The Digital Atlas of Ancient Life: Delivering Information on Paleontology and Biogeography Via the Web

Total Page:16

File Type:pdf, Size:1020Kb

The Digital Atlas of Ancient Life: Delivering Information on Paleontology and Biogeography Via the Web Palaeontologia Electronica http://palaeo-electronica.org The Digital Atlas of Ancient Life: delivering information on paleontology and biogeography via the web Jonathan R. Hendricks, Alycia L. Stigall, and Bruce S. Lieberman The fundamental data of paleontology consist cern—which we focus on here—is practical in of taxonomically identified specimens of known nature and has to do with identifying fossil speci- spatiotemporal provenance that are curated in mens in hand sample and attaining information museum collections. Analyses of these data can about the spatiotemporal occurrences of taxa from lead to insights into biostratigraphy, macroevolu- what may be far-flung museum collections. tion, biogeography, phylogeny, and paleoecology. Short of having in-depth knowledge of a par- Although historical collections may contain speci- ticular group, identifications of fossils at lower taxo- mens of vague or indeterminate geographic and nomic levels still largely rely upon access to printed stratigraphic position, most paleontologists have literature, such as regional guides (e.g., Linsley, recorded these data with a high degree of precision 1994; Petuch, 1994; Feldmann and Hackathorn, for many years. One challenging problem with 1996; Davis, 1998; Peterson and Peterson, 2008; using paleontological collections for research, how- Wilson, 2014) and systematic treatments (e.g., ever, is making correct identifications of fossil Hendricks, 2009, 2015; Rode and Lieberman, material at lower taxonomic levels—in particular 2002; Stigall et al., 2014a; Wright and Stigall 2013, species, but also at the genus level. One aspect of 2014), or major compendia such as the Treatise of the challenge is philosophical in nature, and Invertebrate Paleontology (see Selden, 2012). involves the human activity of circumscribing spe- Such literature may be expensive, locked behind cies and higher taxa such that they best approxi- journal paywalls, out-of-print, and/or may also con- mate biological reality (see Hendricks et al., 2014; tain technical jargon that is inaccessible to non- Allmon, in press). This activity is the concern of the professionals and students, especially those new systematist, who makes such decisions based on to paleontology. An additional problem presented expert knowledge of a given group. Another con- by older literature is that it may not reflect current Keywords: paleontology; digitization; fossils; museums; biogeography; evolution Jonathan R. Hendricks. Department of Geology, San José State University, 307 Duncan Hall, One Washington Square, San José, California 95192, USA and Paleontological Research Institution. 1259 Trumansburg Road, Ithaca, New York 14850, USA [email protected] Alycia L. Stigall. Department of Geological Sciences and Ohio Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Laboratories, Athens, Ohio 45701, USA [email protected] Bruce S. Lieberman. Biodiversity Institute and Department of Ecology & Evolutionary Biology, University of Kansas, 1345 Jayhawk Blvd., Dyche Hall, Lawrence, Kansas 66045, USA [email protected] Hendricks, Jonathan R., Stigall, Alycia L., and Lieberman, Bruce S. 2015. The Digital Atlas of Ancient Life: delivering information on paleontology and biogeography via the web. Palaeontologia Electronica 18.2.3E: 1–9 palaeo-electronica.org/content/2015/1269-commentary-digital-atlas-of-ancient-life HENDRICKS, STIGALL, & LIEBERMAN: DIGITAL ATLAS taxonomic nomenclature. Finally, printed literature resources might be employed—especially in syn- itself is starting to have less appeal to many thesis with existing museum databasing and digiti- younger professional and amateur paleontologists, zation initiatives—to assist avocational, student, many of whom often go to the Internet first for infor- and professional paleontologists with fossil identifi- mation. cations by providing expert knowledge when it is An early and important development in the not otherwise directly available. In short, we view transition from print to digital presentations of fos- the digital atlas project as an attempt to provide sils was the PaleoBase series (e.g., MacLeod, expertly curated, focused context for the abun- 2001, 2003, 2010; MacLeod and Henderson, dance of newly digitized paleontological data that 2007). This series, which provides digital guides to are now becoming available online. We also com- both macro- and microfossils, emphasizing the ment below on the potential of the Digital Atlas of high-quality specimens in the collections of The Ancient Life to serve as a new resource for K-16 Natural History Museum, London, is available as a education and outreach. relational database via compact disk, though it is not available as a free, online resource. Other sem- PROJECT OVERVIEW inal developments include the numerous useful Focus web resources for paleontology that have been developed. The early standards in this regard were Generating a comprehensive atlas of ancient set first by the University of California Museum of life—especially at the species level—would be a Paleontology (www.ucmp.berkeley.edu/exhibits/ daunting task, whether undertaken in print or index.php) and the Paleontology Portal online. Even generating a simple listing of a major- (www.paleoportal.org). Subsequently, the Paleobi- ity of the described fossil species would be a mas- ology Database (www.paleobiodb.org) has also sive endeavor, and this is likely why no such list become a frequently used resource. Unprocessed, exists (the closest printed resource for marine ani- raw paleontological occurrence data may now be mal fossils is Sepkoski’s [2002] compendium, directly downloaded from many online museum which was tabulated at the generic level). Just as a databases and corresponding portals (e.g., the comprehensive, global list of plant species would Integrated Digitized Biocollections database, iDig- not be particularly useful to an amateur botanist Bio: www.idigbio.org), but these datasets—espe- trying to learn his or her local flora, a comprehen- cially if large—are often incomprehensible on their sive listing of fossil species (or even an atlas) own and provide little help with either identifying or would present an overwhelming amount of infor- enhancing understanding of fossil discoveries. mation and is perhaps more likely to result in mis- Most of these high-quality, successful, and admira- identification than a correct name. ble resources are not specifically structured to Generating multiple digital atlases, each assist with the identification of fossil species, focused on a particular region and time period, is a though there are some notable exceptions, includ- more manageable and useful approach. Avoca- ing the website of the Cincinnati Dry Dredgers (dry- tional paleontologists and students in paleontology dredgers.org). Thus, new open-access resources classes are often interested in building fossil col- are needed for both avocational and professional lections from localities near where they live, which paleontologists. are often from a single geological period. Likewise, To this end, we have developed the freely paleontological research is frequently focused on accessible Digital Atlas of Ancient Life: www.digita- temporally restricted fossil occurrences, often at latlasofancientlife.org/. Although the noun “atlas” is regional scales. Just as Roger Tory Peterson rec- typically used to refer to a bound collection of ognized that field guides should be composed at maps, another use of the term is a “volume con- the regional scale, embodied in his classic and taining illustrative plates, large engravings, etc., or highly effective works on birds (e.g., Peterson, the conspectus of any subject arranged in tabular 1980), it is most useful for digital atlases of fossils form” (Oxford English Dictionary, 2014). We apply to do the same. The development of three open the term in both senses, as we seek to provide access digital atlases are currently underway: photographic aids and associated content to help 1. The Ordovician Atlas of Ancient Life: Cincin- identify fossils, as well as to generate maps that nati Region United States (www.ordovicianat- demonstrate how species’ ranges vary over geo- las.org/). logical time scales. Here, we present the digital 2. The Pennsylvanian Atlas of Ancient Life: Mid- atlas project as a model for how web-based continent United States (pennsylvanianat- 2 PALAEO-ELECTRONICA.ORG las.org/). studies conducted by these workers had a strong 3. The Neogene Atlas of Ancient Life: South- stratigraphic component, these collections—which eastern United States (neogeneatlas.org/). form the basis of the Pennsylvanian Atlas of Ancient Life—are associated with a high degree of Our choice to develop initial digital atlases for stratigraphic precision. Because of this, they are these three systems was based on three criteria: 1) particularly useful for investigating the responses interest among avocational and/or professional col- of species to ancient climatic changes, especially lectors; 2) availability of major museum collections as recorded by the cyclothems that characterize a from which corresponding fossil images, as well as significant portion of the rock record in this region stratigraphic and geographic occurrence data, (e.g., Holterhoff, 1996; Algeo and Heckel, 2008). could be attained; and 3) research potential for Finally, fossils from the extraordinary shell paleoecological, paleobiogeographic, and macro- beds that comprise much of the Neogene fossil evolutionary studies.
Recommended publications
  • 22 April 2013 the Note from CONE the Editor COLLECTOR Dear Friends
    THE CONE COLLECTOR #22 April 2013 THE Note from CONE the Editor COLLECTOR Dear friends, Editor The project “The Cone Collector” is still under seven years old António Monteiro and yet when I look at all we have achieved so far I cannot help thinking that we have probably exceeded expectations. Layout André Poremski We started modestly – as becomes any serious project – back in Contributors October 2006, with our newsletter aimed at all those who are Carlos Afonso interested in studying or collecting Cones, from professional Jim Cootes biologists to amateur collectors. Today we can proudly display Remy Devorsine a total of twenty-four numbers of TCC, two hugely successful Sébastien Dutertre international meetings and a website that brings together an Günther Herndl unparalleled wealth of information on Cones. Joaquin M. Inchaustegui Bruce Livett As a matter of fact, after the uploading in our website (at www. Philippe Quiquandon Christopher Roux theconecollector.com ) of the important and vastly updated Manuel Jiménez Tenorio and augmented work by Mike Filmer’s involving taxonomy and Will van Damme nomenclature, we now have at the same address Paul Kersten’s Alessandro Zanzi extremely useful and well-known Checklist, enriched with new images and much more detailed information than before. This is the work of a team – the names of Manuel Jimenez Tenorio, Bill Fenzan, John Tucker, Gavin Malcolm, Mike Filmer, Paul Kersten and André Poremski readily come to my mind as front row collaborators of TCC, but all others who have contributed with articles, photos, opinions, suggestions and unfailing support deserve equal credit! The project belongs to all and can only survive with the continued support of all.
    [Show full text]
  • The Case of the Diminutive Trilobite Flexicalymene Retrorsa Minuens from the Cincinnatian Series (Upper Ordovician), Cincinnati Region
    EVOLUTION & DEVELOPMENT 9:5, 483–498 (2007) Evaluating paedomorphic heterochrony in trilobites: the case of the diminutive trilobite Flexicalymene retrorsa minuens from the Cincinnatian Series (Upper Ordovician), Cincinnati region Brenda R. Hundaa,Ã and Nigel C. Hughesb aCincinnati Museum Center, 1301 Western Avenue, Cincinnati, OH 45203, USA bDepartment of Earth Sciences, University of California, Riverside, CA 92521, USA ÃAuthor for correspondence (email: [email protected]) SUMMARY Flexicalymene retrorsa minuens from the upper- rate of progress along a common ontogenetic trajectory with most 3 m of the Waynesville Formation of the Cincinnatian respect to size, coupled with growth cessation at a small size, Series (Upper Ordovician) of North America lived ‘‘sequential’’ progenesis, or non-uniform changes in the rate of approximately 445 Ma and exhibited marked reduction in progress along a shared ontogenetic trajectory with respect to maximum size relative to its stratigraphically subjacent sister size, can also be rejected. Rather, differences between these subspecies, Flexicalymene retrorsa retrorsa. Phylogenetic subspecies are more consistent with localized changes in analysis is consistent with the notion that F. retrorsa retrorsa rates of character development than with a global hetero- was the ancestor of F. retrorsa minuens. F. retrorsa minuens chronic modification of the ancestral ontogeny. The evolution has been claimed to differ from F. retrorsa retrorsa ‘‘in size of F. retrorsa minuens from F. retrorsa retrorsa was largely alone,’’ and thus presents a plausible example of global dominated by modifications of the development of characters paedomorphic evolution in trilobites. Despite strong similarity already evident in the ancestral ontogeny, not by the origin of in the overall form of the two subspecies, F.
    [Show full text]
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • 001-012 Primeras Páginas
    PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9.
    [Show full text]
  • Introduction to the Trilobites: Morphology, Ecology, Macroevolution and More by Michelle M
    Introduction to the Trilobites: Morphology, Ecology, Macroevolution and More By Michelle M. Casey1, Perry Kennard2, and Bruce S. Lieberman1, 3 1Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, 2Earth Science Teacher, Southwest Middle School, USD497, and 3Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 Middle level laboratory exercise for Earth or General Science; supported provided by National Science Foundation (NSF) grants DEB-1256993 and EF-1206757. Learning Goals and Pedagogy This lab is designed for middle level General Science or Earth Science classes. The learning goals for this lab are the following: 1) to familiarize students with the anatomy and terminology relating to trilobites; 2) to give students experience identifying morphologic structures on real fossil specimens 3) to highlight major events or trends in the evolutionary history and ecology of the Trilobita; and 4) to expose students to the study of macroevolution in the fossil record using trilobites as a case study. Introduction to the Trilobites The Trilobites are an extinct subphylum of the Arthropoda (the most diverse phylum on earth with nearly a million species described). Arthropoda also contains all fossil and living crustaceans, spiders, and insects as well as several other extinct groups. The trilobites were an extremely important and diverse type of marine invertebrates that lived during the Paleozoic Era. They only lived in the oceans but occurred in all types of marine environments, and ranged in size from less than a centimeter to almost a meter across. They were once one of the most successful of all animal groups and in certain fossil deposits, especially in the Cambrian, Ordovician, and Devonian periods, they are extremely abundant.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • The Evolution of Trilobite Body Patterning
    ANRV309-EA35-14 ARI 20 March 2007 15:54 The Evolution of Trilobite Body Patterning Nigel C. Hughes Department of Earth Sciences, University of California, Riverside, California 92521; email: [email protected] Annu. Rev. Earth Planet. Sci. 2007. 35:401–34 Key Words First published online as a Review in Advance on Trilobita, trilobitomorph, segmentation, Cambrian, Ordovician, January 29, 2007 diversification, body plan The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: The good fossil record of trilobite exoskeletal anatomy and on- 10.1146/annurev.earth.35.031306.140258 togeny, coupled with information on their nonbiomineralized tis- Copyright c 2007 by Annual Reviews. sues, permits analysis of how the trilobite body was organized and All rights reserved developed, and the various evolutionary modifications of such pat- 0084-6597/07/0530-0401$20.00 terning within the group. In several respects trilobite development and form appears comparable with that which may have charac- terized the ancestor of most or all euarthropods, giving studies of trilobite body organization special relevance in the light of recent advances in the understanding of arthropod evolution and devel- opment. The Cambrian diversification of trilobites displayed mod- Annu. Rev. Earth Planet. Sci. 2007.35:401-434. Downloaded from arjournals.annualreviews.org ifications in the patterning of the trunk region comparable with by UNIVERSITY OF CALIFORNIA - RIVERSIDE LIBRARY on 05/02/07. For personal use only. those seen among the closest relatives of Trilobita. In contrast, the Ordovician diversification of trilobites, although contributing greatly to the overall diversity within the clade, did so within a nar- rower range of trunk conditions.
    [Show full text]
  • Th TRILO the Back to the Past Museum Guide to TRILO BITES
    With regard to human interest in fossils, trilobites may rank second only to dinosaurs. Having studied trilobites most of my life, the English version of The Back to the Past Museum Guide to TRILOBITES by Enrico Bonino and Carlo Kier is a pleasant treat. I am captivated by the abundant color images of more than 600 diverse species of trilobites, mostly from the authors’ own collections. Carlo Kier The Back to the Past Museum Guide to Specimens amply represent famous trilobite localities around the world and typify forms from most of the Enrico Bonino Enrico 250-million-year history of trilobites. Numerous specimens are masterpieces of modern professional preparation. Richard A. Robison Professor Emeritus University of Kansas TRILOBITES Enrico Bonino was born in the Province of Bergamo in 1966 and received his degree in Geology from the Depart- ment of Earth Sciences at the University of Genoa. He currently lives in Belgium where he works as a cartographer specialized in the use of satellite imaging and geographic information systems (GIS). His proficiency in the use of digital-image processing, a healthy dose of artistic talent, and a good knowledge of desktop publishing software have provided him with the skills he needed to create graphics, including dozens of posters and illustrations, for all of the displays at the Back to the Past Museum in Cancún. In addition to his passion for trilobites, Enrico is particularly inter- TRILOBITES ested in the life forms that developed during the Precambrian. Carlo Kier was born in Milan in 1961. He holds a degree in law and is currently the director of the Azul Hotel chain.
    [Show full text]
  • Posterior Border
    Palaeontology Practical 8 Phylum Arthropoda – Class Trilobata Arthropods • Chitinous exoskeleton • Bilaterally symmetrical • Articulated segmented bodies that are partitioned in three • Paired jointed appendages for movement and feeding • Periodic moulting (ecdysis) • Antennae and/or multiple eyes • 75% of all living animal species • Includes insects, crustaceans, spiders, extinct trilobites and eurypterids • Coelomates, possibly related to annelids • Developed nervous and circulatory systems • Advanced feeding, many have jaw structures • The most successful invertebrate group • Advanced in terms of feeding and locomotion • Able to invade different environments and modes of life • Thus, marine and terrestrial • Good geological record (hard exoskeleton) from the Lower Cambrian Trilobites • Trilobites are the oldest group of arthropods. • They first appear in rocks of Lower Cambrian and died out in the Late Permian. • They were marine, mainly benthic and had • extremely variable morphologies and lifestyles. • They have a distinctive tri lobed • morphology (hence their name) • Over 1500 genera are known and several thousand species • Usually small, between 5-8 cm but some forms could get up to 70 cm General morphology • Segmented bodies with chitinous exoskeletons and joined, paired limbs • The body is divided longitudinally into three regions: 1. The cephalon 2. The thorax 3. The pygidium • The exoskeleton covers both the dorsal and ventral side of the body • Consists of a two-layered cuticle of chitin • Usually it is hardened by the impregnation of calcium carbonate The cephalon • the head which consists of a single plate, made up of several fused segments. • sense organs are found on the head • there are also certain lines of weakness, known as cephalic sutures, which look like cracks on the surface but apparently facilitated ecdysis • They are important for taxonomic determinations • shape pentagonal to semicircular with transverse posterior edges.
    [Show full text]
  • Introduction to the Trilobites: Morphology, Macroevolution and More by Michelle M
    Introduction to the Trilobites: Morphology, Macroevolution and More By Michelle M. Casey1 and Bruce S. Lieberman1,2, 1Biodiversity Institute and 2Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 Undergraduate laboratory exercise for sophomore/junior level paleontology course Learning Goals and Pedagogy This lab is intended for an upper level paleontology course containing sophomores and juniors who have already taken historical geology or its equivalent; however it may be suitable for introductory biology or geology students familiar with geological time, phylogenies, and trace fossils. This lab will be particularly helpful to those institutions that lack a large teaching collection by providing color photographs of museum specimens. Students may find previous exposure to phylogenetic methods and terminology helpful in completing this laboratory exercise. The learning goals for this lab are the following: 1) to familiarize students with the anatomy and terminology relating to trilobites; 2) to give students experience identifying morphologic structures on real fossil specimens, not just diagrammatic representations; 3) to highlight major events or trends in the evolutionary history and ecology of Trilobita; and 4) to expose students to the study of macroevolution in the fossil record using trilobites as a case study. Introduction to the Trilobites The Trilobites are an extinct subphylum of the Arthropoda (the most diverse phylum on earth with nearly a million species described). Arthropoda also contains all fossil and living crustaceans, spiders, and insects as well as several other solely extinct groups. The trilobites were an extremely important and diverse type of marine invertebrates that lived during the Paleozoic Era. They were exclusively marine but occurred in all types of marine environments, and ranged in size from less than a centimeter to almost a meter.
    [Show full text]
  • Late Silurian Trilobite Palaeobiology And
    LATE SILURIAN TRILOBITE PALAEOBIOLOGY AND BIODIVERSITY by ANDREW JAMES STOREY A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Geography, Earth and Environmental Sciences University of Birmingham February 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Trilobites from the Ludlow and Přídolí of England and Wales are described. A total of 15 families; 36 genera and 53 species are documented herein, including a new genus and seventeen new species; fourteen of which remain under open nomenclature. Most of the trilobites in the British late Silurian are restricted to the shelf, and predominantly occur in the Elton, Bringewood, Leintwardine, and Whitcliffe groups of Wales and the Welsh Borderland. The Elton to Whitcliffe groups represent a shallowing upwards sequence overall; each is characterised by a distinct lithofacies and fauna. The trilobites and brachiopods of the Coldwell Formation of the Lake District Basin are documented, and are comparable with faunas in the Swedish Colonus Shale and the Mottled Mudstones of North Wales. Ludlow trilobite associations, containing commonly co-occurring trilobite taxa, are defined for each palaeoenvironment.
    [Show full text]
  • Phylogenetic and Biogeographic Analysis of Ordovician Homalonotid Trilobites Curtis R
    24 The Open Paleontology Journal, 2008, 1, 24-32 Open Access Phylogenetic and Biogeographic Analysis of Ordovician Homalonotid Trilobites Curtis R. Congreve* and Bruce S. Lieberman Department of Geology and Natural History Museum and Biodiversity Research Center, University of Kansas; Lawrence, Kansas. USA Abstract: Cladistic parsimony analysis of the trilobite family Homalonotidae Chapman 1980 produced a hypothesis of re- latedness for the group. The family consists of three monophyletic subfamilies, one containing Trimerus Green 1832, Platycoryphe Foerste 1919, and Brongniartella Reed 1918; one containing Plaesiacomia Hawle and Corda 1847 and Col- pocoryphe Novák in Perer 1918; and one containing Eohomalonotus Reed 1918 and Calymenella Bergeron 1890. All genera are monophyletic, except Brongniartella, which is paraphyletic; as it was originally defined it “gives rise” to Trimerus and Platycoryphe. A modified Brooks Parsimony Analysis using the phylogentic hypothesis illuminates patterns of biogeography, in particu- lar, vicariance and geodispersal of homalonotids, during the late Ordovician. The analysis yields three major conclusions about homalonotid biogeography: homalonotids originated in Gondwana; Avalonia and Laurentia were close enough dur- ing the late Ordovician to exchange taxa, especially when sea level rose sufficiently; and long distance dispersal events occurred between Armorica and Florida, and also between Arabia and a joined Laurentia-Avalonia. INTRODUCTION The Homalonotidae Chapman 1890 [1] is a distinctive group of relatively large Ordovician-Devonian trilobites. They are not especially diverse, although they are common in near- shore environments. However, because of their shovel-like cephalon and tendency towards effacement, they have re- ceived some interest among paleontologists in general and trilobite workers in particular (Fig.
    [Show full text]