The History and Evolution of Molecular Diagnostics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Arctic Sea Ice Biomarker IP25: a Review of Current Understanding, Recommendations for Future Research and Applications in Palaeo Sea Ice Reconstructions
Quaternary Science Reviews 79 (2013) 9e25 Contents lists available at SciVerse ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions Simon T. Belt a,*, Juliane Müller b a Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, UK b Alfred Wegener Institute for Polar and Marine Research, 27568 Bremerhaven, Germany article info abstract Article history: In recent years, a novel proxy for the past occurrence of Arctic sea ice has been proposed that is based Received 18 June 2012 on the variable marine sedimentary abundance of an organic geochemical lipid derived from sea ice Received in revised form diatoms in the spring. This lipid, termed IP25 (Ice Proxy with 25 carbon atoms), is a highly branched 29 November 2012 isoprenoid mono-unsaturated alkene that appears to be sufficiently stable in sediments to permit Accepted 4 December 2012 meaningful palaeo sea ice reconstructions to be carried out over short- to long-term timescales. Since Available online 17 January 2013 the first proposed use of IP25 as a proxy for palaeo sea ice by Belt et al. (2007), a number of laboratories have measured this biomarker in Arctic sediments and it is anticipated that research activity in this area Keywords: Sea ice will increase further in the future. The content of this review is divided into a number of sections. fi Arctic Firstly, we describe the scienti c basis for the IP25 proxy and its initial discovery in Arctic sea ice, Proxy sedimenting particles and sediments. -
Molecular Diagnostics of Medically Important Bacterial Infections
Curr. Issues Mol. Biol. 9: 21–40. Online journal at www.cimb.org Molecular Diagnostics of Medically Important Bacterial Infections Beverley Cherie Millar1, Jiru Xu2, and John Introduction Edmund Moore1* The last ten years of the twentieth century allowed for an exponential increase in the knowledge of techniques in 1Northern Ireland Public Health Laboratory, Department molecular biology, following the cellular and protein era of Bacteriology, Belfast City Hospital, Belfast, Northern of the 1970s and 1980s. This explosion of technologies Ireland, BT9 7AD, UK from the primary discipline of molecular biology has had 2Northern Ireland Public Health Laboratory, Department major consequences and has allowed for signifcant of Bacteriology, Belfast City Hospital, Belfast, Northern developments in many areas of the life sciences, Ireland, BT9 7AD, UK, and Department of Pathogenic including bacteriology. Molecular bacteriologists are now Biology, Xian-Jiatong University, Xi’an, The People’s beginning to adopt general molecular biology techniques Republic of China to support their particular area of interest. This chapter aims to examine the current situation with regard to the Abstract application of molecular biology techniques in the area Infectious diseases are common diseases all over of medical bacteriology, and is primarily concerned the world. A recent World Health Organization report with the molecular identifcation of causal agents of indicated that infectious diseases are now the world’s bacterial infections. The chapter also aims at giving a biggest killer of children and young adults. Infectious broad overview of the application of current technology diseases in non-industrialized countries caused 45% in all so that the reader has a more comprehensive overview and 63% of death in early childhood. -
Current Update of Laboratory Molecular Diagnostics Advancement in Management of Colorectal Cancer (CRC)
diagnostics Review Current Update of Laboratory Molecular Diagnostics Advancement in Management of Colorectal Cancer (CRC) Siew-Wai Pang 1,*, Noel Jacques Awi 1, Subasri Armon 2 , Wendy Wan-Dee Lim 3, John Seng-Hooi Low 3, Kaik-Boo Peh 4, Suat-Cheng Peh 1,3 and Sin-Yeang Teow 1,* 1 Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Malaysia; [email protected] (N.J.A.); [email protected] (S.-C.P.) 2 Pathology Department, Hospital Kuala Lumpur, Jalan Pahang, Kuala Lumpur 50588, Malaysia; [email protected] 3 Sunway Medical Centre, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia; [email protected] (W.W.-D.L.); [email protected] (J.S.-H.L.) 4 Mahkota Medical Centre, Mahkota Melaka, Jalan Merdeka, Melaka 75000, Malaysia; [email protected] * Correspondence: [email protected] (S.-W.P.); [email protected] (S.-Y.T.); Tel.: +60-17-621-6191 (S.-W.P.); +60-37-491-8622 (ext. 7449) (S.-Y.T.) Received: 26 September 2019; Accepted: 23 November 2019; Published: 23 December 2019 Abstract: Colorectal cancer (CRC) continues to be one of the most common cancers globally. The incidence has increased in developing countries in the past few decades, this could be partly attributed to aging populations and unhealthy lifestyles. While the treatment of CRC has seen significant improvement since the advent of target-specific therapies and personalized medicine, CRC is oftentimes detected at late or advanced stages, thereby reducing the efficacy of treatment. -
Molecular Testing of Solid Tumors
Molecular Testing of Solid Tumors Maria E Arcila MD Memorial Sloan Kettering Cancer Center New York, NY Disclosure Information • Advisory Board: Eli Lilly-ImClone Learning Objectives • After this presentation, you should be able to: – Describe the most common molecular diagnostics tests performed in the evaluation of malignant solid tumors – Have working knowledge of the Molecular markers recommended by the National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology for common solid tumors – Recognize some of emerging molecular markers Molecular Biomarkers • Potential therapeutic targets • Provide further insight into the clinicopathologic features of cancer • Guide to treatment decisions – Predictors of response to therapy – Prognostic indicators of risk – Monitor progression or response to treatment Solid tumors where molecular diagnostics make the highest contribution • Lung • Colorectal • Brain • Breast • Sarcomas • Head and neck - Thyroid • Melanoma Lung Carcinoma MORPHOLOGIC CLASSIFICATION OF LUNG CARCINOMA (Historically used to guide treatment decisions) NSCLC • Lung cancer is the most common cause of cancer-related death in men and women • Responsible for over 1.3 million PROPORTION (%) deaths annually worldwide SQUAMOUS A NEW WAY TO LOOK AT LUNG CANCER LARGE CELL “The Lung Adenocarcinoma ADENOCARCINOMA Oncogenome” Pie chart of mutually exclusive mutations (ca 2011) MEK1 (2008) ERBB2 (2004) UNKNOWN (36%) BRAF (2002) ALK fusions (2007) KRAS(1987) NF1 (2008) EGFR (2004) Overlapping mutations: p53 (30%), -
Establishing a Molecular Diagnostics Laboratory
Checklist for Bringing MDx Testing on Board Andrea Ferreira-Gonzalez, PhD Prof and Chair, Division Molecular Diagnostics Director Molecular Diagnostics Department of Pathology Virginia Commonwealth University Goals Operational considerations Regulatory considerations Reimbursement Aims Improved Improved Patient Predictors of Diagnosis Management Prognosis Improved Selection of Therapeutic Modalities Test Selection Enhance cost-effective management of patient – less expensive or effective method for diagnosis or overall care of patient Director responsibility – Send out list, perceive need by physician community, – TAT, technical capabilities, personnel expertise – patent issue – Professional Guidelines CF guideline ACOG/ACMG Fragile X testing – FDA approved/cleared tests – Reimbursement: All about CLINICAL UTILITY!!! Revenue center or/and cost avoidance center? Reduce cost reference laboratory send outs Cost reference Prof/Loss send Total cost in Proft/Loss In Test Name Medicare expect lab out house house HIV viral load 98.07 128 -29.93 76.5 21.57 HCV viral load 46.29 275 -228.71 76.5 -30.21 HBV viral load 46.29 419 -372.71 76.5 -30.21 CMV viral load 46.29 265 -218.71 25.3 20.99 BKV viral load 27.02 363 -335.98 25.7 1.32 EBV viral load 27.05 300 -272.95 23.47 3.58 HIV Geno 324 657 -333 156 168 HCV Geno 324 587 -263 87 237 Total 939.01 2994 -2054.99 546.97 392.04 Test formats Developed by IVD manufacturer- FDA approved or cleared Developed by IVD manufacturer- RUO Laboratory Developed Procedure (LDP) – Manual – Automated Important -
The Biotech/Pharma Perspective
Biomarkers – The Biotech/Pharma perspective R&D manager - Kim Holmstrøm Bioneer What are Biomarkers? § The modern definition was proposed at the US National Institutes of Health workshop in 1998: “A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes or pharmacological responses to a therapeutic intervention.” 2 What are Biomarkers? Classical Molecular markers • Body temperature § Proteins (e.g. antibodies, • Blood pressure membrane receptors) • Heart rate, etc. § Hormones (e.g. peptide hormones, steroid hormones) • Imaging (MR, PET) § Carbohydrates (e.g. glucose) § Nucleic acids (DNA, mRNA, ncRNA) § Epigenetic factors (methylation, histone modifications) § Lipids (e.g. cholesterol) § Metabolites Biomarkers in human disease and drug development § Diagnostic - Determines the type of disease § Predictive - Identification of subpopulations of patients most likely to respond to a given treatment § Prognostic - Provides information of the likely course of e.g. a cancer disease § Mechanistic - Provides infomation on e.g. specific cell signaling mechanisms that are affected by a drug § Safety - Indicates toxicity effects 4 Genome for science, for health, for individuals Your genome First human genome 1000 Genome 50 Danish families Personal genomes! sequencing Project 150 genomes in total for everyone 1990-2002 2009-2012 The Danish reference (2015-2025) genome The human ! Human genome Healthy lifestyle “building blocks” variation 2011-2015 Prevention of -
Molecular Testing in Infectious Diseases Elizabeth Palavecino, M.D
Molecular Testing in Infectious Diseases Elizabeth Palavecino, M.D. Director Clinical Microbiology Co-Director Clinical & Translational Mass Spec Center Associate Professor of Pathology Wake Forest School of Medicine Winston-Salem, NC [email protected] Objectives • Describe the molecular methods available for diagnosis of infectious diseases – Platforms and Instrumentation – Tests availability • Discuss the implementation of these assays according to hospital size, patient population and molecular expertise of laboratory staff • Discuss their potential impact on hospital cost and patient outcome Implementing Molecular Testing for Infectious Diseases Diagnosis • Test Selection – Which is your patient population? • Pediatric versus Adult patients • Immunosuppressed patients • OBGYN services • Large ED or Outpatient population – Does your lab have experience in molecular testing? – Do you have any equipment? – Where the testing will be done (Micro lab, Core lab, Molecular Lab) • Getting Approval from Administration – Convincing Laboratory and Upper Management • Verification, Validation, and Implementation Palavecino E. Make the Move to Molecular Diagnostics. MLO May 2010. 10-14 Examples of Molecular Tests by Complexity Level Sequencing Genotyping Quantitative PCR: Viral Loads Multiplex PCR Respiratory, Blood Cultures and Stool Samples Two-Three Targets: Flu A and B, CT/GC COMPLEXITY One Target: Group B streptococci, MRSA, C difficile Molecular Testing Nucleic Acid Detection and Amplification Extraction Resulting Close Systems All steps in one instrument Reduce need for molecular trained personnel and space. Allows testing on all shifts and improve turnaround time NOTE: Prevention of sample contamination is still very important in close systems Sample preparation should be done in a separate room. Use of dedicated lab coat and changing gloves between sample is highly recommended. -
Diagnostic Single Nucleotide Polymorphisms for Identifying
Molecular Ecology Resources (2010) doi: 10.1111/j.1755-0998.2010.02932.x MOLECULAR DIAGNOSTICS AND DNA TAXONOMY Diagnostic single nucleotide polymorphisms for identifying westslope cutthroat trout (Oncorhynchus clarki lewisi), Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and rainbow trout (Oncorhynchus mykiss) S. T. KALINOWSKI, B. J. NOVAK, D. P. DRINAN, R. DEM JENNINGS and N. V. VU Department of Ecology, 310 Lewis Hall, Montana State University, Bozeman, MT 59717, USA Abstract We describe 12 diagnostic single nucleotide polymorphism (SNP) assays for use in species identification among rainbow and cutthroat trout: five of these loci have alleles unique to rainbow trout (Oncorhynchus mykiss), three unique to wests- lope cutthroat trout (O. clarkii lewisi) and four unique to Yellowstone cutthroat trout (O. clarkii bouvieri). These diagnostic assays were identified using a total of 489 individuals from 26 populations and five fish hatchery strains. Keywords: species identification, SNP, diagnostic, cutthroat trout, rainbow trout Received 15 July 2010; revision received 10 September 2010; accepted 23 September 2010 The westslope cutthroat trout (Oncorhynchus clarki lewisi) especially if they have a small proportion of non-native is the most widely distributed subspecies of cutthroat genes (Allendorf et al. 2004 and references within). trout, and despite its name, it is found on both sides of The problem is compounded in many parts of Montana the continental divide in the Northern Rockies (Allendorf by hybridization with Yellowstone cutthroat trout & Leary 1988; Behnke 2002). The westslope cutthroat is a (Oncorhynchus clarkii bouvieri). In the first half of the 20th Montana icon and the official state fish, but has experi- century, hundreds of millions of Yellowstone cutthroat enced great reductions in both abundance and distribu- trout were collected from Yellowstone Lake, WY, and tion (e.g. -
Operational Pathways for Biomarker Testing in Nsclc Environmental Scan
ASSOCIATION OF COMMUNITY CANCER CENTERS OPERATIONAL PATHWAYS FOR BIOMARKER TESTING IN NSCLC ENVIRONMENTAL SCAN TABLE OF CONTENTS Introduction . 1 Current Recommendations for Biomarker Testing in Advanced NSCLC . 1 Barriers to Testing . 2 Opportunities for Overcoming Operational Barriers . 3 Professional Education Pathology Integration Utilizing Lean Methodology Promotion of Cytology in Biomarker Testing Early and Automatic Biomarker Testing Comprehensive Precision Medicine Program Development Summary . 8 Appendix A: Role of Advocacy Groups in Communication, Awareness . 10 LungMATCH LUNGevity Take Aim Appendix B: Additional Studies on Biomarker Testing in NSCLC . 12 References . 13 Acknowledgements . 14 1 | OPERATIONAL PATHWAYS FOR BIOMARKER TESTING IN NSCLC ENVIRONMENTAL SCAN INTRODUCTION A crucial component of care for all patients with advanced stage non-small cell lung cancer (NSCLC) is timely, high-quality comprehensive biomarker testing at diagnosis, progression, and recurrence of disease. Completing comprehensive biomarker testing ensures that patients will be given access to therapies and clinical trials targeted at their cancer’s mutation, and that they will have the information needed to participate in their healthcare decision-making. While actionable biomarkers increasingly guide clinical treatment plans, studies show that several barriers exist to successfully implementing biomarker testing in both the academic and community cancer settings. The Association of Community Cancer Centers (ACCC) has partnered with the Association for Molecular Pathology and LUNGevity in a two-year multiphase effort to aid cancer programs in implementing clinical practice guidelines for biomarker testing for all patients being treated for advanced non-small cell lung cancer. This education project aims to bridge the knowledge gap between the rapidly evolving landscape in actionable biomarkers for patients with advanced NSCLC and integration of biomarker testing into practice through “operational pathways” to implement testing recommendations in every care setting. -
Better Tests, Better Care: Improved Diagnostics for Infectious Diseases
IDSA PUBLIC POLICY Better Tests, Better Care: Improved Diagnostics for Infectious Diseases Angela M. Caliendo,1 David N. Gilbert,2,3 Christine C. Ginocchio,4,5,6 Kimberly E. Hanson,7,8 Larissa May,9 Thomas C. Quinn,10,11 Fred C. Tenover,12 David Alland,13 Anne J. Blaschke,14 Robert A. Bonomo,15,16,17,18 Karen C. Carroll,19,20 Mary Jane Ferraro,21,22 Lisa R. Hirschhorn,23,24 W. Patrick Joseph,25,26,27,28 Tobi Karchmer,29 Ann T. MacIntyre,30,31 L. Barth Reller,32,33 and Audrey F. Jackson;34 for the Infectious Diseases Society of America (IDSA) 1Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island; 2Division of Infectious Diseases, Providence Portland Medical Center, and 3Department of Medicine, Oregon Health & Science University, Portland, Oregon; 4Division of Infectious Disease Diagnostics, North Shore–LIJ Laboratories, Lake Success, and Departments of 5Pathology and Laboratory Medicine and 6Molecular Medicine, Hofstra North Shore–LIJ School of Medicine, Hempstead, New York; Departments of 7Medicine and 8Pathology, University of Utah, Salt Lake City; 9Department of Emergency Medicine, George Washington University, Washington, District of Columbia; 10Division of Intramural Research, National Institute of Allergy and 11 Infectious Diseases, National Institutes of Health, Bethesda, and Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; Downloaded from 12Cepheid, Sunnyvale, California; 13Center for Emerging Pathogens, Department of Medicine, Rutgers–New Jersey Medical School, -
Biomarkers Related to Drug Or Biotechnology Product Development: Context , Structure and Format of Qualification Submissions
BIOMARKERS RELATED TO DRUG OR BIOTECHNOLOGY PRODUCT DEVELOPMENT: CONTEXT , STRUCTURE AND FORMAT OF QUALIFICATION SUBMISSIONS. E16. http://www.ich.org/LOB/media/MEDIA55 18.pdf International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use Voluntaryyp eXplorator y Data Submissions Training reviewers in the analysis of exploratory biomarker data. Training sponsors in the capabilities of our reviewers for the analysis and interpretation of biomarker data. VOLUNTARY Receiving eXploratoryGenomicGenomic Data DataData Tracking SbSSbSuSubmissionubbmm iss iss ion ion Archiving IPRG (Interdisciplinary Pharmacogenomics Review Group) The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart y our computer, and then open the file again. If the red x still appears, y ou may hav e to delete the image and then insert it again. Feedback to Sponsor Report VXDSVXDS ReviewReview Public Meetings Education and Workshops Knowledge with Industry Management Exploratory Biomarkers Qualified Biomarkers (VXDS Meetings) (Biomarker Qualification Process) A decision by a sponsor to reanalyze and submit data based on the availability of a newly qualified biomarker should be made in the context of other available nonclinical and clinical data . Regulatory Applications …any additional data required to support qualification for regulatory use will be expected to depend on what data may already be publicly available, data that may lie within -
Programmable Paper-Based Microfluidic Devices for Biomarker Detections
micromachines Review Programmable Paper-Based Microfluidic Devices for Biomarker Detections Veasna Soum , Sooyong Park, Albertus Ivan Brilian , Oh-Sun Kwon and Kwanwoo Shin * Department of Chemistry, Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea * Correspondence: [email protected] Received: 1 July 2019; Accepted: 1 August 2019; Published: 2 August 2019 Abstract: Recent advanced paper-based microfluidic devices provide an alternative technology for the detection of biomarkers by using affordable and portable devices for point-of-care testing (POCT). Programmable paper-based microfluidic devices enable a wide range of biomarker detection with high sensitivity and automation for single- and multi-step assays because they provide better control for manipulating fluid samples. In this review, we examine the advances in programmable microfluidics, i.e., paper-based continuous-flow microfluidic (p-CMF) devices and paper-based digital microfluidic (p-DMF) devices, for biomarker detection. First, we discuss the methods used to fabricate these two types of paper-based microfluidic devices and the strategies for programming fluid delivery and for droplet manipulation. Next, we discuss the use of these programmable paper-based devices for the single- and multi-step detection of biomarkers. Finally, we present the current limitations of paper-based microfluidics for biomarker detection and the outlook for their development. Keywords: paper-based microfluidic device; flow control; droplet actuation; multi-step assay; biomarker detection; digital microfluidic device 1. Introduction Because of cost, disposable, paper-based microfluidic devices have become an attractive tool for point-of-care testing (POCT) and medical screening in the developing world. Paper-based, continuous-flow microfluidic (p-CMF) devices were first invented in 1949 by Müller and Clegg [1]; however, no proof of concept for the use of such devices for portable, onsite detection in biosensing applications was reported until 2007 when Whitesides’ group published their report [2].