]): 2.1 Rational primes p in Z[i] If we want to identify which elements of Z[i] are prime, it is natural to start looking at primes p 2 Z and ask if they remain prime when we view them as elements of Z[i]: If p = xy with x = a + bi; y = c + di 2 Z[i] then p2 = jxj2jyj2 = (a2 + b2)(c2 + d2): Like before, a2 + b2 and c2 + d2 are non-negative integers. Since p is prime, the integers that divide p2 are 1; p; p2: Thus there are three possibilities for jxj2 and jyj2 : 1.
    [Show full text]
  • Cah˙It Arf's Contribution to Algebraic Number Theory
    Tr. J. of Mathematics 22 (1998) , 1 – 14. c TUB¨ ITAK˙ CAHIT˙ ARF’S CONTRIBUTION TO ALGEBRAIC NUMBER THEORY AND RELATED FIELDS by Masatoshi G. Ikeda∗ Dedicated to the memory of Professor Cahit ARF 1. Introduction Since 1939 Cahit Arf has published number of papers on various subjects in Pure Mathematics. In this note I shall try to give a brief survey of his works in Algebraic Number Theory and related fields. The papers covered in this survey are: two papers on the structure of local fields ([1], [5]), a paper on the Riemann-Roch theorem for algebraic number fields ([6]), two papers on quadratic forms ([2], [3]), and a paper on multiplicity sequences of algebraic braches ([4]). The number of the papers cited above is rather few, but the results obtained in these papers as well as his ideas and methods developed in them constitute really essential contributions to the fields. I am firmly convinced that these papers still contain many valuable suggestions and hidden possibilities for further investigations on these subjects. I believe, it is the task of Turkish mathematicians working in these fields to undertake and continue further study along the lines developed by Cahit Arf who doubtless is the most gifted mathematician Turkey ever had. In doing this survey, I did not follow the chronological order of the publications, but rather divided them into four groups according to the subjects: Structure of local fields, Riemann-Roch theorem for algebraic number fields, quadratic forms, and multiplicity sequences of algebraic braches. My aim is not to reproduce every technical detail of Cahit Arf’s works, but to make his idea in each work as clear as possible, and at the same time to locate them in the main stream of Mathematics.
    [Show full text]
  • Valuation Theory Algebraic Number Fields: Let Α Be an Algebraic Number
    Valuation Theory Algebraic number fields: Let α be an algebraic number with degree n and let P be the minimal polynomial for α (the minimal polynomial P n for α is the unique polynomial P = a0x + ··· + an with a0 > 0 and that a0, . , an are integers and are relatively prime). By the conjugate of α, we mean the zeros α1, . , αn of P . The algebraic number field k generated by α over the rational Q is defined the set of numbers Q(α) where Q(x) is a any polynomial with rational coefficinets; the set can be regarded as being embedded in the complex number field C and thus the elements are subject to the usual operations of addition and multiplication. To see k is actually a field, let P be the minimal polynomial for α, then P, Q are relative prime, so PS + QR = 1, then R(α) = 1/Q(α). The field has degree n over Q, and one denote [k : Q] = n.A number field is a finite extension of the field of rational numbers. Algebraic integers: An algebraic number is said to be an algebraic integer if the coefficient of the highesy power of x in the minimal polynomial P is 1. The algebraic integers in an algebraic number field form a ring R. The ring has an integral basis, that is, there exist elements ω1, . , ωn in R such that every element in R can be expressed uniquely in the form u1ω1 + ··· + unωn for some rational integers u1, . , un. UFD: One calls R is UFD if every element of R can be expressed uniquely as a product of irreducible elements.
    [Show full text]