Characterization of Gcn5 Histone Acetyltransferase Activity and Bromodomain Acetyl-Lysine Binding Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantitative Proteomics Methods for the Analysis of Histone Post-Translational Modifications
Université de Montréal Quantitative Proteomics Methods for the Analysis of Histone Post-translational Modifications par Nebiyu Ali Abshiru Département de Chimie Faculté des arts et des sciences Thèse présentée à la Faculté des études supérieures et postdoctorales en vue de l’obtention du grade de philosophiae doctor (Ph.D.) en chimie Septembre 2015 ©Nebiyu Ali Abshiru, 2015 i Résumé Les histones sont des protéines nucléaires hautement conservées chez les cellules des eucaryotes. Elles permettent d’organiser et de compacter l’ADN sous la forme de nucléosomes, ceux-ci representant les sous unités de base de la chromatine. Les histones peuvent être modifiées par de nombreuses modifications post-traductionnelles (PTMs) telles que l’acétylation, la méthylation et la phosphorylation. Ces modifications jouent un rôle essentiel dans la réplication de l’ADN, la transcription et l’assemblage de la chromatine. L’abondance de ces modifications peut varier de facon significative lors du developpement des maladies incluant plusieurs types de cancer. Par exemple, la perte totale de la triméthylation sur H4K20 ainsi que l’acétylation sur H4K16 sont des marqueurs tumoraux spécifiques a certains types de cancer chez l’humain. Par conséquent, l’étude de ces modifications et des événements determinant la dynamique des leurs changements d’abondance sont des atouts importants pour mieux comprendre les fonctions cellulaires et moléculaires lors du développement de la maladie. De manière générale, les modifications des histones sont étudiées par des approches biochimiques telles que les immuno-buvardage de type Western ou les méthodes d’immunoprécipitation de la chromatine (ChIP). Cependant, ces approches présentent plusieurs inconvénients telles que le manque de spécificité ou la disponibilité des anticorps, leur coût ou encore la difficulté de les produire et de les valider. -
SETD2 Mutations in Primary Central Nervous System Tumors Angela N
Viaene et al. Acta Neuropathologica Communications (2018) 6:123 https://doi.org/10.1186/s40478-018-0623-0 RESEARCH Open Access SETD2 mutations in primary central nervous system tumors Angela N. Viaene1, Mariarita Santi1, Jason Rosenbaum2, Marilyn M. Li1, Lea F. Surrey1 and MacLean P. Nasrallah2,3* Abstract Mutations in SETD2 are found in many tumors, including central nervous system (CNS) tumors. Previous work has shown these mutations occur specifically in high grade gliomas of the cerebral hemispheres in pediatric and young adult patients. We investigated SETD2 mutations in a cohort of approximately 640 CNS tumors via next generation sequencing; 23 mutations were detected across 19 primary CNS tumors. Mutations were found in a wide variety of tumors and locations at a broad range of allele frequencies. SETD2 mutations were seen in both low and high grade gliomas as well as non-glial tumors, and occurred in patients greater than 55 years of age, in addition to pediatric and young adult patients. High grade gliomas at first occurrence demonstrated either frameshift/truncating mutations or point mutations at high allele frequencies, whereas recurrent high grade gliomas frequently harbored subclones with point mutations in SETD2 at lower allele frequencies in the setting of higher mutational burdens. Comparison with the TCGA dataset demonstrated consistent findings. Finally, immunohistochemistry showed decreased staining for H3K36me3 in our cohort of SETD2 mutant tumors compared to wildtype controls. Our data further describe the spectrum of tumors in which SETD2 mutations are found and provide a context for interpretation of these mutations in the clinical setting. Keywords: SETD2, Histone, Brain tumor, Glioma, Epigenetics, H3K36me3 Introduction (H3K36me3) in humans. -
EIN2 Mediates Direct Regulation of Histone Acetylation in the Ethylene Response
EIN2 mediates direct regulation of histone acetylation in the ethylene response Fan Zhanga,b,1, Likai Wanga,b,1, Bin Qic, Bo Zhaoa,b, Eun Esther Koa,b, Nathaniel D. Riggana,b, Kevin China,b, and Hong Qiaoa,b,2 aInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712; bDepartment of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712; and cDepartment of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 Edited by Steven E. Jacobsen, University of California, Los Angeles, CA, and approved August 10, 2017 (received for review May 15, 2017) Ethylene gas is essential for developmental processes and stress of EBF1 and EBF2 (19, 20). In the nucleus, the EIN2-C transduces responses in plants. Although the membrane-bound protein EIN2 is signals to the transcription factors EIN3 and EIL1, which are key for critical for ethylene signaling, the mechanism by which the ethylene activation of expression of all ethylene-response genes (21, 22). We signal is transduced remains largely unknown. Here we show the recently discovered that acetylation at H3K23 and H3K14Ac is in- levels of H3K14Ac and H3K23Ac are correlated with the levels of volved in ethylene-regulated gene activation in a manner that de- EIN2 protein and demonstrate EIN2 C terminus (EIN2-C) is sufficient to pends on both EIN2 and EIN3 (23, 24). rescue the levels of H3K14/23Ac of ein2-5 at the target loci, using Here we show that the levels of H3K14/23Ac are positively CRISPR/dCas9-EIN2-C. -
Le G´Enome En Action
LEGENOME´ EN ACTION SEQUENC´ ¸ AGE HAUT DEBIT´ ET EPIG´ ENOMIQUE´ Epig´enomique´ ? IFT6299 H2014 ? UdeM ? Mikl´osCs}ur¨os Regulation´ d’expression la transcription d’une region´ de l’ADN necessite´ ? liaisons proteine-ADN´ (facteur de transcription et son site reconnu) ? accessibilite´ de la chromatine REVIEWS Identification of regions that control transcription An initial step in the analysis of any gene is the identifi- cation of larger regions that might harbour regulatory control elements. Several advances have facilitated the prediction of such regions in the absence of knowl- edge about the specific characteristics of individual cis- Chromatin regulatory elements. These tools broadly fall into two categories: promoter (transcription start site; TSS) and enhancer detection. The methods are influenced Distal TFBS by sequence conservation between ORTHOLOGOUS genes (PHYLOGENETIC FOOTPRINTING), nucleotide composition and the assessment of available transcript data. Functional regulatory regions that control transcrip- tion rates tend to be proximal to the initiation site(s) of transcription. Although there is some circularity in the Co-activator complex data-collection process (regulatory sequences are sought near TSSs and are therefore found most often in these regions), the current set of laboratory-annotated regula- tory sequences indicates that sequences near a TSS are Transcription more likely to contain functionally important regulatory initiation complex Transcription controls than those that are more distal. However, specifi- initiation cation of the position of a TSS can be difficult. This is fur- ther complicated by the growing number of genes that CRM Proximal TFBS selectively use alternative start sites in certain contexts. Underlying most algorithms for promoter prediction is a Figure 1 | Components of transcriptional regulation. -
New Developments in Epigenetics and Potential Clinical Applications
NEW DEVELOPMENTS IN EPIGENETICS AND POTENTIAL CLINICAL APPLICATIONS Susan E. Bates, M.D. Columbia University Medical Center, New York, NY and J.J.P Bronx VA Medical Center, Bronx, NY TARGETING THE EPIGENOME What do we mean? “Targeting the Epigenome” - Meaning that we identify proteins that impact transcriptional controls that are important in cancer. “Epigenetics” – Meaning the right genes expressed at the right time, in the right place and in the right quantities. This process is ensured by an expanding list of genes that themselves must be expressed at the right time and right place. Think of it as a coordinated chromatin dance involving DNA, histone proteins, transcription factors, and over 700 proteins that modify them. Transcriptional Control: DNA Histone Tail Modification Nucleosomal Remodeling Non-Coding RNA HISTONE PROTEIN FAMILY 146 bp DNA wrap around an octomer of histone proteins H2A, H2B, H3, H4 are core histone families H1/H5 are linker histones >50 variants of the core histones Some with unique functions Post translational modification of “histone tails” key to gene expression Post-translational modifications include: – Acetylation – Methylation – Ubiquitination – Phosphorylation – Citrullation – SUMOylation – ADP-ribosylation THE HISTONE CODE Specific histone modifications determine function H3K9Ac, H3K27Ac, H3K36Ac H3K4Me3 – Gene activation H3K36Me2 – Inappropriate gene activation H3K27Me3 – Gene repression; Inappropriate gene repression H2AX S139Phosphorylation – associated with DNA double strand break, repair http://www.slideshare.net/jhowlin/eukaryotic-gene-regulation-part-ii-2013 KEY MODIFICATION - SPECIFIC FUNCTIONS H3K36Me: ac Active transcription, me H3K27Me: RNA elongation me Key Silencing ac ac me me Residue me me H3K4Me: H3K4 ac me Key Activating me me me Residue me H3K9 me H3K36 H3K9Ac:: H3K27 Activating Residue H3K18 H4K20 Activation me me me ac Modified from Mosammaparast N, et al. -
13-0035 Technical Data Sheet
Histone H3K36ac Antibody, SNAP-ChIP® Certified Catalog No 13-0035 Lot No 20336002-40 Pack Size 100 µg Type Monoclonal Host Rabbit Target Size 15 kDa Format Aff. Pur. IgG Reactivity Human, Mouse, Wide Range Applications ChIP, WB, ICC, Luminex Product Description: This antibody meets EpiCypher’s “SNAP-ChIP® Certified” criteria for specificity and efficient target enrichment in a ChIP experiment (<20% cross-reactivity across the panel, >5% recovery of target input) based on technology originating from Grzybowski et al. [1] and profiling standards from Shah et al. [2]. This antibody reacts to H3K36ac and exhibits no cross reactivity to other lysine acylations in the EpiCypher SNAP-ChIP K-AcylStat panel (EpiCypher 19-3001) is detected. SNAP-ChIP-qPCR: Histone H3K36ac antibody (3 μg) was tested in a native ChIP experiment using chromatin from K-562 cells (3 μg) with the SNAP-ChIP K-AcylStat Panel (EpiCypher 19 -3001) spiked-in prior to micrococcal nuclease digestion. Immunogen: Specificity (left y-axis) was determined by qPCR for the DNA A synthetic peptide corresponding to histone H3 barcodes corresponding to modified nucleosomes in the SNAP- ChIP panel (x-axis). Black bar represents antibody efficiency acetylated at lysine 36. (right y-axis; log scale) and indicates percentage of the target immunoprecipitated relative to input. Formulation: Protein A affinity-purified recombinant monoclonal antibody (1 mg/mL) in PBS, with 0.09% sodium azide, 1% BSA, and 50% glycerol. Storage and Stability: Stable for 1 year at -20°C from date of receipt. Luminex Data: Histone H3K36ac antibody was assessed using a Recommended Dilution: Luminex® based approach employing dCypherTM Nucleosome K- ChIP: 2 - 5 µg per 106 cells WB: 0.5 - 2 µg/mL AcylStat Panel (EpiCypher 16-9003). -
Transcription Shapes Genome-Wide Histone Acetylation Patterns
ARTICLE https://doi.org/10.1038/s41467-020-20543-z OPEN Transcription shapes genome-wide histone acetylation patterns Benjamin J. E. Martin 1, Julie Brind’Amour 2, Anastasia Kuzmin1, Kristoffer N. Jensen2, Zhen Cheng Liu1, ✉ Matthew Lorincz 2 & LeAnn J. Howe 1 Histone acetylation is a ubiquitous hallmark of transcription, but whether the link between histone acetylation and transcription is causal or consequential has not been addressed. 1234567890():,; Using immunoblot and chromatin immunoprecipitation-sequencing in S. cerevisiae, here we show that the majority of histone acetylation is dependent on transcription. This dependency is partially explained by the requirement of RNA polymerase II (RNAPII) for the interaction of H4 histone acetyltransferases (HATs) with gene bodies. Our data also confirms the targeting of HATs by transcription activators, but interestingly, promoter-bound HATs are unable to acetylate histones in the absence of transcription. Indeed, HAT occupancy alone poorly predicts histone acetylation genome-wide, suggesting that HAT activity is regulated post- recruitment. Consistent with this, we show that histone acetylation increases at nucleosomes predicted to stall RNAPII, supporting the hypothesis that this modification is dependent on nucleosome disruption during transcription. Collectively, these data show that histone acetylation is a consequence of RNAPII promoting both the recruitment and activity of histone acetyltransferases. 1 Department of Biochemistry and Molecular Biology, Life Sciences Institute, Molecular -
EIN2 Mediates Direct Regulation of Histone Acetylation in the Ethylene Response
EIN2 mediates direct regulation of histone acetylation in the ethylene response Fan Zhanga,b,1, Likai Wanga,b,1, Bin Qic, Bo Zhaoa,b, Eun Esther Koa,b, Nathaniel D. Riggana,b, Kevin China,b, and Hong Qiaoa,b,2 aInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712; bDepartment of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712; and cDepartment of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 Edited by Steven E. Jacobsen, University of California, Los Angeles, CA, and approved August 10, 2017 (received for review May 15, 2017) Ethylene gas is essential for developmental processes and stress of EBF1 and EBF2 (19, 20). In the nucleus, the EIN2-C transduces responses in plants. Although the membrane-bound protein EIN2 is signals to the transcription factors EIN3 and EIL1, which are key for critical for ethylene signaling, the mechanism by which the ethylene activation of expression of all ethylene-response genes (21, 22). We signal is transduced remains largely unknown. Here we show the recently discovered that acetylation at H3K23 and H3K14Ac is in- levels of H3K14Ac and H3K23Ac are correlated with the levels of volvedinethylene-regulatedgeneactivationinamannerthatde- EIN2 protein and demonstrate EIN2 C terminus (EIN2-C) is sufficient to pends on both EIN2 and EIN3 (23, 24). rescue the levels of H3K14/23Ac of ein2-5 at the target loci, using Here we show that the levels of H3K14/23Ac are positively CRISPR/dCas9-EIN2-C. Chromatin immunoprecipitation followed by correlated with the EIN2 protein levels and demonstrate that deep sequencing (ChIP-seq) and ChIP-reChIP-seq analyses revealed that EIN2-C is sufficient to rescue the levels of H3K14Ac and EIN2-C associates with histone partially through an interaction with H3K23Ac in ein2-5 at loci targeted using CRISPR/dCas9-EIN2-C. -
Learning Chroma\N States from Chip-‐Seq Data
Learning Chroman States from ChIP-seq data Luca Pinello GC Yuan Lab Outline • Chroman structure, histone modificaons and combinatorial paerns • How to segment the genome in chroman states • How to use ChromHMM step by step • Further references 2 Epigene-cs and chroman structure • All (almost) the cells of our body share the same genome but have very different gene expression programs…. 3 h?p://jpkc.scu.edu.cn/ywwy/zbsw(E)/edetail12.htm The code over the code • The chroman structure and the accessibility are mainly controlled by: 1. Nucleosome posioning, 2. DNA methylaon, 3. Histone modificaons. 4 Histone Modificaons Specific histone modificaons or combinaons of modificaons confer unique biological func-ons to the region of the genome associated with them: • H3K4me3: promoters, gene acva.on • H3K27me3: promoters, poised enhancers, gene silencing • H2AZ: promoters • H3K4me1: enhancers • H3K36me3: transcribed regions • H3K9me3: gene silencing • H3k27ac: acve enhancers 5 Examples of *-Seq Measuring the genome genome fragmentation assembler DNA DNA reads “genome” ChIP-seq to measure histone data fragments Measuring the regulome (e.g., protein-binding of the genome) Chromatin Immunopreciptation genomic (ChIP) + intervals fragmentation Protein - peak caller bound by DNA bound DNA reads proteins REVIEWS fragments a also informative, as this ratio corresponds to the fraction ChIP–chip of nucleosomes with the particular modification at that location, averaged over all the cells assayed. One of the difficulties in conducting a ChIP–seq con- trol experiment is the large amount of sequencing that ChIP–seq may be necessary. For input DNA and bulk nucleosomes, many of the sequenced tags are spread evenly across the genome. -
Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells Title During Mouse Spermatogenesis
NAOSITE: Nagasaki University's Academic Output SITE Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells Title during Mouse Spermatogenesis. Song, Ning; Liu, Jie; An, Shucai; Nishino, Tomoya; Hishikawa, Yoshitaka; Author(s) Koji, Takehiko Citation Acta Histochemica et Cytochemica, 44(4), pp.183-190; 2011 Issue Date 2011-08-27 URL http://hdl.handle.net/10069/26169 Copyright (c) 2011 By the Japan Society of Histochemistry and Right Cytochemistry This document is downloaded at: 2020-09-18T06:01:32Z http://naosite.lb.nagasaki-u.ac.jp Advance Publication Acta Histochem. Cytochem. 44 (4): 183–190, 2011 doi:10.1267/ahc.11027 AHCActa0044-59911347-5800JapanTokyo,AHC1102710.1267/ahc.11027Regular Histochemica Society JapanArticle of Histochemistry et Cytochemica and Cytochemistry Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis Ning Song1, Jie Liu2, Shucai An3, Tomoya Nishino1, Yoshitaka Hishikawa1 and Takehiko Koji1 1Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan, 2Department of Prosthodontics, College of Stomatology, Jiamusi University, Jiamusi, China and 3Department of General Surgery, First Affiliated Hospital, Medical College of Jiamusi University, Jiamusi, China 00 Received June 7, 2011; accepted June 29, 2011; published online July 20, 2011 © 2011Histone The Japanmodification Society has of beenHistochemistry implicated and in the regulation of mammalian spermatogenesis. However, the association of differently modified histone H3 with a specific stage of germ cells during spermatogenesis is not fully understood. In this study, we examined the localiza- tion of variously modified histone H3 in paraffin-embedded sections of adult mouse testis immunohistochemically, focusing on acetylation at lysine 9 (H3K9ac), lysine 18 (H3K18ac), and lysine 23 (H3K23ac); tri-methylation at lysine 4 (H3K4me3) and lysine 27 (H3K27me3); and phosphorylation at serine 10 (H3S10phos). -
EIN2 Mediates Direct Regulation of Histone Acetylation in the Ethylene Response
EIN2 mediates direct regulation of histone acetylation in the ethylene response Fan Zhanga,b,1, Likai Wanga,b,1, Bin Qic, Bo Zhaoa,b, Eun Esther Koa,b, Nathaniel D. Riggana,b, Kevin China,b, and Hong Qiaoa,b,2 aInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712; bDepartment of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712; and cDepartment of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 Edited by Steven E. Jacobsen, University of California, Los Angeles, CA, and approved August 10, 2017 (received for review May 15, 2017) Ethylene gas is essential for developmental processes and stress of EBF1 and EBF2 (19, 20). In the nucleus, the EIN2-C transduces responses in plants. Although the membrane-bound protein EIN2 is signals to the transcription factors EIN3 and EIL1, which are key for critical for ethylene signaling, the mechanism by which the ethylene activation of expression of all ethylene-response genes (21, 22). We signal is transduced remains largely unknown. Here we show the recently discovered that acetylation at H3K23 and H3K14Ac is in- levels of H3K14Ac and H3K23Ac are correlated with the levels of volvedinethylene-regulatedgeneactivationinamannerthatde- EIN2 protein and demonstrate EIN2 C terminus (EIN2-C) is sufficient to pends on both EIN2 and EIN3 (23, 24). rescue the levels of H3K14/23Ac of ein2-5 at the target loci, using Here we show that the levels of H3K14/23Ac are positively CRISPR/dCas9-EIN2-C. Chromatin immunoprecipitation followed by correlated with the EIN2 protein levels and demonstrate that deep sequencing (ChIP-seq) and ChIP-reChIP-seq analyses revealed that EIN2-C is sufficient to rescue the levels of H3K14Ac and EIN2-C associates with histone partially through an interaction with H3K23Ac in ein2-5 at loci targeted using CRISPR/dCas9-EIN2-C. -
Interactive Roles of Chromatin Regulation and Circadian Clock Function in Plants Z
Chen and Mas Genome Biology (2019) 20:62 https://doi.org/10.1186/s13059-019-1672-9 REVIEW Open Access Interactive roles of chromatin regulation and circadian clock function in plants Z. Jeffrey Chen1,2 and Paloma Mas3,4* Abstract Genome-wideanalyseshaveprovidedevidenceofthe pervasive role of the clock controlling the rhythms of Circadian rhythms in transcription ultimately result in a large fraction of the transcriptome [6–11]. The rhythms oscillations of key biological processes. Understanding in gene expression are transduced into oscillations of pro- how transcriptional rhythms are generated in plants tein activities involved in a myriad of signaling pathways. provides an opportunity for fine-tuning growth, Germination, growth, development [12–15], and re- development, and responses to the environment. sponses to abiotic [16, 17] and biotic [18, 19] stresses are Here, we present a succinct description of the just a few of the many examples of processes controlled plant circadian clock, briefly reviewing a number of by the plant circadian clock. Recent studies have expanded recent studies but mostly emphasizing the components the range of the pathways controlled by the clock. Indeed, and mechanisms connecting chromatin remodeling the repertoire of circadianly regulated processes also in- with transcriptional regulation by the clock. The cludes the regulation of other oscillators such as the cell possibility that intergenomic interactions govern cycle. The study showed that circadian control of the cell hybrid vigor through epigenetic changes at clock loci cycle is exerted by setting the time of DNA replication li- and the function of epialleles controlling clock output censing [20]. Similarly, another recent study has shown traits during crop domestication are also discussed.