Formation of Osteoclast-Like Cells from Peripheral Blood of Periodontitis Patients Occurs Without Supplementation of Macrophage Colony-Stimulating Factor

Total Page:16

File Type:pdf, Size:1020Kb

Formation of Osteoclast-Like Cells from Peripheral Blood of Periodontitis Patients Occurs Without Supplementation of Macrophage Colony-Stimulating Factor J Clin Periodontol 2008; 35: 568–575 doi: 10.1111/j.1600-051X.2008.01241.x Stanley T. S. Tjoa1, Teun J. de Formation of osteoclast-like cells Vries1,2, Ton Schoenmaker1,2, Angele Kelder3, Bruno G. Loos1 and Vincent Everts2 from peripheral blood of 1Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije periodontitis patients occurs Universteit, Amsterdam, The Netherlands; 2Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), without supplementation of Universiteit van Amsterdam and Vrije Universteit, Amsterdam, Research Institute MOVE, The Netherlands; 3Department of Hematology, VUMC, Vrije Universiteit, macrophage colony-stimulating Amsterdam, The Netherlands factor Tjoa STS, de Vries TJ, Schoenmaker T, Kelder A, Loos BG, Everts V. Formation of osteoclast-like cells from peripheral blood of periodontitis patients occurs without supplementation of macrophage colony-stimulating factor. J Clin Periodontol 2008; 35: 568–575. doi: 10.1111/j.1600-051X.2008.01241.x. Abstract Aim: To determine whether peripheral blood mononuclear cells (PBMCs) from chronic periodontitis patients differ from PBMCs from matched control patients in their capacity to form osteoclast-like cells. Material and Methods: PBMCs from 10 subjects with severe chronic periodontitis and their matched controls were cultured on plastic or on bone slices without or with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kB ligand (RANKL). The number of tartrate-resistant acid phosphatase-positive (TRACP1) multinucleated cells (MNCs) and bone resorption were assessed. Results: TRACP1 MNCs were formed under all culture conditions, in patient and control cultures. In periodontitis patients, the formation of TRACP1 MNC was similar for all three culture conditions; thus supplementation of the cytokines was not needed to induce MNC formation. In control cultures, however, M-CSF or M-CSF/RANKL resulted in higher numbers compared with cultures without cytokines. Upregulations of osteoclast marker mRNA cathepsin K and carbonic anhydrase II confirmed the osteoclastic character. Bone resorption was only observed when PBMCs were cultured in the presence of M-CSF and RANKL. Key words: osteoclast formation; periodontitis; Conclusion: Our data indicate that PBMCs from periodontitis patients do not need peripheral blood priming by M-CSF to become osteoclast-like cells, suggesting that PBMCs from periodontitis patients are present in the circulation in a different state of activity. Accepted for publication 20 March 2008 Conflict of interest and source of Chronic periodontitis is a multi-factorial primary aetiological factor of periodontal funding statement disease characterized by inflammation of disease is bacterial plaque (Kinane 1999), The authors declare that they have no the periodontium, leading to loss of soft studies have shown that not everyone is conflict of interests. tissue attachment and alveolar bone (Page equally susceptible to periodontal disease The funding for this study was received et al. 1997). If left untreated, this condition (Loe et al. 1986). The host response has from the Royal Netherlands Academy of may ultimately lead to tooth exfoliation. been considered as an important disease- Arts and Sciences (T. J. de V.). Although it is generally accepted that the modifying factor (Page et al. 1997). 568 r 2008 Blackwell Munksgaard No claim to original US government works Osteoclast formation in periodontitis 569 Osteoclasts are the cells ultimately significant increase in osteoclast formation Table 1. Characteristics of controls and responsible for alveolar bone resorp- and bone resorption activity compared patients tion. They are multinucleated giant with non-osteoporotic postmenopausal Pair C/P Age Gender Ethnicity Smoking cells (Roodman 1996) originating from and healthy controls, respectively. the monocyte/macrophage lineages Spontaneous osteoclastogenesis, for 1 C 41 M Caucasian 1 (Udagawa et al. 1990, Fujikawa et al. example osteoclast formation without P 40 M Caucasian 1 1996). Human osteoclast precursor cells addition of cytokines such as M-CSF 2 C 27 M North African À have been found in the mononuclear and RANKL, was higher in osteoporotic P 26 M North African À fraction of peripheral blood (PBMCs), women and arthritis patients (Ritchlin 3 C 29 M African black 1 P 29 M African black 1 and in vitro these cells differentiate into et al. 2003, D’Amelio et al. 2005). 4 C 45 F African black À osteoclasts (Faust et al. 1999, Shalhoub Similarly, increased spontaneous osteo- P 44 F African black À et al. 1999). clastogenesis was found in cancer 5 C 35 M Caucasian 1 Key regulators of osteoclast differen- patients with bone metastases compared P 35 M Caucasian 1 tiation are macrophage colony-stimulating with healthy controls or cancer patients 6 C 32 F North African À factor (M-CSF), receptor activator of without bone metastases (Roato et al. P 31 F North African À nuclear factor-kB (RANK) ligand 2005). This increase in osteoclast 7 C 48 M Caucasian 1 (RANKL) and osteoprotegerin (OPG). formation and osteoclast activity was P 49 M Caucasian 1 8 C 40 F Indian À In a mouse model, it was shown that also suggested to occur in PBMCs P 41 F Indian À the growth factor M-CSF is indispensa- from periodontitis patients compared 9 C 40 M Indian 1 ble to the proliferation of osteoclast with non-periodontitis patients (Brunetti P 43 M Indian 1 progenitors and their differentiation et al. 2005). However, it is not clear from 10 C 37 F African black À into mature osteoclasts (Tanaka et al. the latter study whether the increased P 37 F African black À 1993). However, M-CSF alone could osteoclast formation was due to the high- C, control; P, patient; M, male; F, female; 1, not induce osteoclasts to form resorption er average age of the patients (mean smoker; À , no smoker. pits on dentine slices (Jimi et al. 1999). 42.8 Æ 15.2 years) compared with the Differentiation and activation of osteo- controls (mean 30.5 Æ 5.2 years), clasts is triggered by RANKL, which is because it is known that osteoclast ACTA who received restorative dental a member of the tumor necrosis factor formation from human PBMCs may treatments and regular dental check-ups, (TNF)-related cytokines, and this cyto- increase with age (Cheleuitte et al. or were subjects from private dental kine has a direct involvement in the 1998, Jevon et al. 2002). clinics. A control subject was selected differentiation, activation and survival In the current study, we further in- on basis of the following criteria: max- of osteoclasts and their precursors vestigated whether PBMCs from perio- imum of one missing tooth per quadrant (Lacey et al. 1998). Binding of RANKL dontitis patients have an increased (third molars excluded), a radiographic to its receptor RANK stimulates osteo- capacity to form osteoclasts by analys- distance of o3 mm between the cemen- clast precursors to differentiate into ing the dependency of M-CSF and toenamel junction (CEJ) and the alveo- osteoclasts and activates mature osteo- RANKL. Osteoclastogenesis was eval- lar bone crest on all teeth on recent clasts to resorb bone. OPG is a decoy uated in PBMC cultures from perio- (not older than 1 year) bite-wings radio- receptor for RANKL, it competes with dontitis patients and controls who were graphs. The control subjects were matched RANK for binding of RANKL, thereby matched for age, sex, ethnicity and and paired with the patient group for age, acting as an inhibitor of osteoclast smoking. gender, ethnicity and smoking habits maturation and activity (Simonet et al. (Table 1), because these parameters are 1997, Lacey et al. 1998). Although the established risk determinants for perio- importance of the RANK–RANKL–OPG Material and Methods dontitis (Borrell & Papapanou 2005) and system in osteoclast biology was mainly could possibly influence osteoclasto- Subjects explored in mice, it is believed that the genesis (Jevon et al. 2002). regulatory mechanisms of human osteo- The patient group consisted of 10 un- An extensive medical history of each clast differentiation are similar (Suda treated patients diagnosed with general- participant was taken by a written ques- et al. 1999). ized severe chronic periodontitis. These tionnaire and by an interview. Each Various studies were undertaken to patients were referred to the Department subject was free from systemic diseases understand the cellular mechanisms of Periodontology at the Academic Cen- and had no clinical symptoms of bacter- underlying bone breakdown in people tre for Dentistry Amsterdam (ACTA) ial, viral or parasitic infections at the with osteopenic diseases, such as auto- for diagnosis and/or treatment of perio- time of the study, except for perio- immune arthritis (Ritchlin et al. 2003), dontitis. Generalized severe chronic dontitis in the patient group. None of post-menopausal osteoporosis (D’Amelio periodontitis patients were defined as the subjects in the study had taken any et al. 2005) and bone tumours (Roato patients who never had periodontal ther- form of medication that could affect et al. 2005). From these studies, it apy or at least not in the last 10 years their periodontal status, such as anti- appeared that differences in osteoclast and who presented with alveolar bone biotics, anti-inflammatory agents and recruitment exist at the level of periph- loss X50% of the root length on at least immune suppressants during the preced- eral blood. Peripheral blood mono- seven teeth on a set of full mouth dental ing 6 months. Women older than 46 years nuclear cells (PBMCs) from patients radiographs (Bizzarro et al. 2007). were excluded from the study to prevent with postmenopausal osteoporosis Patients were carefully matched with skewing of the data due to the possible (D’Amelio et al. 2005) and psoriatic healthy controls. Control subjects were onset of menopause-related osteoporo- arthritis (Ritchlin et al. 2003) exhibit a recruited among dental patients at sis. All subjects received both verbal r 2008 Blackwell Munksgaard No claim to original US government works 570 Tjoa et al.
Recommended publications
  • Ncf1 Affects Osteoclast Formation but Is Not Critical for Postmenopausal
    Stubelius et al. BMC Musculoskeletal Disorders (2016) 17:464 DOI 10.1186/s12891-016-1315-1 RESEARCH ARTICLE Open Access Ncf1 affects osteoclast formation but is not critical for postmenopausal bone loss Alexandra Stubelius1*, Annica Andersson1, Rikard Holmdahl3, Claes Ohlsson2, Ulrika Islander1 and Hans Carlsten1 Abstract Background: Increased reactive oxygen species and estrogen deficiency contribute to the pathophysiology of postmenopausal osteoporosis. Reactive oxygen species contribute to bone degradation and is necessary for RANKL- induced osteoclast differentiation. In postmenopausal bone loss, reactive oxygen species can also activate immune cells to further enhance bone resorption. Here, we investigated the role of reactive oxygen species in ovariectomy- induced osteoporosis in mice deficient in Ncf1, a subunit for the NADPH oxidase 2 and a well-known regulator of the immune system. Methods: B10.Q wild-type (WT) mice and mice with a spontaneous point mutation in the Ncf1-gene (Ncf1*/*) were ovariectomized (ovx) or sham-operated. After 4 weeks, osteoclasts were generated ex vivo, and bone mineral density was measured using peripheral quantitative computed tomography. Lymphocyte populations, macrophages, pre-osteoclasts and intracellular reactive oxygen species were analyzed by flow cytometry. Results: After ovx, Ncf1*/*-mice formed fewer osteoclasts ex vivo compared to WT mice. However, trabecular bone mineral density decreased similarly in both genotypes after ovx. Ncf1*/*-mice had a larger population of pre- osteoclasts, whereas lymphocytes were activated to the same extent in both genotypes. Conclusion: Ncf1*/*-mice develop fewer osteoclasts after ovx than WT mice. However, irrespective of genotype, bone mineral density decreases after ovx, indicating that a compensatory mechanism retains bone degradation after ovx.
    [Show full text]
  • Modeling Osteoclast Defect and Altered Hematopoietic Stem Cell Niche in Osteopetrosis with Patient-Derived Ipscs
    Modeling Osteoclast Defect and Altered Hematopoietic Stem Cell Niche in Osteopetrosis with Patient-Derived iPSCs Inci Cevher Zeytin Hacettepe University Berna Alkan Hacettepe University: Hacettepe Universitesi Cansu Ozdemir Hacettepe University: Hacettepe Universitesi Duygu Cetinkaya Hacettepe University: Hacettepe Universitesi FATMA VISAL OKUR ( [email protected] ) Hacettepe University, Faculty of Medicine https://orcid.org/0000-0002-1679-6205 Research Keywords: Osteopetrosis, TCIRG1, iPSC, disease modeling, osteoclast, niche modeling, HSC Posted Date: March 9th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-258821/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/22 Abstract Background Patients with osteopetrosis present with defective bone resorption caused by the lack of osteoclast activity and hematopoietic alterations, but their bone marrow hematopoietic stem/progenitor cell and osteoclast contents might be different. Osteoclasts recently have been described as the main regulators of HSCs niche, however, their exact role remains controversial due to the use of different models and conditions. Investigation of their role in hematopoietic stem cell niche formation and maintenance in osteopetrosis patients would provide critical information about the mechanisms of altered hematopoiesis. We used patient-derived induced pluripotent stem cells (iPSCs) to model osteoclast defect and hematopoietic niche compartments in vitro. Methods iPSCs were generated from peripheral blood mononuclear cells of patients carrying TCIRG1 mutation. iPSC lines were differentiated rst into hematopoietic stem cells-(HSCs), and then into myeloid progenitors and osteoclasts using a step-wise protocol. Then, we established different co-culture conditions with bone marrow-derived hMSCs and iHSCs of osteopetrosis patients as an in vitro hematopoietic niche model to evaluate the interactions between osteopetrotic-HSCs and bone marrow- derived MSCs as osteogenic progenitor cells.
    [Show full text]
  • Survival B Ligand-Induced Osteoclast
    MIP-1γ Promotes Receptor Activator of NF-κ B Ligand-Induced Osteoclast Formation and Survival This information is current as Yoshimasa Okamatsu, David Kim, Ricardo Battaglino, of September 24, 2021. Hajime Sasaki, Ulrike Späte and Philip Stashenko J Immunol 2004; 173:2084-2090; ; doi: 10.4049/jimmunol.173.3.2084 http://www.jimmunol.org/content/173/3/2084 Downloaded from References This article cites 29 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/173/3/2084.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology MIP-1␥ Promotes Receptor Activator of NF-␬B Ligand-Induced Osteoclast Formation and Survival1 Yoshimasa Okamatsu,*† David Kim,* Ricardo Battaglino,* Hajime Sasaki,* Ulrike Spa¨te,* and Philip Stashenko2* Chemokines play an important role in immune and inflammatory responses by inducing migration and adhesion of leukocytes, and have also been reported to modulate osteoclast differentiation from hemopoietic precursor cells of the monocyte-macrophage lineage.
    [Show full text]
  • Influence of Iron on Bone Homeostasis
    pharmaceuticals Review Influence of Iron on Bone Homeostasis Enik˝oBalogh 1, György Paragh 2 and Viktória Jeney 1,* 1 Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary; [email protected] 2 Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-70-217-1676 Received: 1 September 2018; Accepted: 12 October 2018; Published: 18 October 2018 Abstract: Bone homeostasis is a complex process, wherein osteoclasts resorb bone and osteoblasts produce new bone tissue. For the maintenance of skeletal integrity, this sequence has to be tightly regulated and orchestrated. Iron overload as well as iron deficiency disrupt the delicate balance between bone destruction and production, via influencing osteoclast and osteoblast differentiation as well as activity. Iron overload as well as iron deficiency are accompanied by weakened bones, suggesting that balanced bone homeostasis requires optimal—not too low, not too high—iron levels. The goal of this review is to summarize our current knowledge about how imbalanced iron influence skeletal health. Better understanding of this complex process may help the development of novel therapeutic approaches to deal with the pathologic effects of altered iron levels on bone. Keywords: bone homeostasis; iron overload; iron deficiency; osteoclast; osteoblast; osteoporosis 1. Introduction Bone is a metabolically active tissue that is continuously being remodeled, which enables growth in childhood, as well as repair and adaptation of the skeleton in adults. During bone remodeling, the adult skeleton is renewed approximately once every ten years. The two major cell types involved in bone remodeling are the osteoclasts, with a function of resorption of bone tissue and osteoblasts, with a role of new bone tissue formation.
    [Show full text]
  • Molecular Understanding of Osteoclast Differentiation and Physiology
    Endocrinol Metab 25(4):264-269, December 2010 DOI: 10.3803/EnM.2010.25.4.264 REVIEW ARTICLE Molecular Understanding of Osteoclast Differentiation and Physiology Na Kyung Lee Department of Biomedical Laboratory Science, Soonchunhyang University College of Medical Science, Asan, Korea INTRODUCTION OSTEOCLAST PHYSIOLOGY Two types of cells, osteoblasts and osteoclasts, maintain bone To solubilize the mineral component of bone, osteoclasts form a homeostasis by balancing each other’s function [1,2]. Osteoblasts, resorption space called the sealing zone and make it into an acidic which build bone, are derived from a mesenchymal progenitor cell micro-environment. To do that, cytoskeleton and the integrin of that can also differentiate into marrow stromal cells and adipocytes osteoclast are arranged in a ring for tight attachment to the sub- [3]. Osteoclasts, originating from hemopoietic progenitors of the strate [1]. αVβ3 integrin, an adhesion receptor binding the Arg-Gly- monocyte/macrophage lineage, immigrate into bone via the blood Asp (RGD) motifs of matrix proteins, is essential for normal osteo- stream and resorb mineralized tissues [1,2,4]. Bone through this clast function since mice lacking beta3 integrins fail to spread or continuous dynamic remodeling provides structural integrity, skel- form sealing zones, thus becoming osteosclerotic [7]. Similarly, etal strength, and a reservoir for hematopoiesis. Elevated osteoclast mice deficient in src, a ubiquitously expressed non-receptor tyro- numbers and activity cause osteoporosis, Paget’s disease, tumor sine kinase display osteopetrosis characterized by dysfunctional osteolysis, various arthritis, and periodontal disease. These dis- osteoclasts with abnormal sealing zones and αVβ3 localization [8,9]. eases result in low bone mass and high fracture risk, which can Of note, αVβ3 integrin and c-Fms, the receptor of M-CSF, collabo- also occur as a result of an osteoblast defect.
    [Show full text]
  • Osteoblast Retraction Induced by Adherent Neutrophils
    Laboratory Investigation (2011) 91, 905–920 & 2011 USCAP, Inc All rights reserved 0023-6837/11 $32.00 Osteoblast retraction induced by adherent neutrophils promotes osteoclast bone resorption: implication for altered bone remodeling in chronic gout Isabelle Allaeys1, Daniel Rusu1, Sylvain Picard2, Marc Pouliot1, Pierre Borgeat1 and Patrice E Poubelle1 Bone destruction in chronic gout is correlated with deposits of monosodium urate (MSU) crystals. Bone with MSU tophi were histopathologically shown to have altered remodeling and cellular distribution. We investigated the impact of neutrophils in bone remodeling associated with MSU and demonstrated that neutrophils, through elastase localized at their surface, induced retraction of confluent osteoblasts (OBs) previously layered on calcified matrix. This OB retraction allowed osteoclasts to resorb cell-free areas of the matrix. This neutrophil effect was concentration dependent and time dependent and required direct contact with OBs. Exposure of OBs to MSU greatly promoted neutrophil adherence to OBs. Neutrophil membrane at the contact zone with OBs showed concentrated fluorescence of dye PKH-67, indicating a cellular contact. Neutrophil–OB interaction increased the survival of neutrophils, reduced their release of lactoferrin in presence of MSU and did not change OB-mediated mineralization. The adhesion of neutrophils to OBs was heterotypic through neutrophil CD29/CD49d and OB-fibronectin peptide CS1. Leukotriene B4 (LTB4) and platelet-activating factor (PAF) were also involved in neutrophil adherence to OBs, as shown by the blocking effect of selective LTB4 and PAF receptor antagonists, and a cytosolic phospholipase A2a (cPLA2a) inhibitor. Blockade of CD49d/CS1 and inhibition of the cPLA2a had subadditive effects, reducing by 60% the adherence of neutrophils to OBs.
    [Show full text]
  • Human Osteoclast Formation and Bone Resorption by Monocytes And
    816 Ann Rheum Dis 1996;55:816-822 Human osteoclast formation and bone resorption Ann Rheum Dis: first published as 10.1136/ard.55.11.816 on 1 November 1996. Downloaded from by monocytes and synovial macrophages in rheumatoid arthritis Y Fujikawa, A Sabokbar, S Neale, N A Athanasou Abstract and macrophages.3'- Both intimal and subin- Objective-To determine whether syno- timal synovial macrophages in rheumatoid vial macrophages and monocytes isolated arthritis are derived from the circulation, blood from patients with rheumatoid arthritis monocytes passing through the tall endothe- patients are capable ofdifferentiating into lium ofpostcapillary venules to enter the syno- osteoclastic bone resorbing cells; and the vial tissues.'0 cellular and humoral conditions required Macrophages rather than T cells have been for this to occur. found to predominate at the articular margins Methods-Macrophages isolated from the where there is bone and cartilage destruc- synovium and monocytes from the tion." 1 A significant correlation has been peripheral blood of rheumatoid arthritis reported between the degree of joint erosion patients were cultured on bone slices and and the number of synovial macrophages." At coverslips, in the presence and absence of the site of marginal erosions, bone resorption, UMR 106 rat osteoblast-like cells, however, appears to be effected largely by rec- 1,25-dihydroxy vitamin D3 (1,25(0H)2D3) ognisable osteoclasts.'"' Various macrophage and macrophage colony stimulating factor derived cytokines are known to enhance osteo- (M-CSF), and assessed for cytochemical clastic bone resorption indirectly (through and functional evidence of osteoclast osteoblast stimulation)'5 and several of these differentiation.
    [Show full text]
  • Aberrant Bone Homeostasis in AML Is Associated with Activated Oncogenic FLT3-Dependent Cytokine Networks
    cells Article Aberrant Bone Homeostasis in AML Is Associated with Activated Oncogenic FLT3-Dependent Cytokine Networks 1, 2, 3 3,4 5, Isabel Bär y, Volker Ast y, Daria Meyer , Rainer König , Martina Rauner z, 5, , 1, , Lorenz C. Hofbauer * z and Jörg P. Müller * z 1 Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany; [email protected] 2 Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, 69117 Heidelberg, Germany; [email protected] 3 Center for Infectious Diseases and Infection Control, Jena University Hospital, 07745 Jena, Germany; [email protected] (D.M.); [email protected] (R.K.) 4 Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), 07745 Jena, Germany 5 Department of Medicine III & Center for Healthy Aging, Technical University Dresden, 01069 Dresden, Germany; [email protected] * Correspondence: [email protected] (L.C.H.); [email protected] (J.P.M.); Tel.: +49-351-458-3173 (L.C.H.); +49-364-1939-5634 (J.P.M.) These authors joined first. y These authors equally contributed. z Received: 5 October 2020; Accepted: 5 November 2020; Published: 9 November 2020 Abstract: Acute myeloid leukaemia (AML) is a haematopoietic malignancy caused by a combination of genetic and epigenetic lesions. Activation of the oncoprotein FLT3 ITD (Fms-like tyrosine kinase with internal tandem duplications) represents a key driver mutation in 25–30% of AML patients. FLT3 is a class III receptor tyrosine kinase, which plays a role in cell survival, proliferation, and differentiation of haematopoietic progenitors of lymphoid and myeloid lineages.
    [Show full text]
  • Osteoclast-Associated Intracellular Itam Signalling Molecules in Human Peri-Implant Osteolysis and Rheumatoid Arthritis
    OSTEOCLAST-ASSOCIATED INTRACELLULAR ITAM SIGNALLING MOLECULES IN HUMAN PERI-IMPLANT OSTEOLYSIS AND RHEUMATOID ARTHRITIS Ekram Alias BSc. (Biomedical Sc.), BHSc. (Hons.) DISCIPLINE OF ANATOMY AND PATHOLOGY SCHOOL OF MEDICAL SCIENCES Thesis submitted for the Doctor of Philosophy in Medicine in The School of Medical Sciences at The University of Adelaide November 2013 TABLE OF CONTENTS ! TABLE!OF!CONTENTS...................................................................................................................... i! ABSTRACT.........................................................................................................................................vi! STATEMENT!OF!ACCESS ............................................................................................................ viii! DECLARATION!OF!ORIGINALITY ...............................................................................................ix! ACKNOWLEDGEMENT.................................................................................................................... x! PUBLICATIONS ...............................................................................................................................xii! SCIENTIFIC!COMMUNICATIONS .............................................................................................. xiii! ABBREVIATIONS...........................................................................................................................xvi! LIST!OF!FIGURES...........................................................................................................................xix!
    [Show full text]
  • Potentiation of Osteoclast Bone-Resorption Activity by Inhibition of Nitric Oxide Synthase (Bone Ceil/Nitric Oxide/Aminguanidine) THOMAS P
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 3569-3573, April 1994 Pharmacology Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase (bone ceil/nitric oxide/aminguanidine) THOMAS P. KASTEN*, PATRICIA COLLIN-OSDOBYt, NiRAJ PATELt, PHILIP OSDOBYt, MARILYN KRUKOWSKIt, THOMAS P. MISKO*, STEVEN L. SETTLE*, MARK G. CURRIE*, AND G. ALLEN NICKOLS*t§ *Department of Molecular Pharmacology, Monsanto Corporate Research, St. Louis, MO 63167; tDepartment of Biology and Division of Bone and Mineral Diseases, Washington University, St. Louis, MO 63130; and tDepartment of Pharmacological and Physiological Sciences, St. Louis University Medical School, St. Louis, MO 63104 Communicated by Philip Needleman, December 27, 1993 ABSTRACT We have examined the effects of modulating histochemical level, Schmidt et al. (11) have demonstrated nitric oxide (NO) levels on osteoclast-mediated bone resorption that nitric oxide synthase (NOS) was present in areas ofbone in vitro and the effects ofnitric oxide synthase (NOS) inhibitors coincident with osteoclast and bone-remodeling activity. The on bone mineral density in vivo. Diaphorase-based histochem- report of MacIntyre et al. (12) indicated that NO-generating ical staining for NOS activity of bone sections or highly agents caused a decrease in isolated rat osteoclast cell spread enriched osteoclast cultures suggested that osteoclasts exhibit area and bone resorption. Also, Howard (13) reported that substantial NOS activity that may account for basal NO NO-generating compounds may increase cGMP levels in production. Chicken osteoclasts were cultured for 36 hr on isolated chicken osteoclasts. Furthermore, sodium nitroprus- bovine bone slices in the presence or absence of the NO- side (SNP) has been shown to inhibit the parathyroid hor- generating agent sodium nitroprusside or the NOS inhibitors mone or 1,25-(OH)2-vitamin D3 stimulation of resorption in N-nitro-L-arginine methyl ester and aminoguanidine.
    [Show full text]
  • Platelet-Rich Plasma Inhibits RANKL-Induced Osteoclast Differentiation Through Activation of Wnt Pathway During Bone Remodeling
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 41: 729-738, 2018 Platelet-rich plasma inhibits RANKL-induced osteoclast differentiation through activation of Wnt pathway during bone remodeling DONGYUE WANG*, YAJUAN WENG*, SHUYU GUO*, YUXIN ZHANG, TINGTING ZHOU, MENGNAN ZHANG, LIN WANG and JUNQING MA Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China Received February 7, 2017; Accepted November 2, 2017 DOI: 10.3892/ijmm.2017.3258 Abstract. Platelet-rich plasma (PRP) is used in the clinic as protein 1 and β-catenin. The results of the present study an autologous blood product to stimulate bone regeneration indicated that PRP inhibits osteoclast differentiation through and chondrogenesis. Numerous studies have demonstrated activation of the Wnt pathway. that PRP affects bone remodeling by accelerating osteo- blast formation. With the research perspective focusing on Introduction osteoclasts, the present study established a mouse model of mandibular advancement to examine the effect of PRP Angle class II malocclusion is a common condition that pres- on osteoclast differentiation induced by modification of ents most commonly as mandibular retrusion (1). Treatment the dynamics of the temporomandibular joint (TMJ). The of this condition involves the use of functional appliances lower incisors of the mice were trimmed by 1 mm and the to stimulate mandibular growth by forward posturing of the resultant change in mandibular position during the process mandible. During this process, a series of morphological and of eating induced condylar adaptation to this change. PRP histological changes are observed in the region of the temporo- significantly increased the bone mass and decreased osteo- mandibular joint (TMJ), which manifest as reconstruction of clastic activity, in vitro as well as in vivo.
    [Show full text]
  • Platelet and Osteoclast 3 Integrins Are Critical for Bone Metastasis
    Platelet and osteoclast ␤3 integrins are critical for bone metastasis Suzanne J. Bakewell*†, Patrick Nestor†, Srinivasa Prasad‡, Michael H. Tomasson†, Nikki Dowland†, Mukund Mehrotra‡, Robert Scarborough‡, James Kanter‡, Keith Abe‡, David Phillips‡, and Katherine N. Weilbaecher†§ *Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 505, Little Rock, AR 72205; †Departments of Medicine and Pathology, Division of Oncology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8069, St. Louis, MO 63110; and ‡Department of Cardiovascular Biology, Millennium Pharmaceuticals, 256 East Grand Avenue, South San Francisco, CA 94080 Edited by Philip W. Majerus, Washington University School of Medicine, St. Louis, MO, and approved September 12, 2003 (received for review July 12, 2003) ␤ ␣ ␤ Mice with a targeted deletion of 3 integrin were used to examine the platelet aggregation and hemostasis (21, 22). Mutation in IIb 3 process by which tumor cells metastasize and destroy bone. Injection results in the human bleeding disorder Glanzmann’s thrombasthe- ␣ ␤ of B16 melanoma cells into the left cardiac ventricle resulted in nia (23). v 3 is expressed by multiple cell types including OCs, ؉/؉ ␤ osteolytic bone metastasis in 74% of 3 mice by 14 days. In platelets, megakaryocytes, endothelium, kidney, and placenta (17, ␤ ␣ ؊/؊ ␤ contrast, only 4% of 3 mice developed bone lesions. Direct 24). v 3 is expressed progressively by OC precursors as they ␣ ␤ intratibial inoculation of tumor resulted in marrow replacement by differentiate, and binding of v 3 to bone is essential to bone tumor in ␤ ؊/؊ mice, but no associated trabecular bone resorption as ␤ ␤ Ϫ/Ϫ 3 resorption (25–29).
    [Show full text]