Geotechnical Characterization of the Bearpaw Shale

Total Page:16

File Type:pdf, Size:1020Kb

Geotechnical Characterization of the Bearpaw Shale GEOTECHNICAL CHARACTERIZATION OF THE BEARPAW SHALE by Jacqueline Suzanne Powell A thesis submitted to the Department of Geological Sciences & Geological Engineering In conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada January, 2010 Copyright © J. Suzanne Powell, 2010 Abstract This research takes a multidisciplinary approach to comprehensively investigate the material and mechanical properties as well as pore water chemistry of the Bearpaw shale. This made it possible to characterize how these properties relate to the mechanical strength of this material. The results of this research challenge our ideas of the hydrogeology and of the geological history of the region. Core samples of the Bearpaw Formation and the overlying glacial till were collected from a field site in southern Saskatchewan, Canada. A combination of laboratory tests including multi-staged oedometer tests, constant rate of strain oedometer tests, specialized triaxial swell tests, along with pore water chemistry and finite element modelling were used to meet the following objectives: (1) To investigate the material properties and compression behaviour of the Bearpaw in addition to assessing disturbance due to specimen size; (2) Examine the time dependent behaviour of the Bearpaw and the transferability of time rate models developed for soft soils to stiff soils; (3) Examine the swelling potential and behaviour of the Bearpaw Formation and the influence of boundary conditions on this behaviour, while assessing the applicability of the swell concepts developed for compacted materials to a naturally swelling clay material; and (4) Constrain the depositional age of the till overlying the Bearpaw Shale. Contrary to what is seen in soft soils, smaller sized specimens were found to reduce disturbance, and produce more accurate and consistent results. Creep was found to follow the same laws as it does in soft soils, calling into question whether the use of preconsolidation pressure to predict geological history in stiff clays is appropriate. There was significant variation in the observed swell pressures of samples of the same size and depth. Finally, the glacial till at site was found to belong uniquely to the Battleford Formation and ranges in age from 22,500 to 27,500 years which is much younger (over 100,000 years younger) than previously believed. ii Acknowledgements The efforts of many people made this research possible and their contributions over the course of this work have been greatly appreciated. Firstly, I’d like to thank my three co- supervisors: Vicki Remenda, Greg Siemens and Andy Take. Thank you for your encouragement, patience and understanding. Special thanks to Andy and Greg for your exceptional efforts and for taking me under your wing. Your guidance was instrumental in setting and achieving milestones that marked the steps toward compiling this thesis. Your belief in me helped to keep me focused at times when progress became difficult. This research could not have been completed without the involvement and support of technicians in the various labs at Queen’s and RMC. Thank you to Joe Dipietrantonio, Dexter Gaskin and Lou Zegarra for all the technical advice and support, for sharing your experience and knowledge so freely and so openly. Thank you, most importantly, for your friendship. Thank you to Mark Diederichs and Jean Hutchinson for your guidance and advice over these years. The commitment you’ve made to research, teaching and your family is something that truly inspires me. I very much enjoyed being a pseudo member of the Geomechanics Group. Thank you to Dianne Hyde and Jo-Anne Doucette for always keeping your doors open and for the support and encouragement you provided. Throughout my time in Kingston I developed a wonderful network of friends and colleagues whose relationships were such an important part of this experience. While I couldn’t possibly thank every person, I would like to acknowledge the following people: Wanda Beyer, Drew Brenders, Kathy Kalenchuk, Neil Kjelland, Marc Laflamme, Alicia Larson, Maureen Matthew (White), Amelia Rainbow, Stephanie Villeneuve and Marlène Villeneuve. Thank you for the intellectual debates, lunch time chats, coffee breaks and stress relief (in whatever form it iii took). Your friendship and the continuous support you have provided me both in the completion of this thesis and to me as a person means more than I can express. Thank you to my entire family who has been there every step of the way providing support and encouragement and never once giving up on me, I could not have done it without you behind me. You mean the world to me and I love you. A special thank you to my grandpa, Bob Downie, whose constant support and wise words of ‘make us proud’ I carry with me every day. Finally, thank you to Scott Viger for your support and encouragement, for pushing me when I needed an extra push and for being there when I needed you (or simply when I needed a break). Your patience and understanding, especially during the final days of this thesis, were remarkable and truly appreciated. Thank you for everything. iv Statement of Originality I hereby certify that all of the work described within this thesis is the original work of the author. Any published (or unpublished) ideas and/or techniques from the work of others are fully acknowledged in accordance with the standard referencing practices. J. Suzanne Powell January, 2010 v Table of Contents Abstract............................................................................................................................................ii Acknowledgements.........................................................................................................................iii Statement of Originality...................................................................................................................v Table of Contents............................................................................................................................vi List of Figures.................................................................................................................................xi List of Tables ...............................................................................................................................xvii List of Symbols and Abbreviations.............................................................................................xviii Chapter 1 Introduction .....................................................................................................................1 1.1 Background............................................................................................................................1 1.2 Objectives ..............................................................................................................................4 1.3 Methods .................................................................................................................................4 1.4 Organization of Thesis...........................................................................................................5 1.5 References..............................................................................................................................7 Chapter 2 Characterization of the Bearpaw Shale in oedometric compression. ..............................9 2.1 Introduction............................................................................................................................9 2.2 Background..........................................................................................................................12 2.2.1 Consolidation Testing ...................................................................................................12 2.2.1.1 Coefficient of Compressibility...............................................................................12 2.2.1.2 Coefficient of Consolidation..................................................................................13 2.2.1.3 Compression Indexes .............................................................................................13 2.2.1.4 Preconsolidation Pressure ......................................................................................14 2.2.2 Soil Compressibility......................................................................................................15 2.2.2.1 Structure and Intrinsic Compression Line (ICL) ...................................................15 2.2.2.2 Disturbance and Specimen Quality........................................................................16 2.3 Materials and Methods.........................................................................................................17 2.3.1 Physical Properties........................................................................................................17 2.3.2 Sample Disturbance ......................................................................................................18 2.3.3 Consolidation Testing ...................................................................................................18 2.3.4 Apparatus Compliance..................................................................................................20 2.4 Test results ...........................................................................................................................20 2.4.1 Index Properties ............................................................................................................20
Recommended publications
  • The Dinosaur Park - Bearpaw Formation Transition in the Cypress Hills Region of Southwestern Saskatchewan, Canada Meagan M
    The Dinosaur Park - Bearpaw Formation Transition in the Cypress Hills Region of Southwestern Saskatchewan, Canada Meagan M. Gilbert Department of Geological Sciences, University of Saskatchewan; [email protected] Summary The Upper Cretaceous Dinosaur Park Formation (DPF) is a south- and eastward-thinning fluvial to marginal marine clastic-wedge in the Western Canadian Sedimentary Basin. The DPF is overlain by the Bearpaw Formation (BF), a fully marine clastic succession representing the final major transgression of the epicontinental Western Interior Seaway (WIS) across western North America. In southwestern Saskatchewan, the DPF is comprised of marginal marine coal, carbonaceous shale, and heterolithic siltstone and sandstone grading vertically into marine sandstone and shale of the Bearpaw Formation. Due to Saskatchewan’s proximity to the paleocoastline, 5th order transgressive cycles resulted in the deposition of multiple coal seams (Lethbridge Coal Zone; LCZ) in the upper two-thirds of the DPF in the study area. The estimated total volume of coal is 48109 m3, with a gas potential of 46109 m3 (Frank, 2005). The focus of this study is to characterize the facies and facies associations of the DPF, the newly erected Manâtakâw Member, and the lower BF in the Cypress Hills region of southwestern Saskatchewan utilizing core, outcrop, and geophysical well log data. This study provides a comprehensive sequence stratigraphic overview of the DPF-BF transition in Saskatchewan and the potential for coalbed methane exploration. Introduction The Dinosaur Park and Bearpaw Formations in Alberta, and its equivalents in Montana, have been the focus of several sedimentologic and stratigraphic studies due to exceptional outcrop exposure and extensive subsurface data (e.g., McLean, 1971; Wood, 1985, 1989; Eberth and Hamblin, 1993; Tsujita, 1995; Catuneanu et al., 1997; Hamblin, 1997; Rogers et al., 2016).
    [Show full text]
  • TGI Strat Column 2009.Cdr
    STRATIGRAPHIC CORRELATION CHART TGI II: Williston Basin Architecture and Hydrocarbon Potential in Eastern Saskatchewan and Western Manitoba EASTERN MANITOBA PERIOD MANITOBA SUBSURFACE SASKATCHEWAN OUTCROP ERA glacial drift glacial drift glacial drift Quaternary Wood Mountain Formation Peace Garden Peace Garden Member Tertiary Member Ravenscrag Formation CENOZOIC Formation Goodlands Member Formation Goodlands Member Turtle Mountain Turtle Mountain Turtle Frenchman Formation Whitemud Formation Boissevain Formation Boissevain Formation Eastend Formation Coulter Member Coulter Member Bearpaw Formation Odanah Member Belly River “marker” Odanah Member Belly River Formation “lower” Odanah Member Millwood Member Lea Park Formation Millwood Member MONTANA GROUP Pembina Member Pembina Member Pierre Shale Pierre Shale Milk River Formation Gammon Ferruginous Member Gammon Ferruginous Member Niobrara Formation Chalky Unit Boyne Member Boyne Member Boyne Calcareous Shale Unit Member Carlile Morden Member Carlile upper Formation Morden Member Formation Morden Member Carlile Formation Assiniboine Marco Calcarenite Assiniboine Member Member CRETACEOUS Second White Specks Laurier Limestone Beds Favel Favel Keld Keld Member Member Formation Formation Belle Fourche Formation Belle Fourche Member MESOZOIC COLORADO GROUP Belle Fourche Member upper Fish Scale Formation Fish Scale Zone upper Base of Fish Scale marker Base of Fish Scale marker Westgate Formation Westgate Member lower Westgate Member Newcastle Formation Newcastle Member lower Viking Sandstone
    [Show full text]
  • The Hell Creek Formation, Montana: a Stratigraphic Review and Revision Based on a Sequence Stratigraphic Approach
    Review The Hell Creek Formation, Montana: A Stratigraphic Review and Revision Based on a Sequence Stratigraphic Approach Denver Fowler 1,2 1 Badlands Dinosaur Museum, Dickinson Museum Center, Dickinson, ND 58601, USA; [email protected] 2 Museum of the Rockies, Montana State University, Bozeman, MT 59717, USA Received: 12 September 2020; Accepted: 30 October 2020; Published: date Supporting Information 1. Methods: Lithofacies Descriptions Facies descriptions follow methodology laid out in Miall (1985). Descriptions mostly follow those of Flight (2004) for the Bearpaw Shale and Fox Hills Sandstone. Additional lithofacies are described for the Colgate sandstone, ?Battle Formation, an undivided Hell Creek Formation, and the lowermost 5–10 m of the Fort Union Formation. It was desirable to stay as close to Flight's (2004) definitions as possible in order to facilitate cross comparison between measured sections and interpretation; however I have also chosen to remain true to the intentions of Brown (1906) in keeping the Basal Sandstone (and associated basal scour) as the first unit of the Hell Creek Formation, rather than the tidal flats identified by Flight (2004). This analysis is not as concerned with the nature of the basal contacts as much as internal stratigraphy within the Hell Creek Formation itself, hence some of the stratal and facies relationships described by Flight (2004) were not directly observed by myself, but I have included them here to ease comparisons. 1.1. Bearpaw Shale The Bearpaw Shale is the basalmost formation considered in this study; as such only the uppermost 10–20 m have been observed in outcrop. In this upper 20 m or so, the Bearpaw Shale generally coarsens upwards, predominantly comprising shale with occasional interbedded sandstone.
    [Show full text]
  • MAY 2014 VOLUME 41, ISSUE 05 Canadian Publication Mail Contract – 40070050 MORE THAN MAPPING WANT to LIFT YOUR PETREL® WORKFLOWS to NEW HEIGHTS?
    20 Fossils Hunting for Provinces 28 Go Take a Hike 34 GeoConvention 2014: Focus 36 Bringing the Cretaceous Sea to Mount Royal University: A Proposal to Fund the East Gate Entrance Fossil Display $10.00 MAY 2014 VOLUME 41, ISSUE 05 Canadian Publication Mail Contract – 40070050 MORE THAN MAPPING WANT TO LIFT YOUR PETREL® WORKFLOWS TO NEW HEIGHTS? Seamlessly bring more data into the fold. Dynamically present your insight like never before. SOFTWARE SERVICES CONNECTIVITY DATA MANAGEMENT The Petrosys Plug-in for Petrel® gives you access to powerful Petrosys mapping, surface modeling and data exchange from right where you need it – inside Petrel. Now you have the power to effortlessly and meticulously bring your critical knowledge together on one potent mapping canvas. Work intuitively with your Petrel knowledge and, should you so require, simultaneously aggregate, map and model data direct from multiple other sources – OpenWorks®, ArcSDE®, IHS™ Kingdom®, PPDM™ and more. Refine, enhance and then present your results in beautiful, compelling detail. The result? Decision-making is accelerated through consistent mapping and surface modeling as focus moves from regional overview through to the field and reservoir scale. To learn more go to www.petrosys.com.au/petrel. Petrel is a registered trademark of Schlumberger Limited and/or its affiliates. OpenWorks is a registered trademark of Halliburton. ESRI trademarks provided under license from ESRI. IHS and Kingdom are trademarks or registered trademarks of IHS, Inc. PPDM is a trademark of the Professional Petroleum Data Management (PPDM) Association. MAY 2014 – VOLUME 41, ISSUE 05 ARTICLES Fossils Hunting for Provinces ..................................................................................................... 20 CSPG OFFICE Tools to Tackle the Riddle of the Sands ...............................................................................
    [Show full text]
  • Evolution of the Cordilleran Foreland Basin System in Northwestern Montana, U.S.A
    Evolution of the Cordilleran foreland basin system in northwestern Montana, U.S.A. Facundo Fuentes†, Peter G. DeCelles, Kurt N. Constenius, and George E. Gehrels Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA ABSTRACT episode of marine inundation and black shale 1989; Fermor and Moffat, 1992; Stockmal et al., deposition (Marias River Shale) occurred be- 1992; Beaumont et al., 1993; Plint et al., 1993; New lithostratigraphic and chronostrati- tween the Cenomanian and mid-Santonian, Ross et al., 2005; Miall et al., 2008; Yang and graphic, geochronologic, and sedimentary and was followed by a regressive succession Miall, 2009). This bimodal focus was mainly petrologic data illuminate the history of represented by the Upper Santonian–mid- driven by either the presence of anomalously development of the North American Cor- Campanian Telegraph Creek, Virgelle, and good surface exposures, as in the case of the dilleran foreland basin system and adjacent Two Medicine Formations. Provenance data western interior United States, or by hydro- thrust belt from Middle Jurassic through do not resolve the timing of individual thrust carbon exploration and a large subsurface data- Eocene time in northwestern Montana. The displacements during Cenomanian–early base, as in Canada (Miall et al., 2008). The oldest deposits in the foreland basin system Campanian time. The Upper Campanian ~300-km-long segment of the foreland basin consist of relatively thin, regionally tabu- Bearpaw Formation represents the last major lying within and east of the Cordilleran belt in lar deposits of the marine Ellis Group and marine inundation in the foreland basin . By northwestern Montana remains comparatively fl uvial-estuarine Morrison Formation, which latest Campanian time, a major epi sode of poorly understood in terms of its stratigraphy, accumulated during Bajocian to Kimmerid- slip on the Lewis thrust system had com- basin evolution, and relationship with the kine- gian time.
    [Show full text]
  • (Belly River Group), Dinosaur Provincial Park Area, Red Deer River Valley, Southeastern Alberta (NTS 72L/14) ERCB/AGS Open File Report 2011-02
    ERCB/AGS Open File Report 2011-02 Measured Outcrop Section T21-R10W4-01 of the Oldman and Dinosaur Park Formations (Belly River Group), Dinosaur Provincial Park Area, Red Deer River Valley, Southeastern Alberta (NTS 72L/14) ERCB/AGS Open File Report 2011-02 Measured Outcrop Section T21-R10W4-01 of the Oldman and Dinosaur Park Formations (Belly River Group), Dinosaur Provincial Park Area, Red Deer River Valley, Southeastern Alberta (NTS 72L/14) B. Hathway and G.J. Prior Energy Resources Conservation Board Alberta Geological Survey June 2011 ©Her Majesty the Queen in Right of Alberta, 2011 ISBN 978-0-7785-8644-9 The Energy Resources Conservation Board/Alberta Geological Survey (ERCB/AGS), its employees and contractors make no warranty, guarantee or representation, express or implied, or assume any legal liability regarding the correctness, accuracy, completeness or reliability of this publication. Any reference to proprietary software and/or any use of proprietary data formats do not constitute endorsement by ERCB/AGS of any manufacturer's product. If you use information from this publication in other publications or presentations, please acknowledge the ERCB/AGS. We recommend the following reference format: Hathway, B. and Prior, G.J. (2011): Measured outcrop section T21-R10W4-01 of the Oldman and Dinosaur Park formations (Belly River Group), Dinosaur Provincial Park area, Red Deer River valley, southeastern Alberta (NTS 72L/14); Energy Resources Conservation Board, ERCB/AGS Open File 2011-02, 17 p. Published June 2011 by: Energy Resources
    [Show full text]
  • Ammolite: Iridescent Fossilized Ammonite from Southern Alberta
    AMMOLITE:IRIDESCENT FOSSILIZED AMMONITE FROM SOUTHERN ALBERTA, CANADA By Keith A. Mychaluk, Alfred A. Levinson, and Russell L. Hall A relative newcomer to the world gem market (since the 1960s), Ammolite is a form of aragonite that is obtained from vivid iridescent fossilized ammonite shells mined in Alberta, Canada. The gem material, from the extinct species Placenticeras meeki and P. intercalare, is found only in certain horizons of the Bearpaw Formation of Late Cretaceous age (about 70 –75 million years old). Because the iridescent layer is generally thin and fragile, most Ammolite is fashioned into assembled stones. This article describes the history of Ammolite as a gem material and the geologic setting of the main producing mines; offers an explanation for the formation of Ammolite and the origin of its color (i.e., iridescence caused by an interfer- ence phenomenon); presents production data, gemological properties, and a grading classification; and describes the manufacturing process. mmolite is one of the few new natural gem mines at Bleiberg, Austria (Niedermayr, 1994). materials to enter the marketplace in the However, any similarities between Ammolite and A last 50 years (figure 1). Like tanzanite and other iridescent shell materials are superficial. sugilite—which were introduced to the trade in Although the iridescence of lumachelle is associated 1967 and 1980, respectively—Ammolite occurs in with an ammonite, specifically Carnites floridus, sufficient quantities to be economically significant. this species is significantly older (Late Triassic in Ammolite is a trade name for the iridescent, nacre- age) than those that give rise to Ammolite, and the ous layer of the shell of specific fossil ammonites two materials have different geologic occurrences.
    [Show full text]
  • Bedrock Geology of Alberta
    Alberta Geological Survey Map 600 Legend Bedrock Geology of Alberta Southwestern Plains Southeastern Plains Central Plains Northwestern Plains Northeastern Plains NEOGENE (± PALEOGENE) NEOGENE ND DEL BONITA GRAVELS: pebble gravel with some cobbles; minor thin beds and lenses NH HAND HILLS FORMATION: gravel and sand, locally cemented into conglomerate; gravel of sand; pebbles consist primarily of quartzite and argillite with minor amounts of sandstone, composed of mainly quartzite and sandstone with minor amounts of chert, arkose, and coal; fluvial amygdaloidal basalt, and diabase; age poorly constrained; fluvial PALEOGENE PALEOGENE PALEOGENE (± NEOGENE) PALEOGENE (± NEOGENE) UPLAND GRAVEL: gravel composed of mainly white quartzite cobbles and pebbles with lesser amounts of UPLAND GRAVEL: gravel capping the Clear Hills, Halverson Ridge, and Caribou Mountains; predominantly .C CYPRESS HILLS FORMATION: gravel and sand, locally cemented to conglomerate; mainly quartzite .G .G and sandstone clasts with minor chert and quartz component; fluvial black chert pebbles; sand matrix; minor thin beds and lenses of sand; includes gravel in the Swan Hills area; white quartzite cobbles and pebbles with lesser amounts of black chert pebbles; quartzite boulders occur in the age poorly constrained; fluvial Clear Hills and Halverson Ridge gravels; sand matrix; ages poorly constrained; extents poorly defined; fluvial .PH PORCUPINE HILLS FORMATION: olive-brown mudstone interbedded with fine- to coarse-grained, .R RAVENSCRAG FORMATION: grey to buff mudstone
    [Show full text]
  • Mudstone Facies of the Channel-Dominated Coastal Plain to Estuarine Transition in the Campanian Dinosaur Park Formation, Alberta, Canada
    Mudstone facies of the channel-dominated coastal plain to estuarine transition in the Campanian Dinosaur Park Formation, Alberta, Canada Amy K. Brown and Jennifer J. Scott Department of Earth Sciences, Mount Royal University Summary Mudstone facies of the Dinosaur Park Formation were characterized and distinguished in the field and laboratory to help determine their significance as they relate to the flooding events of the last major transgression of the Western Interior Seaway at ~75 million years ago. The Campanian Dinosaur Park Formation (76-75 Ma) is well exposed in Dinosaur Provincial Park in southern Alberta, and represents a transition from coastal plain to estuarine (Dinosaur Park Formation) to marine environments (Bearpaw Formation). The mudstones were categorized according to their visual characteristics (colour, type and orientation of organics present, size of organics, percentage of organics, and any structures present), and measured total organic content (T.O.C.). Six distinct facies are represented, and are interpreted as: (1) lacustrine or estuarine bays; (2) mud-filled incised channels or abandoned channels; (3) swamps; (4) overbank paleosols; (5) point bars; (6) and marine muds. Bentonite is also common throughout the Dinosaur Park Formation. The geometry of these mudstone facies and their lateral and vertical relationships will be determined in the field to improve interpretations of the depositional environments represented, as well as the stratigraphic significance of the different facies. Mudstones interpreted as lacustrine and estuarine bay deposits are dominantly organic-rich, darker in colour, are laminated, and preserve transported organics. Those from mud-filled incised channels comprise fine- grained silt and clays, have transported organics as well as in situ roots, and are characterized by their conchoidal fractures.
    [Show full text]
  • Measured Outcrop Section T27-R17W4-01 of the Bearpaw And
    ERCB/AGS Open File Report 2011-07 Measured Outcrop Section T27-R17W4-01 of the Bearpaw and Horseshoe Canyon Formations, Dorothy, Red Deer River Valley, Southern Alberta (NTS 82P/08) ERCB/AGS Open File Report 2011-07 Measured Outcrop Section T27-R17W4-01 of the Bearpaw and Horseshoe Canyon Formations, Dorothy, Red Deer River Valley, Southern Alberta (NTS 82P/08) B. Hathway, C.J. Banks, D.C. Hay, G.J. Prior, S. Mei, D. Chen and J.A. Weiss Energy Resources Conservation Board Alberta Geological Survey June 2011 ©Her Majesty the Queen in Right of Alberta, 2011 ISBN 978-0-7785-8648-7 The Energy Resources Conservation Board/Alberta Geological Survey (ERCB/AGS), its employees and contractors make no warranty, guarantee or representation, express or implied, or assume any legal liability regarding the correctness, accuracy, completeness or reliability of this publication. Any reference to proprietary software and/or any use of proprietary data formats do not constitute endorsement by ERCB/AGS of any manufacturer's product. If you use information from this publication in other publications or presentations, please acknowledge the ERCB/AGS. We recommend the following reference format: Hathway, B., Banks, C.J., Hay, D.C., Prior, G.J., Mei, S., Chen, D. and Weiss. J.A. (2011): Measured outcrop section T27-R17W4-01 of the Bearpaw and Horseshoe Canyon formations, Dorothy, Red Deer River valley, southern Alberta (NTS 8 2P/08); Energy Resources Conservation Board, ERCB/AGS Open File Report 2011-07, 16 p. Published June 2011 by: Energy Resources Conservation
    [Show full text]
  • A New High-Latitude Tylosaurus (Squamata, Mosasauridae) from Canada with Unique
    A new high-latitude Tylosaurus (Squamata, Mosasauridae) from Canada with unique dentition A thesis submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Master of Science in the Department of Biological Sciences of the College of Arts and Sciences by Samuel T. Garvey B.S. University of Cincinnati B.S. Indiana University March 2020 Committee Chair: B. C. Jayne, Ph.D. ABSTRACT Mosasaurs were large aquatic lizards, typically 5 m or more in length, that lived during the Late Cretaceous (ca. 100–66 Ma). Of the six subfamilies and more than 70 species recognized today, most were hydropedal (flipper-bearing). Mosasaurs were cosmopolitan apex predators, and their remains occur on every continent, including Antarctica. In North America, mosasaurs flourished in the Western Interior Seaway, an inland sea that covered a large swath of the continent between the Gulf of Mexico and the Arctic Ocean during much of the Late Cretaceous. The challenges of paleontological fieldwork in high latitudes in the Northern Hemisphere have biased mosasaur collections such that most mosasaur fossils are found within 0°–60°N paleolatitude, and in North America plioplatecarpine mosasaurs are the only mosasaurs yet confirmed to have existed in paleolatitudes higher than 60°N. However, this does not mean mosasaur fossils are necessarily lacking at such latitudes. Herein, I report on the northernmost occurrence of a tylosaurine mosasaur from near Grande Prairie in Alberta, Canada (ca. 86.6–79.6 Ma). Recovered from about 62°N paleolatitude, this material (TMP 2014.011.0001) is assignable to the subfamily Tylosaurinae by exhibiting a cylindrical rostrum, broadly parallel-sided premaxillo-maxillary sutures, and overall homodonty.
    [Show full text]
  • For the Late Cretaceous of Western North America Robert M
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/54 The Kirtlandian, a new land-vertebrate "age" for the Late Cretaceous of western North America Robert M. Sullivan and Spencer G. Lucas, 2003, pp. 369-377 in: Geology of the Zuni Plateau, Lucas, Spencer G.; Semken, Steven C.; Berglof, William; Ulmer-Scholle, Dana; [eds.], New Mexico Geological Society 54th Annual Fall Field Conference Guidebook, 425 p. This is one of many related papers that were included in the 2003 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]