Osteoblast-Osteoclast Communication and Bone Homeostasis

Total Page:16

File Type:pdf, Size:1020Kb

Osteoblast-Osteoclast Communication and Bone Homeostasis cells Review Osteoblast-Osteoclast Communication and Bone Homeostasis Jung-Min Kim 1, Chujiao Lin 1, Zheni Stavre 1, Matthew B. Greenblatt 2 and Jae-Hyuck Shim 1,3,* 1 Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; [email protected] (J.-M.K.); [email protected] (C.L.); [email protected] (Z.S.) 2 Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA; [email protected] 3 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA * Correspondence: [email protected]; Tel.: +1-508-856-6245 Received: 25 August 2020; Accepted: 8 September 2020; Published: 10 September 2020 Abstract: Bone remodeling is tightly regulated by a cross-talk between bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts and osteoclasts communicate with each other to regulate cellular behavior, survival and differentiation through direct cell-to-cell contact or through secretory proteins. A direct interaction between osteoblasts and osteoclasts allows bidirectional transduction of activation signals through EFNB2-EPHB4, FASL-FAS or SEMA3A-NRP1, regulating differentiation and survival of osteoblasts or osteoclasts. Alternatively, osteoblasts produce a range of different secretory molecules, including M-CSF, RANKL/OPG, WNT5A, and WNT16, that promote or suppress osteoclast differentiation and development. Osteoclasts also influence osteoblast formation and differentiation through secretion of soluble factors, including S1P,SEMA4D, CTHRC1 and C3. Here we review the current knowledge regarding membrane bound- and soluble factors governing cross-talk between osteoblasts and osteoclasts. Keywords: bone; osteoblast; osteoclast; bone remodeling 1. Introduction Bone is a dynamic tissue that remodels continuously throughout life, providing mechanical support for stature and locomotion and protecting vital organs such as bone marrow and the brain [1]. Bone also functions as a reservoir for calcium and phosphate. Continuous remodeling is required to preserve both of these critical functions by preventing accumulation of bone damage and maintaining both the mechanical strength of bone and calcium homeostasis [2,3]. Bone remodeling is a process in which old or damaged bone is removed by osteoclasts and replaced with new bone formed by osteoblasts. Osteoclasts, bone-resorbing cells, originate from hematopoietic stem cells (HSCs) [4–8] and degrade bone via secretion of acid and proteolytic enzymes, such as cathepsin K (CTSK), that dissolve collagen and other matrix proteins during bone resorption [9,10]. Osteoblasts, bone-forming cells, arise from the commitment of mesenchymal precursors to osteoprogenitor lineages through the sequential action of transcriptional factors and terminally differentiate into osteocytes [11–14]. Osteoblasts produce extracellular proteins, including osteocalcin, alkaline phosphatase and type I collagen, the latter of which makes up over 90% of bone matrix protein. The extracellular matrix is first secreted as unmineralized osteoid and subsequently mineralized through the accumulation of calcium phosphate in the form of hydroxyapatite [15]. The sequential strategies of osteoclastogenesis and osteoblastogenesis are shown in Figure1. Cells 2020, 9, 2073; doi:10.3390/cells9092073 www.mdpi.com/journal/cells Cells 2020, 9, 2073 2 of 14 Cells 2020, 9, x 2 of 14 (a) Osteoclastogenesis (b) Osteoblastogenesis FigureFigure 1. 1. StrategiesStrategies of of osteoclastogenes osteoclastogenesisis and and osteoblastogenesis. osteoblastogenesis. (a (a) )Osteoclastogenesis. Osteoclastogenesis. Osteoclasts Osteoclasts areare tissue-specific tissue-specific macrophages macrophages derived derived from from hemato hematopoieticpoietic stem stem cells. cells. In In the the presence presence of of M-CSF, M-CSF, hematopoietichematopoietic stem stem cells cells are are committed committed to to macrop macrophagehage colony-forming colony-forming units units (CFU-M), (CFU-M), the the common common precursorprecursor cells cells of of macrophages andand osteoclasts.osteoclasts. WhenWhen activated activated by by the the RANKL-RANK RANKL-RANK signal, signal, CFU-M CFU- is Mfurther is further differentiated differentiated into mononucleated into mononucleated osteoclasts osteoclasts and subsequently and subsequently fuse to become fuse multinucleated to become multinucleatedosteoclasts. Multinucleated osteoclasts. Multinucleated osteoclasts are osteoclasts fully matured are uponfully amatured cognate upon interaction a cognate with interaction osteoblasts withand osteoblasts resorb bone and matrix resorb by secretingbone matrix acids by (H secreting+), proteases acids (e.g., (H+), CTSK) proteases and matrix(e.g., CTSK) metalloproteinases and matrix metalloproteinases(MMPs) when they (MMPs) have a tightwhen junction they have between a tigh thet junction bone surface between and basalthe bone membrane surface of and osteoclasts basal membraneto form a sealedof osteoclasts compartment to form and a seal thened osteoclasts.compartment (b )and Osteoblastogenesis. then osteoclasts. ( Osteoblastsb) Osteoblastogenesis. are derived Osteoblastsfrom multipotent are derived mesenchymal from multipotent precursors mese and theynchymal are committed precursors to and osteoprogenitors they are committed and further to osteoprogenitorsdifferentiated into and osteoblastic further diffe lineagerentiated through into the osteoblastic expression lineage of transcription through factorsthe expression RUNX2 andof transcriptionOsterix. They factors are continued RUNX2 and to di Osterix.fferentiation They into are co matrix-producingntinued to differentiation mature osteoblasts into matrix-producing and these cells maturehave di osteoblastsfferent fates: and apoptosis, these cells bone have lining different cells or fate osteocytes.s: apoptosis, A subpopulation bone lining ofcells mature or osteocytes. osteoblasts A is subpopulationsurrounded by unmineralizedof mature osteoblasts osteoid and is further surro diundedfferentiated by unmineralized into osteocytes, terminallyosteoid and diff erentiatedfurther differentiatedbone cells in mineralizedinto osteocytes, bone. terminally differentiated bone cells in mineralized bone. BoneBone remodeling remodeling is istraditionally traditionally considered considered to be to composed be composed of four offour sequential sequential phases phases [16]: the [16 ]: activationthe activation phase phase when when osteoclast osteoclast progenitors progenitors are arerecruited recruited to todamaged damaged bone bone surface; surface; resorption resorption phasephase when when mature mature osteoclasts osteoclasts resorb resorb damaged damaged bone; bone; reversal reversal phase phase when when osteoclasts osteoclasts die die and and osteoblastosteoblast progenitors progenitors are are recrui recruited;ted; formation formation phase phase when when mature mature osteoblasts osteoblasts produce produce new new bone bone matrixmatrix (osteoid) (osteoid) and and this this matrix matrix is is mineralized mineralized [17,18]. [17,18]. Almost Almost all all new new bone bone formation formation is is observed observed in in areasareas with with previous previous resorption resorption and and in in distinct distinct an anatomicalatomical structures structures called called basic basic multicellular multicellular units units (BMUs)(BMUs) [19]. [19 ].The The balance balance between between osteoblast-media osteoblast-mediatedted bone bone formation formation and osteoclast-mediated and osteoclast-mediated bone resorption is tightly regulated without a major alteration in a net bone mass or mechanical strength under homeostatic conditions [2]. However, dysregulation of this balance results in abnormal bone Cells 2020, 9, 2073 3 of 14 Cells 2020, 9, x 3 of 14 bone resorption is tightly regulated without a major alteration in a net bone mass or mechanical remodeling, resulting in both postmenopausal and secondary forms of osteoporosis, such as diabetes- strength under homeostatic conditions [2]. However, dysregulation of this balance results in abnormal associated and glucocorticoid-induced osteoporosis [20–22]. In addition to improving understanding bone remodeling, resulting in both postmenopausal and secondary forms of osteoporosis, such as of the bone resorption and formation phases, a more detailed study on the reversal phase might be diabetes-associated and glucocorticoid-induced osteoporosis [20–22]. In addition to improving necessary as reversal step dysfunction is associated with pathologic bone loss [23,24]. understanding of the bone resorption and formation phases, a more detailed study on the reversal In this review, we illustrate the key mediators that control the cross-talk between osteoblasts and phase might be necessary as reversal step dysfunction is associated with pathologic bone loss [23,24]. osteoclasts through cell–cell contact or secretory factors (Figure 2). In this review, we illustrate the key mediators that control the cross-talk between osteoblasts and osteoclasts through cell–cell contact or secretory factors (Figure2). FigureFigure 2. Key mediatorsmediators ofof osteoblast-osteoclast osteoblast-osteoclast interaction. interaction. Osteoblast-osteoclast Osteoblast-osteoclast communications communications are areessential essential for fine-tuningfor fine-tuning of bone of remodelingbone remodeling during boneduring homeostasis.
Recommended publications
  • Normal Osteoid Tissue
    J Clin Pathol: first published as 10.1136/jcp.25.3.229 on 1 March 1972. Downloaded from J. clin. Path., 1972, 25, 229-232 Normal osteoid tissue VINITA RAINA From the Department of Morbid Anatomy, Institute of Orthopaedics, London SYNOPSIS The results of a histological study of normal osteoid tissue in man, the monkey, the dog, and the rat, using thin microtome sections of plastic-embedded undecalcified bone, are described. Osteoid tissue covers the entire bone surface, except for areas of active resorption, although the thickness of the layer of osteoid tissue varies at different sites and in different species of animals. The histological features of osteoid tissue, apart from its amount, are the same in the different species studied. Distinct bands or zones are recognizable in some layers of osteoid tissue, particularly those of greatest thickness, and their significance is discussed. Some of the histological features of the calcification front are described. Osteoid tissue is defined as unmineralized bone The concept of osteoid tissue as a necessary stage tissue. Its presence in large amounts is a distinctive in bone formation was not accepted by all workers. histological feature of osteomalacia (Sissons and von Recklinghausen (1910) believed that the Aga, 1970), but it is also present in smaller quantities presence of osteoid tissue was the result of with- copyright. in normal conditions and is then usually regarded as drawal of bone mineral from calcified bone ('hali- representing an initial stage in the formation of steresis'). This concept, though not generally calcified bone tissue. accepted, has been revived in recent years in con- It was Virchow, in 1851, on the basis of a histo- nexion with the removal of bone mineral from the logical study of human bone specimens partially or immediate vicinity of osteocytes in calcified bone completely decalcified in hydrochloric acid, who (Belanger, Robichon, Migicovsky, Copp, and first put forward the concept that mineralization Vincent, 1963).
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Ncf1 Affects Osteoclast Formation but Is Not Critical for Postmenopausal
    Stubelius et al. BMC Musculoskeletal Disorders (2016) 17:464 DOI 10.1186/s12891-016-1315-1 RESEARCH ARTICLE Open Access Ncf1 affects osteoclast formation but is not critical for postmenopausal bone loss Alexandra Stubelius1*, Annica Andersson1, Rikard Holmdahl3, Claes Ohlsson2, Ulrika Islander1 and Hans Carlsten1 Abstract Background: Increased reactive oxygen species and estrogen deficiency contribute to the pathophysiology of postmenopausal osteoporosis. Reactive oxygen species contribute to bone degradation and is necessary for RANKL- induced osteoclast differentiation. In postmenopausal bone loss, reactive oxygen species can also activate immune cells to further enhance bone resorption. Here, we investigated the role of reactive oxygen species in ovariectomy- induced osteoporosis in mice deficient in Ncf1, a subunit for the NADPH oxidase 2 and a well-known regulator of the immune system. Methods: B10.Q wild-type (WT) mice and mice with a spontaneous point mutation in the Ncf1-gene (Ncf1*/*) were ovariectomized (ovx) or sham-operated. After 4 weeks, osteoclasts were generated ex vivo, and bone mineral density was measured using peripheral quantitative computed tomography. Lymphocyte populations, macrophages, pre-osteoclasts and intracellular reactive oxygen species were analyzed by flow cytometry. Results: After ovx, Ncf1*/*-mice formed fewer osteoclasts ex vivo compared to WT mice. However, trabecular bone mineral density decreased similarly in both genotypes after ovx. Ncf1*/*-mice had a larger population of pre- osteoclasts, whereas lymphocytes were activated to the same extent in both genotypes. Conclusion: Ncf1*/*-mice develop fewer osteoclasts after ovx than WT mice. However, irrespective of genotype, bone mineral density decreases after ovx, indicating that a compensatory mechanism retains bone degradation after ovx.
    [Show full text]
  • ICRS Heritage Summit 1
    ICRS Heritage Summit 1 20th Anniversary www.cartilage.org of the ICRS ICRS Heritage Summit June 29 – July 01, 2017 Gothia Towers, Gothenburg, Sweden Final Programme & Abstract Book #ICRSSUMMIT www.cartilage.org Picture Copyright: Zürich Tourismus 2 The one-step procedure for the treatment of chondral and osteochondral lesions Aesculap Biologics Facing a New Frontier in Cartilage Repair Visit Anika at Booth #16 Easy and fast to be applied via arthroscopy. Fixation is not required in most cases. The only entirely hyaluronic acid-based scaffold supporting hyaline-like cartilage regeneration Biologic approaches to tissue repair and regeneration represent the future in healthcare worldwide. Available Sizes Aesculap Biologics is leading the way. 2x2 cm Learn more at www.aesculapbiologics.com 5x5 cm NEW SIZE Aesculap Biologics, LLC | 866-229-3002 | www.aesculapusa.com Aesculap Biologics, LLC - a B. Braun company Website: http://hyalofast.anikatherapeutics.com E-mail: [email protected] Telephone: +39 (0)49 295 8324 ICRS Heritage Summit 3 The one-step procedure for the treatment of chondral and osteochondral lesions Visit Anika at Booth #16 Easy and fast to be applied via arthroscopy. Fixation is not required in most cases. The only entirely hyaluronic acid-based scaffold supporting hyaline-like cartilage regeneration Available Sizes 2x2 cm 5x5 cm NEW SIZE Website: http://hyalofast.anikatherapeutics.com E-mail: [email protected] Telephone: +39 (0)49 295 8324 4 Level 1 Study Proves Efficacy of ACP in
    [Show full text]
  • An Update on Dual-Energy X-Ray Absorptiometry Glen M
    An Update on Dual-Energy X-Ray Absorptiometry Glen M. Blake, PhD, and Ignac Fogelman, MD Dual-energy x-ray absorptiometry (DXA) scans to measure bone mineral density at the spine and hip have an important role in the evaluation of individuals at risk of osteoporosis, and in helping clinicians advise patients about the appropriate use of antifracture treat- ment. Compared with alternative bone densitometry techniques, hip and spine DXA exam- inations have several advantages that include a consensus that bone mineral density results should be interpreted using the World Health Organization T score definition of osteoporosis, a proven ability to predict fracture risk, proven effectiveness at targeting antifracture therapies, and the ability to monitor response to treatment. This review dis- cusses the evidence for these and other clinical aspects of DXA scanning. Particular attention is directed at the new World Health Organization Fracture Risk Assessment Tool (FRAX) algorithm, which uses clinical risk factors in addition to a hip DXA scan to predict a patient’s 10-year probability of suffering an osteoporotic fracture. We also discuss the recently published clinical guidelines that incorporate the FRAX fracture risk assessment in decisions about patient treatment. Semin Nucl Med 40:62-73 © 2010 Elsevier Inc. All rights reserved. steoporosis is widely recognized as an important public porosis before fractures occur and the development of effec- Ohealth problem because of the significant morbidity, tive treatments. Measurements of bone mineral
    [Show full text]
  • Parathyroid Hormone Stimulates Bone Formation and Resorption In
    Proc. Nati. Acad. Sci. USA Vol. 78, No. 5, pp. 3204-3208, May 1981 Medical Sciences Parathyroid hormone stimulates bone formation and resorption in organ culture: Evidence for a coupling mechanism (endocrine/mineralization/bone metabolism/cartilage/regulation) GuY A. HOWARD, BRIAN L. BOTTEMILLER, RUSSELL T. TURNER, JEANNE I. RADER, AND DAVID J. BAYLINK American Lake VA Medical Center, Tacoma, Washington 98493; and Department of Medicine, University of Washington, Seattle, Washington 98195 Communicated by Clement A. Finch, January 26, 1981 ABSTRACT We have developed an in vitro system, using em- growing rats with PTH results in an increase in formation and bryonic chicken tibiae grown in a serum-free medium, which ex- resorption (4) and a net gain in bone volume (10-12). We have hibits simultaneous bone formation and resorption. Tibiae from recently obtained similar results in vitro for the acute and 8-day embryos increased in mean (±SD) length (4.0 ± 0.4 to 11.0 chronic effects of PTH (13). Moreover, as reported earlier for ± 0.3 mm) and dry weight (0.30 ± 0.04 to 0.84 ± 0.04 mg) during resorption in rat bone (14), the in vitro effect of PTH in our 12 days in vitro. There was increased incorporation of [3H]proline system is an inductive one in that the continued presence of into hydroxyproline (120 ± 20 to 340 ± 20 cpm/mg of bone per PTH is unnecessary for bone resorption and bone formation to 24 hr) as a measure of collagen synthesis, as well as a 62 ± 5% increase in total calcium and 45Ca taken up as an indication of ac- be stimulated for several days (13).
    [Show full text]
  • Defining Osteoblast and Adipocyte Lineages in the Bone Marrow
    Bone 118 (2019) 2–7 Contents lists available at ScienceDirect Bone journal homepage: www.elsevier.com/locate/bone Full Length Article Defining osteoblast and adipocyte lineages in the bone marrow T ⁎ J.L. Piercea, D.L. Begunb, J.J. Westendorfb,c, M.E. McGee-Lawrencea,d, a Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA b Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA c Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA d Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA ARTICLE INFO ABSTRACT Keywords: Bone is a complex endocrine organ that facilitates structural support, protection to vital organs, sites for he- Bone marrow mesenchymal/stromal cell matopoiesis, and calcium homeostasis. The bone marrow microenvironment is a heterogeneous niche consisting Osteogenesis of multipotent musculoskeletal and hematopoietic progenitors and their derivative terminal cell types. Amongst Osteoblast these progenitors, bone marrow mesenchymal stem/stromal cells (BMSCs) may differentiate into osteogenic, Adipogenesis adipogenic, myogenic, and chondrogenic lineages to support musculoskeletal development as well as tissue Adipocyte homeostasis, regeneration and repair during adulthood. With age, the commitment of BMSCs to osteogenesis Marrow fat Aging slows, bone formation decreases, fracture risk rises, and marrow adiposity increases. An unresolved question is whether osteogenesis and adipogenesis are co-regulated in the bone marrow. Osteogenesis and adipogenesis are controlled by specific signaling mechanisms, circulating cytokines, and transcription factors such as Runx2 and Pparγ, respectively. One hypothesis is that adipogenesis is the default pathway if osteogenic stimuli are absent. However, recent work revealed that Runx2 and Osx1-expressing preosteoblasts form lipid droplets under pa- thological and aging conditions.
    [Show full text]
  • Helping Physicians Succeed with ICD-10-CM January 24, 2014
    Helping Physicians Succeed with ICD-10-CM January 24, 2014 Paul Belton, Vice President Corporate Compliance Agenda • Executive Summary • Clinical Roots of ICD-10 • Why physicians should care • How ICD-10 will benefit physicians • Taking control of ICD-10 • Personal Learning Experiences and Goals • ICD-10 Resources 2 Last Call for ICD-9-CM October 1, 2013 could be a day sentimental HIM Veterans raise a glass to a longtime friend – or perhaps foe. For October 1 signifies the end of an era; it is the effective date of the final ICD-9-CM update before ICD-10-CM/PCS codes kick in on October 1, 2014. TOP MOVIES THE AVERAGE INCLUDED: COST OF A SUPERMAN THE NEW HOUSE MOVIE, THE DEER WAS $58,000 HUNTER, THE MUPPET MOVIE, ROCKY II “For those of us who have THE AVERAGE INCOME WAS MARGARET THATCHER WS been maintaining ICD-9-CM $17,500 ELECTED PRIM MINISTER IN since the code set’s THE UK implementation in 1979, this THE BOARD GAM TRIVIIAL THE SONY PURSUIT WAS LAUNCHED WALKMAN final ICD-9-CM code update is DEBUTED, VISICALC BECAME In 1979: RETAILING a historic occasion.” ICD-9-CM THE FIRST FOR $200 has one more year’s worth of SPREADSHEET PROGRAM POPULAR SONGS last calls, with coders using INCLUDED: “MY AVERAGE SHARONA” BY THE MONTHLY this latest and last code set KNACK; “HOT STUFF” AND A GALLON RENT WAS “BAD GIRLS BY GLORIA OF GAS $280 update until next October. A GAYNOR; PINK FLOYD WAS 86 RELEASED “THE WALL” CENTS reflective toast to ICD-9-CM.
    [Show full text]
  • Formation of Osteoclast-Like Cells from Peripheral Blood of Periodontitis Patients Occurs Without Supplementation of Macrophage Colony-Stimulating Factor
    J Clin Periodontol 2008; 35: 568–575 doi: 10.1111/j.1600-051X.2008.01241.x Stanley T. S. Tjoa1, Teun J. de Formation of osteoclast-like cells Vries1,2, Ton Schoenmaker1,2, Angele Kelder3, Bruno G. Loos1 and Vincent Everts2 from peripheral blood of 1Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije periodontitis patients occurs Universteit, Amsterdam, The Netherlands; 2Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), without supplementation of Universiteit van Amsterdam and Vrije Universteit, Amsterdam, Research Institute MOVE, The Netherlands; 3Department of Hematology, VUMC, Vrije Universiteit, macrophage colony-stimulating Amsterdam, The Netherlands factor Tjoa STS, de Vries TJ, Schoenmaker T, Kelder A, Loos BG, Everts V. Formation of osteoclast-like cells from peripheral blood of periodontitis patients occurs without supplementation of macrophage colony-stimulating factor. J Clin Periodontol 2008; 35: 568–575. doi: 10.1111/j.1600-051X.2008.01241.x. Abstract Aim: To determine whether peripheral blood mononuclear cells (PBMCs) from chronic periodontitis patients differ from PBMCs from matched control patients in their capacity to form osteoclast-like cells. Material and Methods: PBMCs from 10 subjects with severe chronic periodontitis and their matched controls were cultured on plastic or on bone slices without or with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kB ligand (RANKL). The number of tartrate-resistant acid phosphatase-positive (TRACP1) multinucleated cells (MNCs) and bone resorption were assessed. Results: TRACP1 MNCs were formed under all culture conditions, in patient and control cultures. In periodontitis patients, the formation of TRACP1 MNC was similar for all three culture conditions; thus supplementation of the cytokines was not needed to induce MNC formation.
    [Show full text]
  • Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer
    UCLA UCLA Previously Published Works Title Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer. Permalink https://escholarship.org/uc/item/1vj106ww Journal PloS one, 11(2) ISSN 1932-6203 Authors Yang, Ying-Hua Buhamrah, Asma Schneider, Abraham et al. Publication Date 2016 DOI 10.1371/journal.pone.0150151 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer Ying-Hua Yang1, Asma Buhamrah1, Abraham Schneider1,2, Yi-Ling Lin3, Hua Zhou1, Amr Bugshan1, John R. Basile1,2* 1 Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland, United States of America, 2 Greenebaum Cancer Center, Baltimore, Maryland, United States of America, 3 Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America * [email protected] Abstract Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guid- ance, are now known to play a role in this process as well. Emerging data have identified OPEN ACCESS Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of Citation: Yang Y-H, Buhamrah A, Schneider A, Lin Y- resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we L, Zhou H, Bugshan A, et al. (2016) Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer.
    [Show full text]
  • Bone Marrow (Stem Cell) Transplant for Sickle Cell Disease Bone Marrow (Stem Cell) Transplant
    Bone Marrow (Stem Cell) Transplant for Sickle Cell Disease Bone Marrow (Stem Cell) Transplant for Sickle Cell Disease 1 Produced by St. Jude Children’s Research Hospital Departments of Hematology, Patient Education, and Biomedical Communications. Funds were provided by St. Jude Children’s Research Hospital, ALSAC, and a grant from the Plough Foundation. This document is not intended to take the place of the care and attention of your personal physician. Our goal is to promote active participation in your care and treatment by providing information and education. Questions about individual health concerns or specifi c treatment options should be discussed with your physician. For more general information on sickle cell disease, please visit our Web site at www.stjude.org/sicklecell. Copyright © 2009 St. Jude Children’s Research Hospital How did bone marrow (stem cell) transplants begin for children with sickle cell disease? Bone marrow (stem cell) transplants have been used for the treatment and cure of a variety of cancers, immune system diseases, and blood diseases for many years. Doctors in the United States and other countries have developed studies to treat children who have severe sickle cell disease with bone marrow (stem cell) transplants. How does a bone marrow (stem cell) transplant work? 2 In a person with sickle cell disease, the bone marrow produces red blood cells that contain hemoglobin S. This leads to the complications of sickle cell disease. • To prepare for a bone marrow (stem cell) transplant, strong medicines, called chemotherapy, are used to weaken or destroy the patient’s own bone marrow, stem cells, and infection fi ghting system.
    [Show full text]
  • Direct Measurement of Bone Resorption and Calcium
    Proc. Natl. Acad. Sci. USA Vol. 77, No. 4, pp. 1818-1822, April 1980 Biochemistry Direct measurement of bone resorption and calcium conservation during vitamin D deficiency or hypervitaminosis D ([3Hltetracycline/collagen/chicks/growth modeling/kinetics) LEROY KLEIN Departments of Orthopaedics, Biochemistry, and Macromolecular Science, Case Western Reserve University, Cleveland, Ohio 44106 Communicated by Oscar D. Ratnoff, December 20,1979 ABSTRACT When bone is remodeled during the growth of complication, various workers (11, 12) have expressed the need a given size bone to a larger size, some bone is resorbed and for a more direct measurement of bone turnover. In addition, some is deposited. Much of the resorbed bone mineral, calcium, tracer methods for calcium kinetics involve only plasma tracer can be reutilized during bone formation. The net and absolute effects of normal growth, vitamin D deficiency, or vitamin D concentrations and focus on net pool turnover rather than on excess were compared on bone resortion, bone formation, and more absolute measurements of bone turnover (13). calcium reutilization. Growing chic were relabeled exten- Bone resorptiont has been observed directly by using histo- sively with three isotopes: 45Ca, [3Htetracycline, and [3H]pro- logical measurements of the increase in diameter of the bone line. Data were obtained weekly during 3 weeks of control marrow space in rapidly growing rats (14). Resorption has been growth, vitamin D deficiency, or vitamin D overdosage while measured kinetically by either 45Ca under steady-state condi- on a nonradioactive diet. Bone resorption as measured by in- creases in the marrow (inner) diameter of the midshaft of the tions in adult rats (15) or 40Ca dilution of the natural isotope femur and humerus and by the weekly losses of total [3Hjtetra- 48Ca in human subjects (16).
    [Show full text]