Routing and Caching on Dhts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Looking up Data in P2p Systems
LOOKING UP DATA IN P2P SYSTEMS Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, Ion Stoica∗ MIT Laboratory for Computer Science 1. Introduction a good example of how the challenges of designing P2P systems The recent success of some widely deployed peer-to-peer (P2P) can be addressed. file sharing applications has sparked new research in this area. We The recent algorithms developed by several research groups for are interested in the P2P systems that have no centralized control the lookup problem present a simple and general interface, a dis- or hierarchical organization, where the software running at each tributed hash table (DHT). Data items are inserted in a DHT and node is equivalent in functionality. Because these completely de- found by specifying a unique key for that data. To implement a centralized systems have the potential to significantly change the DHT, the underlying algorithm must be able to determine which way large-scale distributed systems are built in the future, it seems node is responsible for storing the data associated with any given timely to review some of this recent research. key. To solve this problem, each node maintains information (e.g., The main challenge in P2P computing is to design and imple- the IP address) of a small number of other nodes (“neighbors”) in ment a robust distributed system composed of inexpensive com- the system, forming an overlay network and routing messages in puters in unrelated administrative domains. The participants in a the overlay to store and retrieve keys. typical P2P system might be home computers with cable modem One might believe from recent news items that P2P systems are or DSL links to the Internet, as well as computers in enterprises. -
Compsci 514: Computer Networks Lecture 13: Distributed Hash Table
CompSci 514: Computer Networks Lecture 13: Distributed Hash Table Xiaowei Yang Overview • What problems do DHTs solve? • How are DHTs implemented? Background • A hash table is a data structure that stores (key, object) pairs. • Key is mapped to a table index via a hash function for fast lookup. • Content distribution networks – Given an URL, returns the object Example of a Hash table: a web cache http://www.cnn.com0 Page content http://www.nytimes.com ……. 1 http://www.slashdot.org ….. … 2 … … … • Client requests http://www.cnn.com • Web cache returns the page content located at the 1st entry of the table. DHT: why? • If the number of objects is large, it is impossible for any single node to store it. • Solution: distributed hash tables. – Split one large hash table into smaller tables and distribute them to multiple nodes DHT K V K V K V K V A content distribution network • A single provider that manages multiple replicas. • A client obtains content from a close replica. Basic function of DHT • DHT is a virtual hash table – Input: a key – Output: a data item • Data Items are stored by a network of nodes. • DHT abstraction – Input: a key – Output: the node that stores the key • Applications handle key and data item association. DHT: a visual example K V K V (K1, V1) K V K V K V Insert (K1, V1) DHT: a visual example K V K V (K1, V1) K V K V K V Retrieve K1 Desired properties of DHT • Scalability: each node does not keep much state • Performance: look up latency is small • Load balancing: no node is overloaded with a large amount of state • Dynamic reconfiguration: when nodes join and leave, the amount of state moved from nodes to nodes is small. -
What Is Routing?
What is routing? • forwarding – moving packets between ports - Look up destination address in forwarding table - Find out-port or hout-port, MAC addri pair • Routing is process of populat- ing forwarding table - Routers exchange messages about nets they can reach - Goal: Find optimal route for ev- ery destination - . or maybe good route, or just any route (depending on scale) Routing algorithm properties • Static vs. dynamic - Static: routes change slowly over time - Dynamic: automatically adjust to quickly changing network conditions • Global vs. decentralized - Global: All routers have complete topology - Decentralized: Only know neighbors & what they tell you • Intra-domain vs. Inter-domain routing - Intra-: All routers under same administrative control - Intra-: Scale to ∼100 networks (e.g., campus like Stanford) - Inter-: Decentralized, scale to Internet Optimality A 6 1 3 2 F 1 E B 4 1 9 C D • View network as a graph • Assign cost to each edge - Can be based on latency, b/w, utilization, queue length, . • Problem: Find lowest cost path between two nodes - Must be computed in distributed way Distance Vector • Local routing algorithm • Each node maintains a set of triples - (Destination, Cost, NextHop) • Exchange updates w. directly connected neighbors - periodically (on the order of several seconds to minutes) - whenever table changes (called triggered update) • Each update is a list of pairs: - (Destination, Cost) • Update local table if receive a “better” route - smaller cost - from newly connected/available neighbor • Refresh existing -
Cisco SCA BB Protocol Reference Guide
Cisco Service Control Application for Broadband Protocol Reference Guide Protocol Pack #60 August 02, 2018 Cisco Systems, Inc. www.cisco.com Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices. THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. -
Peer-To-Peer Systems
Peer-to-Peer Systems Winter semester 2014 Jun.-Prof. Dr.-Ing. Kalman Graffi Heinrich Heine University Düsseldorf Peer-to-Peer Systems Unstructured P2P Overlay Networks – Unstructured Heterogeneous Overlays This slide set is based on the lecture "Communication Networks 2" of Prof. Dr.-Ing. Ralf Steinmetz at TU Darmstadt Unstructured Heterogeneous P2P Overlays Unstructured P2P Structured P2P Centralized P2P Homogeneous P2P Heterogeneous P2P DHT-Based Heterogeneous P2P 1. All features of 1. All features of 1. All features of 1. All features of 1. All features of Peer-to-Peer Peer-to-Peer Peer-to-Peer Peer-to-Peer Peer-to-Peer included included included included included 2. Central entity is 2. Any terminal 2. Any terminal 2. Any terminal 2. Peers are necessary to entity can be entity can be entity can be organized in a provide the removed without removed without removed hierarchical service loss of loss of without loss of manner 3. Central entity is functionality functionality functionality 3. Any terminal some kind of 3. ! no central 3. ! dynamic central 3. ! No central entity can be index/group entities entities entities removed without database 4. Connections in loss of functionality the overlay are Examples: “fixed” Examples: Examples: § Gnutella 0.6 Examples: Examples: § Napster § Gnutella 0.4 § Fasttrack § Chord • AH-Chord § Freenet § eDonkey § CAN • Globase.KOM § Kademlia from R.Schollmeier and J.Eberspächer, TU München HHU – Technology of Social Networks – JProf. Dr. Kalman Graffi – Peer-to-Peer Systems – http://tsn.hhu.de/teaching/lectures/2014ws/p2p.html -
A Fog Storage Software Architecture for the Internet of Things Bastien Confais, Adrien Lebre, Benoît Parrein
A Fog storage software architecture for the Internet of Things Bastien Confais, Adrien Lebre, Benoît Parrein To cite this version: Bastien Confais, Adrien Lebre, Benoît Parrein. A Fog storage software architecture for the Internet of Things. Advances in Edge Computing: Massive Parallel Processing and Applications, IOS Press, pp.61-105, 2020, Advances in Parallel Computing, 978-1-64368-062-0. 10.3233/APC200004. hal- 02496105 HAL Id: hal-02496105 https://hal.archives-ouvertes.fr/hal-02496105 Submitted on 2 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. November 2019 A Fog storage software architecture for the Internet of Things Bastien CONFAIS a Adrien LEBRE b and Benoˆıt PARREIN c;1 a CNRS, LS2N, Polytech Nantes, rue Christian Pauc, Nantes, France b Institut Mines Telecom Atlantique, LS2N/Inria, 4 Rue Alfred Kastler, Nantes, France c Universite´ de Nantes, LS2N, Polytech Nantes, Nantes, France Abstract. The last prevision of the european Think Tank IDATE Digiworld esti- mates to 35 billion of connected devices in 2030 over the world just for the con- sumer market. This deep wave will be accompanied by a deluge of data, applica- tions and services. -
The Routing Table V1.12 – Aaron Balchunas 1
The Routing Table v1.12 – Aaron Balchunas 1 - The Routing Table - Routing Table Basics Routing is the process of sending a packet of information from one network to another network. Thus, routes are usually based on the destination network, and not the destination host (host routes can exist, but are used only in rare circumstances). To route, routers build Routing Tables that contain the following: • The destination network and subnet mask • The “next hop” router to get to the destination network • Routing metrics and Administrative Distance The routing table is concerned with two types of protocols: • A routed protocol is a layer 3 protocol that applies logical addresses to devices and routes data between networks. Examples would be IP and IPX. • A routing protocol dynamically builds the network, topology, and next hop information in routing tables. Examples would be RIP, IGRP, OSPF, etc. To determine the best route to a destination, a router considers three elements (in this order): • Prefix-Length • Metric (within a routing protocol) • Administrative Distance (between separate routing protocols) Prefix-length is the number of bits used to identify the network, and is used to determine the most specific route. A longer prefix-length indicates a more specific route. For example, assume we are trying to reach a host address of 10.1.5.2/24. If we had routes to the following networks in the routing table: 10.1.5.0/24 10.0.0.0/8 The router will do a bit-by-bit comparison to find the most specific route (i.e., longest matching prefix). -
Conducting and Optimizing Eclipse Attacks in the Kad Peer-To-Peer Network
Conducting and Optimizing Eclipse Attacks in the Kad Peer-to-Peer Network Michael Kohnen, Mike Leske, and Erwin P. Rathgeb University of Duisburg-Essen, Institute for Experimental Mathematics, Ellernstr. 29, 45326 Essen [email protected], [email protected], [email protected] Abstract. The Kad network is a structured P2P network used for file sharing. Research has proved that Sybil and Eclipse attacks have been possible in it until recently. However, the past attacks are prohibited by newly implemented secu- rity measures in the client applications. We present a new attack concept which overcomes the countermeasures and prove its practicability. Furthermore, we analyze the efficiency of our concept and identify the minimally required re- sources. Keywords: P2P security, Sybil attack, Eclipse attack, Kad. 1 Introduction and Related Work P2P networks form an overlay on top of the internet infrastructure. Nodes in a P2P network interact directly with each other, i.e., no central entity is required (at least in case of structured P2P networks). P2P networks have become increasingly popular mainly because file sharing networks use P2P technology. Several studies have shown that P2P traffic is responsible for a large share of the total internet traffic [1, 2]. While file sharing probably accounts for the largest part of the P2P traffic share, also other P2P applications exist which are widely used, e.g., Skype [3] for VoIP or Joost [4] for IPTV. The P2P paradigm is becoming more and more accepted also for professional and commercial applications (e.g., Microsoft Groove [5]), and therefore, P2P technology is one of the key components of the next generation internet. -
Hartkad: a Hard Real-Time Kademlia Approach
HaRTKad: A Hard Real-Time Kademlia Approach Jan Skodzik, Peter Danielis, Vlado Altmann, Dirk Timmermann University of Rostock Institute of Applied Microelectronics and Computer Engineering 18051 Rostock, Germany, Tel./Fax: +49 381 498-7284 / -1187251 Email: [email protected] Abstract—The Internet of Things is becoming more and time behavior. Additionally, many solutions leak flexibility and more relevant in industrial environments. As the industry itself need a dedicated instance for administrative tasks. These issues has different requirements like (hard) real-time behavior for will becomes more relevant in the future. As mentioned in many scenarios, different solutions are needed to fulfill future challenges. Common Industrial Ethernet solution often leak [3], the future for the industry will be more intelligent devices, scalability, flexibility, and robustness. Most realizations also which can act more dynamically. Facilities as one main area require special hardware to guarantee a hard real-time behavior. of application will consist of more devices still requiring real- Therefore, an approach is presented to realize a hard real- time or even hard real-time behavior. So we think, the existing time network for automation scenarios using Peer-to-Peer (P2P) solutions will not fulfill the future challenges in terms of technology. Kad as implementation variant of the structured decentralized P2P protocol Kademlia has been chosen as base scalability, flexibility, and robustness. for the realization. As Kad is not suitable for hard real-time Peer-to-Peer (P2P) networks instead offer an innovative applications per se, changes of the protocol are necessary. Thus, alternative to the typical Client-Server or Master-Slave concepts Kad is extended by a TDMA-based mechanism. -
Peer-To-Peer Systems: Taxonomy and Characteristics 1B
IJCST VOL . 3, Iss UE 2, APR I L - JUNE 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print) Peer-to-Peer Systems: Taxonomy and Characteristics 1B. Lalitha, 2Dr. Ch. D. V. Subbarao 1Dept. of CSE, JNTUCE, Anantapur, AP, India 2Dept. of CSE, S.V University, Tirupathi, AP, India Abstract Various types of networks include: The limitations of client/server systems became a proof in large scale distributed systems for emerging of peer to peer systems, A. Centralized Networks which is the basis for decentralized distributed computing. In peer Centralized P2P protocols consist of a centralized file list. In this to peer model each node takes both the roles of client and server. model a user can send a query for a file to the centralized server. As a client, it can query and download its wanted data files from The server would then send back a list of peers that have the other nodes (peers) and as a server, it can provide data files to requested file. Once the user chooses which peer to download the other nodes. This paper provides the taxonomy of P2P systems file from the centralized would then facilitate the connection of gives an overview of structured and unstructured P2P systems, the peers then remove itself from the process as illustrated in Fig also discusses the characteristics and applications of peer to peer 1. Examples of centralized networks are Napster and eDonkey systems". in its early stages. Keywords Peer-To-Peer, Distributed Systems, Structured P2P, Unstructured P2P Systems. I. Introduction A Peer-to-Peer (P2P) computing or networking is a distributed application architecture that partitions tasks or workloads between peers. -
2.3 Blockchain
POLITECNICO DI TORINO Corso di Laurea Magistrale in Ingegneria Informatica - Data Science Tesi di Laurea Magistrale Supporting the portability of profiles using the blockchain in the Mastodon social network Relatore Candidato prof. Giovanni Squillero Alessandra Rossaro Anno Accademico 2018-2019 École polytechnique de Louvain Supporting the portability of profiles using the blockchain in the Mastodon social network Authors: Alessandra ROSSARO, Corentin SURQUIN Supervisors: Etienne RIVIERE, Ramin SADRE Readers: Lionel DRICOT, Axel LEGAY, Giovanni SQUILLERO Academic year 2018–2019 Master [120] in Computer Science Acknowledgements We would like to thank anyone who made the writing of this thesis possible, directly or indirectly. First of all, we would like to thank our supervisors, Prof. Etienne Riviere and Prof. Ramin Sadre for their continous support and advice during the year. We would never have gone this far without them. Secondly, we thank Lionel Dricot, Prof. Axel Legay and Prof. Giovanni Squillero for accepting to be the readers of this thesis. Alessandra First of all, I would like to thank my family, my parents Claudia and Alberto, my brother Stefano and my sister Eleonora, that from the beginning of my studies believed in me, every time urging me to give more and sustaining me each time that I had difficulties. They are my strength and I feel really lucky to have them in my life. Another thanks is to my friends, to Soraya, Beatrice, Sinto and Stefano and especially to Matteo and Edoardo that each time that I needed, remember me to believe in myself and don’t give up. Thank you, sincerely! I would like to thank also my partner, Corentin, because we were a great team, sometimes with some misunderstandings, but I appreciated to work at this project with him! Corentin I must express my deep gratitude to my family and friends for their moral support. -
P2P Resource Sharing in Wired/Wireless Mixed Networks 1
INT J COMPUT COMMUN, ISSN 1841-9836 Vol.7 (2012), No. 4 (November), pp. 696-708 P2P Resource Sharing in Wired/Wireless Mixed Networks J. Liao Jianwei Liao College of Computer and Information Science Southwest University of China 400715, Beibei, Chongqing, China E-mail: [email protected] Abstract: This paper presents a new routing protocol called Manager-based Routing Protocol (MBRP) for sharing resources in wired/wireless mixed networks. MBRP specifies a manager node for a designated sub-network (called as a group), in which all nodes have the similar connection properties; then all manager nodes are employed to construct the backbone overlay network with ring topology. The manager nodes act as the proxies between the internal nodes in the group and the external world, that is not only for centralized management of all nodes to a certain extent, but also for avoiding the messages flooding in the whole network. The experimental results show that compared with Gnutella2, which uses super-peers to perform similar management work, the proposed MBRP has less lookup overhead including lookup latency and lookup hop count in the most of cases. Besides, the experiments also indicate that MBRP has well configurability and good scaling properties. In a word, MBRP has less transmission cost of the shared file data, and the latency for locating the sharing resources can be reduced to a great extent in the wired/wireless mixed networks. Keywords: wired/wireless mixed network, resource sharing, manager-based routing protocol, backbone overlay network, peer-to-peer. 1 Introduction Peer-to-Peer technology (P2P) is a widely used network technology, the typical P2P network relies on the computing power and bandwidth of all participant nodes, rather than a few gathered and dedicated servers for central coordination [1, 2].