Current Update of Laboratory Molecular Diagnostics Advancement in Management of Colorectal Cancer (CRC)

Total Page:16

File Type:pdf, Size:1020Kb

Current Update of Laboratory Molecular Diagnostics Advancement in Management of Colorectal Cancer (CRC) diagnostics Review Current Update of Laboratory Molecular Diagnostics Advancement in Management of Colorectal Cancer (CRC) Siew-Wai Pang 1,*, Noel Jacques Awi 1, Subasri Armon 2 , Wendy Wan-Dee Lim 3, John Seng-Hooi Low 3, Kaik-Boo Peh 4, Suat-Cheng Peh 1,3 and Sin-Yeang Teow 1,* 1 Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Malaysia; [email protected] (N.J.A.); [email protected] (S.-C.P.) 2 Pathology Department, Hospital Kuala Lumpur, Jalan Pahang, Kuala Lumpur 50588, Malaysia; [email protected] 3 Sunway Medical Centre, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia; [email protected] (W.W.-D.L.); [email protected] (J.S.-H.L.) 4 Mahkota Medical Centre, Mahkota Melaka, Jalan Merdeka, Melaka 75000, Malaysia; [email protected] * Correspondence: [email protected] (S.-W.P.); [email protected] (S.-Y.T.); Tel.: +60-17-621-6191 (S.-W.P.); +60-37-491-8622 (ext. 7449) (S.-Y.T.) Received: 26 September 2019; Accepted: 23 November 2019; Published: 23 December 2019 Abstract: Colorectal cancer (CRC) continues to be one of the most common cancers globally. The incidence has increased in developing countries in the past few decades, this could be partly attributed to aging populations and unhealthy lifestyles. While the treatment of CRC has seen significant improvement since the advent of target-specific therapies and personalized medicine, CRC is oftentimes detected at late or advanced stages, thereby reducing the efficacy of treatment. Hence, screening for early detection is still the key to combat CRC and to increase overall survival (OS). Considering that the field of medical diagnostics is moving towards molecular diagnostics, CRC can now be effectively screened and diagnosed with high accuracy and sensitivity. Depending on the tumor genotype and genetic profile of the individual, personalized treatments including tyrosine kinase inhibitor therapy and immunotherapy can be administered. Notably, there can be no one single treatment that is effective for all CRC patients due to the variation in tumor genetics, which highlights the importance of molecular diagnostics. This review provides insights on therapeutic modalities, molecular biomarkers, advancement of diagnostic technologies, and current challenges in managing CRC. Keywords: colorectal cancer; molecular; diagnostics; biomarker; technologies; personalized medicine; therapy; genetic; screening; challenges 1. Colorectal Cancer (CRC) and Its Treatment Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third and second for men and women, respectively. In 2018, Global Cancer Observatory (GLOBOCAN) estimated more than 1.8 million new CRC cases worldwide [1]. There are various therapeutic modalities for CRC depending on the pathological characteristics of the tumor. Laparoscopic surgery is normally carried out for early-stage primary disease, open surgery tumor resection for cases with metastases, and adjuvant radiotherapy for nonresectable cases. Other CRC therapies are neoadjuvant and palliative chemotherapies [2,3], immunotherapy [4], and tyrosine kinase inhibitor (TKI) therapy [5]. The advent of checkpoint inhibitors made of monoclonal antibodies (mAbs) have been a breakthrough for the Diagnostics 2020, 10, 9; doi:10.3390/diagnostics10010009 www.mdpi.com/journal/diagnostics Diagnostics 2019, 9, x FOR PEER REVIEW 2 of 21 Diagnostics 2020, 10, 9 2 of 21 and palliative chemotherapies [2,3], immunotherapy [4], and tyrosine kinase inhibitor (TKI) therapy [5]. The advent of checkpoint inhibitors made of monoclonal antibodies (mAbs) have been a breakthroughtreatment of several for the cancers treatment including of several CRC cancers [6]. The including safety profile CRC and[6]. itsThe effi safetycacy inprofile treating and certain its efficacy CRC inpatient treating populations certain CRC have patient led to multiplepopulations clinical have trials. led to Figure multiple1 summarizes clinical trials. the list Figure of CRC 1 summarizes treatments thereviewed list of CRC according treatments to their reviewed date of applicationaccording to or their approval date of by application the Food and or approval Drug Administration by the Food and(FDA) Drug [7– 17Administration]. Despite advances (FDA) in [7–17]. medical Despite and surgical advances treatment, in medical the long-term and surgical survival treatment, rates have the long-termnot improved survival much rates [18 have]. One not of improved the ways much in which [18]. CRCOne of can the be ways treated in which optimally CRC iscan through be treated the optimallyelucidation is ofthrough individual the elucidation genetic profiles of individual for personalized genetic therapiesprofiles for or precisionpersonalized medicine. therapies Since or precisionCRC has severalmedicine. tumor Since subtypes CRC ha withs several complex tumor mutations subtypes and with genetic complex variations, mutations treatment and decisiongenetic variations,supported bytreatment molecular decision testing supported results can by dramatically molecular improvetesting results the survival can dramatically rate [19]. The improve details andthe survivalspecifications rate [19]. of the The genes details will beand discussed specifications in the nextof the section. genes Withwill be advancement discussed in of DNAthe next sequencing section. Withtechnologies advancement such as of next-generationDNA sequencing sequencing technologies (NGS), such it as is next-generation optimistic that precisionsequencing medicine (NGS), mayit is optimisticbe more accessible that precision and a medicineffordable, may thereby be more improving accessible clinical and outcomes.affordable, The thereby sub-sections improving below clinical will outcomes.discuss the The current sub-sections treatment below methods will fordiscus CRC.s the current treatment methods for CRC. FigureFigure 1. SimplifiedSimplified timeline timeline of of colorectal cancer (CRC (CRC)) treatment options reviewed. The The timeline timeline is is notnot constructed constructed according according to to scale. scale. The The red red boxes boxes on on the the right right represent represent the the type type of of treatment, treatment, where where CTCT == chemotherapy,chemotherapy, SUR SUR == surgery,surgery, IMT IMT == immunoimmunotherapy,therapy, TKI TKI == tyrosinetyrosine kinase kinase inhibitor. inhibitor. 2.2. Molecular Molecular Biomarkers Biomarkers MolecularMolecular biomarker biomarker is is an an umbrella umbrella term term for for al alll biomarkers biomarkers that that can can be be measured measured based based on on the the biomarker’sbiomarker’s molecularmolecular characteristic. characteristic. The The detection detecti ofon biomarkers of biomarkers has been has the been backbone the backbone for screening for screeningand diagnostic and diagnostic aid in medical aid in laboratories. medical laboratories. They are They routinely are routinely carried out carried using out patient using samplespatient samplessuch as tissuesuch as biopsy, tissue blood, biopsy, urine, blood, and urine, other and biological other biological samples. samples. One of the One most of commonthe most detectioncommon detectionmethods usedmethods in clinical used laboratoriesin clinical islaboratories immunohistochemistry is immunohistochemistry (IHC), which detects (IHC), cellular which markersdetects cellularand phenotypes markers specificand phenotypes to certain diseasesspecific to through certain staining diseases with through highly staining specific antibodieswith highly [20 specific]. Since antibodiesIHC can be [20]. done Since on bothIHC freshcan be and done formalin-fixed on both fresh tissues, and itformalin-fixed serves as a convenient, tissues, it simple,serves as and a convenient,cost-effective simple, platform and for cost-effective clinical diagnostics platform [21]. for However, clinical there diagnostics are several [21]. limitations. However, Although there are it severalis not di limitations.fficult to obtain Although commercially it is not difficult produced to obtain antibodies, commercially there are produced no standard antibodies, guidelines there for are the novalidation standard of guidelines these antibodies. for the The validation interpretation of thes ofe theantibodies. slides by The pathologists interpretation can vary of the considerably slides by pathologistsand is affected can by vary how considerably the tissue was and processed, is affected stored, by how and the handled. tissue was This processed, is exacerbated stored, by and the handled.presence This of intratumoral is exacerbated biomarker by the presence heterogeneity of intratumoral that can cause biomarker discordance heterogeneity in the classification that can cause of discordancecancer [22]. Furthermore,in the classification the lack of ofcancer standardized [22]. Furthermore, guidelines the for lack quantitative of standardized and semiquantitative guidelines for quantitativescoring raises and concern, semiquantitative especially when scoring it involves raises concern, clinical decisions. especially While when the it Americaninvolves clinical Society decisions.of Clinical While Oncology the American (ASCO) and Society College of ofClinical American Oncology Pathologists (ASCO) (CAP) and College issued guidelinesof American for Pathologiststhe handling (CAP) of biopsy issued tissues guidelines of breast for cancerthe handli patients,ng of guidelinesbiopsy
Recommended publications
  • Molecular Diagnostics of Medically Important Bacterial Infections
    Curr. Issues Mol. Biol. 9: 21–40. Online journal at www.cimb.org Molecular Diagnostics of Medically Important Bacterial Infections Beverley Cherie Millar1, Jiru Xu2, and John Introduction Edmund Moore1* The last ten years of the twentieth century allowed for an exponential increase in the knowledge of techniques in 1Northern Ireland Public Health Laboratory, Department molecular biology, following the cellular and protein era of Bacteriology, Belfast City Hospital, Belfast, Northern of the 1970s and 1980s. This explosion of technologies Ireland, BT9 7AD, UK from the primary discipline of molecular biology has had 2Northern Ireland Public Health Laboratory, Department major consequences and has allowed for signifcant of Bacteriology, Belfast City Hospital, Belfast, Northern developments in many areas of the life sciences, Ireland, BT9 7AD, UK, and Department of Pathogenic including bacteriology. Molecular bacteriologists are now Biology, Xian-Jiatong University, Xi’an, The People’s beginning to adopt general molecular biology techniques Republic of China to support their particular area of interest. This chapter aims to examine the current situation with regard to the Abstract application of molecular biology techniques in the area Infectious diseases are common diseases all over of medical bacteriology, and is primarily concerned the world. A recent World Health Organization report with the molecular identifcation of causal agents of indicated that infectious diseases are now the world’s bacterial infections. The chapter also aims at giving a biggest killer of children and young adults. Infectious broad overview of the application of current technology diseases in non-industrialized countries caused 45% in all so that the reader has a more comprehensive overview and 63% of death in early childhood.
    [Show full text]
  • Molecular Testing of Solid Tumors
    Molecular Testing of Solid Tumors Maria E Arcila MD Memorial Sloan Kettering Cancer Center New York, NY Disclosure Information • Advisory Board: Eli Lilly-ImClone Learning Objectives • After this presentation, you should be able to: – Describe the most common molecular diagnostics tests performed in the evaluation of malignant solid tumors – Have working knowledge of the Molecular markers recommended by the National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology for common solid tumors – Recognize some of emerging molecular markers Molecular Biomarkers • Potential therapeutic targets • Provide further insight into the clinicopathologic features of cancer • Guide to treatment decisions – Predictors of response to therapy – Prognostic indicators of risk – Monitor progression or response to treatment Solid tumors where molecular diagnostics make the highest contribution • Lung • Colorectal • Brain • Breast • Sarcomas • Head and neck - Thyroid • Melanoma Lung Carcinoma MORPHOLOGIC CLASSIFICATION OF LUNG CARCINOMA (Historically used to guide treatment decisions) NSCLC • Lung cancer is the most common cause of cancer-related death in men and women • Responsible for over 1.3 million PROPORTION (%) deaths annually worldwide SQUAMOUS A NEW WAY TO LOOK AT LUNG CANCER LARGE CELL “The Lung Adenocarcinoma ADENOCARCINOMA Oncogenome” Pie chart of mutually exclusive mutations (ca 2011) MEK1 (2008) ERBB2 (2004) UNKNOWN (36%) BRAF (2002) ALK fusions (2007) KRAS(1987) NF1 (2008) EGFR (2004) Overlapping mutations: p53 (30%),
    [Show full text]
  • Establishing a Molecular Diagnostics Laboratory
    Checklist for Bringing MDx Testing on Board Andrea Ferreira-Gonzalez, PhD Prof and Chair, Division Molecular Diagnostics Director Molecular Diagnostics Department of Pathology Virginia Commonwealth University Goals Operational considerations Regulatory considerations Reimbursement Aims Improved Improved Patient Predictors of Diagnosis Management Prognosis Improved Selection of Therapeutic Modalities Test Selection Enhance cost-effective management of patient – less expensive or effective method for diagnosis or overall care of patient Director responsibility – Send out list, perceive need by physician community, – TAT, technical capabilities, personnel expertise – patent issue – Professional Guidelines CF guideline ACOG/ACMG Fragile X testing – FDA approved/cleared tests – Reimbursement: All about CLINICAL UTILITY!!! Revenue center or/and cost avoidance center? Reduce cost reference laboratory send outs Cost reference Prof/Loss send Total cost in Proft/Loss In Test Name Medicare expect lab out house house HIV viral load 98.07 128 -29.93 76.5 21.57 HCV viral load 46.29 275 -228.71 76.5 -30.21 HBV viral load 46.29 419 -372.71 76.5 -30.21 CMV viral load 46.29 265 -218.71 25.3 20.99 BKV viral load 27.02 363 -335.98 25.7 1.32 EBV viral load 27.05 300 -272.95 23.47 3.58 HIV Geno 324 657 -333 156 168 HCV Geno 324 587 -263 87 237 Total 939.01 2994 -2054.99 546.97 392.04 Test formats Developed by IVD manufacturer- FDA approved or cleared Developed by IVD manufacturer- RUO Laboratory Developed Procedure (LDP) – Manual – Automated Important
    [Show full text]
  • Molecular Testing in Infectious Diseases Elizabeth Palavecino, M.D
    Molecular Testing in Infectious Diseases Elizabeth Palavecino, M.D. Director Clinical Microbiology Co-Director Clinical & Translational Mass Spec Center Associate Professor of Pathology Wake Forest School of Medicine Winston-Salem, NC [email protected] Objectives • Describe the molecular methods available for diagnosis of infectious diseases – Platforms and Instrumentation – Tests availability • Discuss the implementation of these assays according to hospital size, patient population and molecular expertise of laboratory staff • Discuss their potential impact on hospital cost and patient outcome Implementing Molecular Testing for Infectious Diseases Diagnosis • Test Selection – Which is your patient population? • Pediatric versus Adult patients • Immunosuppressed patients • OBGYN services • Large ED or Outpatient population – Does your lab have experience in molecular testing? – Do you have any equipment? – Where the testing will be done (Micro lab, Core lab, Molecular Lab) • Getting Approval from Administration – Convincing Laboratory and Upper Management • Verification, Validation, and Implementation Palavecino E. Make the Move to Molecular Diagnostics. MLO May 2010. 10-14 Examples of Molecular Tests by Complexity Level Sequencing Genotyping Quantitative PCR: Viral Loads Multiplex PCR Respiratory, Blood Cultures and Stool Samples Two-Three Targets: Flu A and B, CT/GC COMPLEXITY One Target: Group B streptococci, MRSA, C difficile Molecular Testing Nucleic Acid Detection and Amplification Extraction Resulting Close Systems All steps in one instrument Reduce need for molecular trained personnel and space. Allows testing on all shifts and improve turnaround time NOTE: Prevention of sample contamination is still very important in close systems Sample preparation should be done in a separate room. Use of dedicated lab coat and changing gloves between sample is highly recommended.
    [Show full text]
  • Diagnostic Single Nucleotide Polymorphisms for Identifying
    Molecular Ecology Resources (2010) doi: 10.1111/j.1755-0998.2010.02932.x MOLECULAR DIAGNOSTICS AND DNA TAXONOMY Diagnostic single nucleotide polymorphisms for identifying westslope cutthroat trout (Oncorhynchus clarki lewisi), Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and rainbow trout (Oncorhynchus mykiss) S. T. KALINOWSKI, B. J. NOVAK, D. P. DRINAN, R. DEM JENNINGS and N. V. VU Department of Ecology, 310 Lewis Hall, Montana State University, Bozeman, MT 59717, USA Abstract We describe 12 diagnostic single nucleotide polymorphism (SNP) assays for use in species identification among rainbow and cutthroat trout: five of these loci have alleles unique to rainbow trout (Oncorhynchus mykiss), three unique to wests- lope cutthroat trout (O. clarkii lewisi) and four unique to Yellowstone cutthroat trout (O. clarkii bouvieri). These diagnostic assays were identified using a total of 489 individuals from 26 populations and five fish hatchery strains. Keywords: species identification, SNP, diagnostic, cutthroat trout, rainbow trout Received 15 July 2010; revision received 10 September 2010; accepted 23 September 2010 The westslope cutthroat trout (Oncorhynchus clarki lewisi) especially if they have a small proportion of non-native is the most widely distributed subspecies of cutthroat genes (Allendorf et al. 2004 and references within). trout, and despite its name, it is found on both sides of The problem is compounded in many parts of Montana the continental divide in the Northern Rockies (Allendorf by hybridization with Yellowstone cutthroat trout & Leary 1988; Behnke 2002). The westslope cutthroat is a (Oncorhynchus clarkii bouvieri). In the first half of the 20th Montana icon and the official state fish, but has experi- century, hundreds of millions of Yellowstone cutthroat enced great reductions in both abundance and distribu- trout were collected from Yellowstone Lake, WY, and tion (e.g.
    [Show full text]
  • Better Tests, Better Care: Improved Diagnostics for Infectious Diseases
    IDSA PUBLIC POLICY Better Tests, Better Care: Improved Diagnostics for Infectious Diseases Angela M. Caliendo,1 David N. Gilbert,2,3 Christine C. Ginocchio,4,5,6 Kimberly E. Hanson,7,8 Larissa May,9 Thomas C. Quinn,10,11 Fred C. Tenover,12 David Alland,13 Anne J. Blaschke,14 Robert A. Bonomo,15,16,17,18 Karen C. Carroll,19,20 Mary Jane Ferraro,21,22 Lisa R. Hirschhorn,23,24 W. Patrick Joseph,25,26,27,28 Tobi Karchmer,29 Ann T. MacIntyre,30,31 L. Barth Reller,32,33 and Audrey F. Jackson;34 for the Infectious Diseases Society of America (IDSA) 1Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island; 2Division of Infectious Diseases, Providence Portland Medical Center, and 3Department of Medicine, Oregon Health & Science University, Portland, Oregon; 4Division of Infectious Disease Diagnostics, North Shore–LIJ Laboratories, Lake Success, and Departments of 5Pathology and Laboratory Medicine and 6Molecular Medicine, Hofstra North Shore–LIJ School of Medicine, Hempstead, New York; Departments of 7Medicine and 8Pathology, University of Utah, Salt Lake City; 9Department of Emergency Medicine, George Washington University, Washington, District of Columbia; 10Division of Intramural Research, National Institute of Allergy and 11 Infectious Diseases, National Institutes of Health, Bethesda, and Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; Downloaded from 12Cepheid, Sunnyvale, California; 13Center for Emerging Pathogens, Department of Medicine, Rutgers–New Jersey Medical School,
    [Show full text]
  • Advances in Real‐Time Pcr: Application to Clinical Laboratory Diagnostics
    ADVANCES IN CLINICAL CHEMISTRY, VOL. 40 ADVANCES IN REAL‐TIME PCR: APPLICATION TO CLINICAL LABORATORY DIAGNOSTICS Bernhard Kaltenboeck and Chengming Wang Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 1. Abstract. ................................................................ 220 2. Introduction . ............................................................ 220 3. Real‐time PCR: Concept, Variations, and Data Analysis . .................... 221 3.1. Real‐Time PCR Versus Traditional PCR. 221 3.2. Variations of Real‐Time PCR. 222 3.3. Quantitative Analysis of Real‐Time PCR Data . 223 4. Real‐Time PCR Platforms . ............................................... 228 5. Signal Detection Formats . ............................................... 229 5.1. DNA‐Binding Fluorophores . 230 5.2. 50‐Nuclease Hydrolysis Oligonucleotide Probes . 230 5.3. Fluorescence Resonance Energy Transfer (FRET) Oligonucleotide Probes. 231 5.4. Hairpin Oligonucleotide Probes: Molecular Beacons. 232 5.5. Light‐up Probes . 232 5.6. Sunrise Primers . 232 5.7. Scorpion Primers . 233 6. Design of Real‐Time PCR Assays.......................................... 233 6.1. Chemical Composition of Real‐Time PCR Assays . 234 6.2. Primers and Oligonucleotide Probes . 236 6.3. Real‐Time RT‐PCR................................................ 236 6.4. Multiplex Real‐Time PCR. 237 7. Execution of Real‐Time PCR Assays . ...................................... 238 7.1. Specimen Collection . 238 7.2. Nucleic Acid Extraction. 239 7.3. Automation.
    [Show full text]
  • Frequencies of the Major Subgroups of Precursor B-Cell Acute Lymphoblastic Leukemia in Indian Children Differ from the West
    Correspondence 1192 7 Pyatt DW, Stillman WS, Yang Y, Gross S, Zheng JH, Irons RD. An apoptosis by inhibition of NF-kappaB. Nat Med 1999; 5: essential role for NF-kappaB in human CD34(+) bone marrow cell 412–417. survival. Blood 1999; 93: 3302–3308. 11 Lamberti A, Romano MF, Agosti V, Garbi C, Sun S-C, Turco MC et al. 8 Romano MF, Lamberti A, Bisogni R, Garbi C, Pagnano AM, Auletta P Regulation of cell survival in CD95-induced T cell apoptosis: role of et al. Amifostine inhibits hematopoietic progenitor cell apoptosis by NF-kB/Rel factors. Apoptosis 1999; 4: 179–185. activating NF-kB/Rel transcription factors. Blood 1999; 94: 4060–4066. 12 Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid 9 Adams j. Proteasome inhibition: a novel approach to cancer therapy. and simple method for measuring thymocyte apoptosis by propidium Trends Mol Med. 2002; 8: S49–S54. iodide staining and flow cytometry. J Immunol Methods 1991;139: 10 Wang CY, Cusack Jr JC, Liu R, Baldwin Jr AS. Control of inducible 271–279. chemoresistance: enhanced anti-tumor therapy through increased Frequencies of the major subgroups of precursor B-cell acute lymphoblastic leukemia in Indian children differ from the West Leukemia (2003) 17, 1192–1193. doi:10.1038/sj.leu.2402931 patients carrying BCR-ABL or E2A-PBX1 are older than patients carrying TEL-AML1 and the latter subgroup was associated with the TO THE EDITOR lowest WBC. However, other differences were evident. The four The presence of the major chromosomal translocations, that is, translocation subgroups together represented 19% of all Indian t(12;21), t(1;19), t(9;22) and t(4;11) defines clinicopathological precursor B-cell ALLs whereas in the West these ALLs, represent as subgroups of childhood precursor B-cell ALL (ALL), which represent much as 35%.
    [Show full text]
  • The Personalized Medicine Report
    THE PERSONALIZED MEDICINE REPORT 2017 · Opportunity, Challenges, and the Future The Personalized Medicine Coalition gratefully acknowledges graduate students at Manchester University in North Manchester, Indiana, and at the University of Florida, who updated the appendix of this report under the guidance of David Kisor, Pharm.D., Director, Pharmacogenomics Education, Manchester University, and Stephan Schmidt, Ph.D., Associate Director, Pharmaceutics, University of Florida. The Coalition also acknowledges the contributions of its many members who offered insights and suggestions for the content in the report. CONTENTS INTRODUCTION 5 THE OPPORTUNITY 7 Benefits 9 Scientific Advancement 17 THE CHALLENGES 27 Regulatory Policy 29 Coverage and Payment Policy 35 Clinical Adoption 39 Health Information Technology 45 THE FUTURE 49 Conclusion 51 REFERENCES 53 APPENDIX 57 Selected Personalized Medicine Drugs and Relevant Biomarkers 57 HISTORICAL PRECEDENT For more than two millennia, medicine has maintained its aspiration of being personalized. In ancient times, Hippocrates combined an assessment of the four humors — blood, phlegm, yellow bile, and black bile — to determine the best course of treatment for each patient. Today, the sequence of the four chemical building blocks that comprise DNA, coupled with telltale proteins in the blood, enable more accurate medical predictions. The Personalized Medicine Report 5 INTRODUCTION When it comes to medicine, one size does not fit all. Treatments that help some patients are ineffective for others (Figure 1),1 and the same medicine may cause side effects in only certain patients. Yet, bound by the constructs of traditional disease, and, at the same time, increase the care delivery models, many of today’s doctors still efficiency of the health care system by improving prescribe therapies based on population averages.
    [Show full text]
  • Introduction to Molecular Diagnostics
    2013 Introduction to Molecular Diagnostics THE ESSENTIALS OF DIAGNOSTICS SERIES AdvaMedDx and DxInsights Present INTRODUCTION TO MOLECULAR DIAGNOSTICS Abstract Diagnostic tests are the foundation of Increasing automation is enabling a successful health care system, sophisticated molecular tests to be providing critical information that health performed in the full scope of health care providers and patients need to make care settings, bringing state of the art the right medical decisions. Diagnostics diagnostics to all areas of the world. often provide objective, quantitative This report provides an overview of measurements that inform every stage the current landscape for molecular of care—prevention, detection, diagnosis, diagnostics, explains the key technologies treatment, and successful management that are driving the molecular revolution, of health conditions. illustrates the power of molecular Molecular diagnostics is a dynamic diagnostics with some specific examples, and transformative area of diagnostics, and concludes by noting several leading to insights in research and challenges that have the potential to treatment in many disease states that influence progress in this critical field are revolutionizing health care. Molecular of medicine. diagnostics detect and measure the presence of genetic material or proteins associated with a specific health condition or disease, helping to uncover the underlying mechanisms of disease and enabling clinicians to tailor care at an individual level – facilitating the practice of “personalized
    [Show full text]
  • (301) 480-8080
    Molecular Diagnostics Laboratory, Laboratory of Pathology, CCR, National Cancer Institute, National Institutes of Health Bldg 10 / Room 3S249, (301) 480‐8080 Molecular Diagnostics Laboratory Test Directory Test Name Assay Description Assay Specimen Category/Use Type Type Accepted B Cell IGH and IGΚ locus gene Qual Clonality rearrangements (PCR/CE) T Cell Clonality T cell receptor gamma locus Qual (TRG) gene rearrangements (PCR/CE) IGH@/BCL2 (MBR) Translocation detection at major Qual Blood breakpoint region (real‐time qPCR) BMA EBV (EBNA2) Lymphoma‐associated virus Qual CSF detection (real‐time qPCR) FNA Hematopathology/ HHV8 PEL, Castleman's Qual FFPE Tissue Diagnosis disease, Kaposi’s Sarcoma‐ associated virus detection (real‐ time qPCR) HTLV‐I (Pol) Human T‐cell Qual leukemia virus detection (real‐ time qPCR) MYD88 Detection of MYD88 c.794T>C, Qual Blood p.L265P (Clamp‐PCR/ BMA pyrosequencing) FFPE Tissue Desmoplastic Round EWSR1/WT1, t(11;22) Qual Cell Sarcoma translocation detection (real‐time qRT‐PCR) Ewing’s Sarcoma EWSR1/ERG, t(21;22) Qual EWSR1/FLI1 Type1, t(11;22) EWSR1/FLI1 Type2, t(11;22) translocation detection Sarcoma/ (real‐time qRT‐PCR) FFPE Tissue Diagnosis Rhabdomyosarcoma PAX3/FOXO1, t(2;13) Qual Sarcoma PAX7/FOXO1, t(1;13) translocation detection (real‐time qRT‐PCR) Synovial Sarcoma SYT/SSX1, t(X;18) Qual SYT/SSX2, t(X;18) translocation detection (real‐time qRT‐PCR) Molecular Pathology Test Menu and Instruction (v.11/30/2015) Page 1 of 4 Cancer Gene Detection of 2850 COSMIC hotspot Mutation‐Standard mutations in 50
    [Show full text]
  • Integration of Molecular Pathology, Epidemiology and Social Science for Global Precision Medicine
    Expert Review of Molecular Diagnostics ISSN: 1473-7159 (Print) 1744-8352 (Online) Journal homepage: http://www.tandfonline.com/loi/iero20 Integration of molecular pathology, epidemiology and social science for global precision medicine Akihiro Nishi, Danny A Milner Jr, Edward L Giovannucci, Reiko Nishihara, Andy S Tan, Ichiro Kawachi & Shuji Ogino To cite this article: Akihiro Nishi, Danny A Milner Jr, Edward L Giovannucci, Reiko Nishihara, Andy S Tan, Ichiro Kawachi & Shuji Ogino (2015): Integration of molecular pathology, epidemiology and social science for global precision medicine, Expert Review of Molecular Diagnostics, DOI: 10.1586/14737159.2016.1115346 To link to this article: http://dx.doi.org/10.1586/14737159.2016.1115346 Published online: 04 Dec 2015. Submit your article to this journal Article views: 82 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=iero20 Download by: [University of California, San Francisco] Date: 31 December 2015, At: 13:21 Perspectives Integration of molecular pathology, epidemiology and social science for global precision medicine Expert Rev. Mol. Diagn. Early online, 1–13 (2015) Akihiro Nishi1,2, The precision medicine concept and the unique disease principle imply that each patient has Danny A Milner Jr3,4, unique pathogenic processes resulting from heterogeneous cellular genetic and epigenetic Edward L alterations and interactions between cells (including immune cells) and exposures, including Giovannucci5,6,7, dietary, environmental, microbial and lifestyle factors. As a core method field in population health science and medicine, epidemiology is a growing scientific discipline that can analyze Reiko Nishihara5,6,8,9, 9,10 disease risk factors and develop statistical methodologies to maximize utilization of big data Andy S Tan , on populations and disease pathology.
    [Show full text]