(12) Patent Application Publication (10) Pub. No.: US 2005/0289672 A1 Jefferson (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2005/0289672 A1 Jefferson (43) Pub US 2005O289672A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0289672 A1 Jefferson (43) Pub. Date: Dec. 29, 2005 (54) BIOLOGICAL GENE TRANSFER SYSTEM Publication Classification FOR EUKARYOTC CELLS (75) Inventor: Richard A. Jefferson, Canberra (AU) (51) Int. Cl. ............................. A01H 1700; C12N 15/82 (52) U.S. Cl. .............................................................. 800,294 Correspondence Address: CAROL NOTTENBURG 81432ND AVE 5 SEATTLE, WA 98144 (US) (57) ABSTRACT (73) Assignee: CAMBIA Appl. No.: 10/954,147 This invention relates generally to technologies for the (21) transfer of nucleic acids molecules to eukaryotic cells. In Filed: Sep. 28, 2004 particular non-pathogenic Species of bacteria that interact (22) with plant cells are used to transfer nucleic acid Sequences. Related U.S. Application Data The bacteria for transforming plants usually contain binary vectors, Such as a plasmid with a Vir region of a Tiplasmid (60) Provisional application No. 60/583,426, filed on Jun. and a plasmid with a T region containing a DNA sequence 28, 2004. of interest. pEHA105 244981 bp M3REW M13Fw f1 origin accA W pEHA105::pWBE58 (Km, Ap) moaa. Patent Application Publication Dec. 29, 2005 Sheet 1 of 24 US 2005/0289672 A1 FIGURE 1A CLASS ALPHAPROTEOBACTERIA ORDER Rhizobiales family Rhizobiaceae bgenus Rhizobium (includes former Agrobacterium) bgenus Chelatobacter bgenus Sinorhizobium Dunclassified Rhizobiaceae family Bartonellaceae bgenus Bartonella Dunclassified Bartonellaceae family Brucellaceae bgenus Brucella genus Mycoplana D genus Ochrobactrum Dunclassified Brucellaceae family Phyllobacteriaceae Dgenus Phyllobacterium Pgenus Aminobacter genus Aquamicrobium >genus Defluvibacter Dgenus Mesorhizobium genus Pseudaminobacter Dunclassified Phyllobacteriaceae family Methylocystaceae bgenus Methylocystis D genus Albibacter genus Methylosinus >genus Terasakiella Dunclassified Methylocystaceae family Beijerinckiaceae Dgenus Beijerinckia Dunclassified Beijerinckiaceae family Bradyrhizobiaceae genus Bradyrhizobium genus Afipia >genus Blastobacter genus Bosea >genus Nitrobacter genus Rhodoblastus genus Rhodopseudomonas Dunclassified Bradyrhizobiaceae Patent Application Publication Dec. 29, 2005 Sheet 2 of 24 US 2005/0289672 A1 FIGURE 1B family Hyphomicrobiaceae genus Hyphomicrobium P genus Ancylobacter genus Azorhizobium genus Blastochloris genus Devosia genus Pedomicrobium genus Rhodomicrobium genus Rhodoplanes genus Starkeya genus Xanthobacter Punclassified Hyphomicrobiaceae family Methylobacteriaceae Pgenus Methylobacterium Dunclassified Methylobacteriaceae family Rhodobiaceae genus Rhodobium Punclassified Rhodobiaceae Punclassified Rhizobiales Patent Application Publication Dec. 29, 2005 Sheet 3 of 24 US 2005/0289672 A1 FIGURE 2 T-ONA region removed Wirulence region Origin of replication Promoter Gene of interest Pronuts Terminator Part selectable merkor T&TTiirator left T-DNA border Wido-host-range replicon Bacterial selectable marker Repbcation origin for E. coi Replication origin for Agrobacteriun Patent Application Publication Dec. 29, 2005 Sheet 10 of 24 US 2005/0289672 A1 FIGURE 4 Patent Application Publication Dec. 29, 2005 Sheet 11 of 24 US 2005/0289672 A1 FIGURE 5 LBA288 Transformant Transformant EHA101 1 2 a b c d e f a b c d e f a b c d e f M a b c d e f Chromosomal piti markers markers Patent Application Publication Dec. 29, 2005 Sheet 12 of 24 US 2005/0289672 A1 FIGURE 6 pEHA105 244981 bp M13REV f1 origin acCA W pEHA105::pWBE58 (Km, Ap) moaA Patent Application Publication Dec. 29, 2005 Sheet 13 of 24 US 2005/0289672 A1 FIGURE 7 pEHA105::pWBE58 EHA105::pWBE60 (2xvirC) = pTil (AccA) = pTi2 EHA105 EHA105 LBA pWBE58 EHA105 EHA105 LBA pWBE60 pTil wt 288 (virG)M pTi2 wt 288 (accA) s i i i VirG probe ACCA probe Patent Application Publication Dec. 29, 2005 Sheet 14 of 24 US 2005/0289672 A1 FIGURE 8 TBORDER(L) POLY ASE HYG(R) Sna I (1598) specistrepresistance gene ' CAMV35s Nsi I (10859) - g said: pBR322 or Pu II (2167) pBR322 bom si A pCAMBIA1105.1 12136bp 35S promoter ThGUSupstreamCAT No I (3456) Catalase intron GusPlusrev BGUS Ns Iss6 NOS polyA 1 T-BORDER(R) sh IGs) Patent Application Publication Dec. 29, 2005 Sheet 15 of 24 US 2005/0289672 A1 FIGURE 9 TBORDER (L) POLY A SITE HYG(R) Sima I (1598) CAMV35S Pu II (2467) pCambia 1105.1r 1227 bp 35S promoter TmgUSupstreamCAT Catalase intron GusPlusrev BGUS NOS polyA T-BORDER(R) Sph I(ooo) Patent Application Publication Dec. 29, 2005 Sheet 16 of 24 US 2005/0289672 A1 FIGURE 10 binary virs pTi1 rhizo Rhizobium spp. NGR234 Rhizobium spp. NGR234 pTi1 + pC1105.1r S. meliloti S. meliloti pTi1 + pC1105.1r PCR positive controls Patent Application Publication Dec. 29, 2005 Sheet 17 of 24 US 2005/0289672 A1 FIGURE 11 Patent Application Publication Dec. 29, 2005 Sheet 18 of 24 US 2005/0289672 A1 FIGURE 12 Agrobacterium tunefaciens Patent Application Publication Dec. 29, 2005 Sheet 19 of 24 US 2005/0289672 A1 FIGURE 13 Patent Application Publication Dec. 29, 2005 Sheet 20 of 24 US 2005/0289672 A1 FIGURE 14 Untransformed Leaf tips from three independent tobacco shoots leaf Patent Application Publication Dec. 29, 2005 Sheet 21 of 24 US 2005/0289672 A1 FIGURE 15 5 2, 3,O 5 bp a N A. 8 a 5 Hyg Multiple cloning Site Patent Application Publication Dec. 29, 2005 Sheet 22 of 24 US 2005/0289672 A1 FIGURE 16 Patent Application Publication Dec. 29, 2005 Sheet 23 of 24 US 2005/0289672 A1 FIGURE 17 Patent Application Publication Dec. 29, 2005 Sheet 24 of 24 US 2005/0289672 A1 Kb 2-2 3-2 6 13 + BV Kb 2-2 3-2 6 13 + BV FIGURE 18 US 2005/0289672 A1 Dec. 29, 2005 BIOLOGICAL GENE TRANSFER SYSTEM FOR Seven chromosomal virulence genes and Several other genes EUKARYOTC CELLS that affect virulence that are still present in commonly employed Agrobacterium Strains. CROSS-RELATED APPLICATION 0008. Despite this disadvantage, Agrobacterium-medi 0001) This application claims the benefit of U.S. Provi ated transformation of plants has been widely used for sional Application No. 60/583,426, filed 28 Jun. 2004, transformation of plant cells. Other shortcomings of using which is incorporated by reference in its entirety. Agrobacterium include a limited host range, and it can only REFERENCE TO SEQUENCE LISTING ON infect a limited number of cell types in that range. Of COMPACT DISK particular importance, whereas Agrobacterium can infect many dicots, monocotyledonous plants (monocots) are more 0002 The sequence listing of this application is provided resistant to infection. Monocotyledonous plants (monocots) Separately in a file named "414A Seq list.txt (on one (1) however, constitute most of the important food crops in the compact disc. The content of this file, which was created on world (e.g., rice, corn). Monocots are only able to be 28 Sep. 2004 and is 30,596 bytes, is incorporated in its transformed by Agrobacterium under Special conditions and entirety. using a special type of cell, the callus cells or other dedif ferentiated tissue (e.g., U.S. Pat. No. 5,591,616; No. 6,037, BACKGROUND OF THE INVENTION 552; No. 5,187,073; No. 6,074,877). Nonetheless, some 0003. This invention relates generally to technologies for monocots and Some dicots, e.g. Soybean and other legumi the transfer of nucleic acids molecules to eukaryotic cells nous plants, are still notoriously difficult to transform with and in particular technologies using non-pathogenic bacteria Agrobacterium. There also exist huge differences in trans to transfer nucleic acid Sequences to eukaryotic cells, e.g. to formation efficiency between varieties of a given plant plant cells. Species, with Some being completely recalcitrant to gene 0004. There are three essential processes for commercial transfer by Agrobacterium. use of transformation technology in crops: (i) introduction of 0009. Despite these drawbacks of Agrobacterium, other new DNA into appropriate plant cells/organs; (ii) growth or bacteria Systems have not been developed for transformation multiplication of Successfully transformed cells/plants, often of eukaryotic cells. Other bacteria genera were not believed involving Selection or discrimination methodologies, and to be suitable for transforming plants. Indeed, Agrobacte (iii) expression of transgene(s) in target cells/organs/stages. rium is widely known as the only bacterial genus that has the 0005 Each of these processes is represented by several capacity for trans-kingdom gene transfer. While Some alternative technologies of varying quality and efficiencies. reports allegedly demonstrated that the tumor-inducing abil The first Step, however, is the most critical, not only for ity of Agrobacterium could be transferred to other related plants but for transformation of any eukaryotic organism and genera, including rhizobia (Klein and Klein, Arch Microbiol. cell type. There are currently two classes of DNA introduc 52:325-344, 1953; Kern, Arch. Microbiol. 52:325-344, tion methods widely used to generate transgenic organisms, 1965), the results were not uniformly repeatable nor was physical methods and biological methods. there any physical proof of gene transfer. For example, Hooykaas, Schilperoort and their colleagues in the mid to 0006 Physical methods for introducing DNA include late 70's reported that some bacterial species, Rhizobium particle bombardment, electroporation and direct DNA trifolii and R. leguminoSarum in particular, were capable of uptake by or injection into protoplasts. These methods-in tumor formation on plants after introduction of a Tiplasmid their currently practiced forms-have
Recommended publications
  • Revised Taxonomy of the Family Rhizobiaceae, and Phylogeny of Mesorhizobia Nodulating Glycyrrhiza Spp
    Division of Microbiology and Biotechnology Department of Food and Environmental Sciences University of Helsinki Finland Revised taxonomy of the family Rhizobiaceae, and phylogeny of mesorhizobia nodulating Glycyrrhiza spp. Seyed Abdollah Mousavi Academic Dissertation To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public examination in lecture hall 3, Viikki building B, Latokartanonkaari 7, on the 20th of May 2016, at 12 o’clock noon. Helsinki 2016 Supervisor: Professor Kristina Lindström Department of Environmental Sciences University of Helsinki, Finland Pre-examiners: Professor Jaakko Hyvönen Department of Biosciences University of Helsinki, Finland Associate Professor Chang Fu Tian State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University, China Opponent: Professor J. Peter W. Young Department of Biology University of York, England Cover photo by Kristina Lindström Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae ISSN 2342-5423 (print) ISSN 2342-5431 (online) ISBN 978-951-51-2111-0 (paperback) ISBN 978-951-51-2112-7 (PDF) Electronic version available at http://ethesis.helsinki.fi/ Unigrafia Helsinki 2016 2 ABSTRACT Studies of the taxonomy of bacteria were initiated in the last quarter of the 19th century when bacteria were classified in six genera placed in four tribes based on their morphological appearance. Since then the taxonomy of bacteria has been revolutionized several times. At present, 30 phyla belong to the domain “Bacteria”, which includes over 9600 species. Unlike many eukaryotes, bacteria lack complex morphological characters and practically phylogenetically informative fossils. It is partly due to these reasons that bacterial taxonomy is complicated.
    [Show full text]
  • The Differential Interaction of Brucella and Ochrobactrum with Innate
    The differential interaction of Brucella and ochrobactrum with innate immunity reveals traits related to the evolution of stealthy pathogens Elías Barquero-Calvo, Raquel Conde-Alvarez, Carlos Chacón-Díaz, Lucía Quesada-Lobo, Anna Martirosyan, Caterina Guzmán-Verri, Maite Iriarte, Mateja Mancek-Keber, Roman Jerala, Jean Pierre Gorvel, et al. To cite this version: Elías Barquero-Calvo, Raquel Conde-Alvarez, Carlos Chacón-Díaz, Lucía Quesada-Lobo, Anna Mar- tirosyan, et al.. The differential interaction of Brucella and ochrobactrum with innate immunity reveals traits related to the evolution of stealthy pathogens. PLoS ONE, Public Library of Science, 2009, 4 (6), pp.e5893. 10.1371/journal.pone.0005893. hal-00431866 HAL Id: hal-00431866 https://hal.archives-ouvertes.fr/hal-00431866 Submitted on 27 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License The Differential Interaction of Brucella and Ochrobactrum with Innate Immunity Reveals Traits Related to the Evolution of Stealthy
    [Show full text]
  • Stable-Isotope Probing Implicates Methylophaga Spp and Novel Gammaproteobacteria in Marine Methanol and Methylamine Metabolism
    The ISME Journal (2007) 1, 480–491 & 2007 International Society for Microbial Ecology All rights reserved 1751-7362/07 $30.00 www.nature.com/ismej ORIGINAL ARTICLE Stable-isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine metabolism Josh D Neufeld1, Hendrik Scha¨fer, Michael J Cox2, Rich Boden, Ian R McDonald3 and J Colin Murrell Department of Biological Sciences, University of Warwick, Coventry, UK The metabolism of one-carbon (C1) compounds in the marine environment affects global warming, seawater ecology and atmospheric chemistry. Despite their global significance, marine micro- organisms that consume C1 compounds in situ remain poorly characterized. Stable-isotope probing (SIP) is an ideal tool for linking the function and phylogeny of methylotrophic organisms by the metabolism and incorporation of stable-isotope-labelled substrates into nucleic acids. By combining DNA-SIP and time-series sampling, we characterized the organisms involved in the assimilation of methanol and methylamine in coastal sea water (Plymouth, UK). Labelled nucleic acids were analysed by denaturing gradient gel electrophoresis (DGGE) and clone libraries of 16S rRNA genes. In addition, we characterized the functional gene complement of labelled nucleic acids with an improved primer set targeting methanol dehydrogenase (mxaF) and newly designed primers for methylamine dehydrogenase (mauA). Predominant DGGE phylotypes, 16S rRNA, methanol and methylamine dehydrogenase gene sequences, and cultured isolates all implicated Methylophaga spp, moderately halophilic marine methylotrophs, in the consumption of both methanol and methylamine. Additionally, an mxaF sequence obtained from DNA extracted from sea water clustered with those detected in 13C-DNA, suggesting a predominance of Methylophaga spp among marine methylotrophs.
    [Show full text]
  • Characterization of Bacterial Communities Associated
    www.nature.com/scientificreports OPEN Characterization of bacterial communities associated with blood‑fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis Li Lim & Abdul Hafz Ab Majid* With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well‑studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood‑fed and starved tropical bed bugs were analysed and characterized by amplifying the v3‑v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha‑proteobacterium Wolbachia and gamma‑proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood‑fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood‑fed bed bugs. Cimex hemipterus Fabricus (Hemiptera), also known as tropical bed bugs, is an obligate blood-feeding insect throughout their entire developmental cycle, has made a recent resurgence probably due to increased worldwide travel, climate change, and resistance to insecticides1–3. Distribution of tropical bed bugs is inclined to tropical regions, and infestation usually occurs in human dwellings such as dormitories and hotels 1,2. Bed bugs are a nuisance pest to humans as people that are bitten by this insect may experience allergic reactions, iron defciency, and secondary bacterial infection from bite sores4,5.
    [Show full text]
  • The Methanol Dehydrogenase Gene, Mxaf, As a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments
    The Methanol Dehydrogenase Gene, mxaF, as a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lau, Evan, Meredith C. Fisher, Paul A. Steudler, and Colleen Marie Cavanaugh. 2013. The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for proteobacterial methanotrophs in natural environments. PLoS ONE 8(2): e56993. Published Version doi:10.1371/journal.pone.0056993 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11807572 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP The Methanol Dehydrogenase Gene, mxaF,asa Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments Evan Lau1,2*, Meredith C. Fisher2, Paul A. Steudler3, Colleen M. Cavanaugh2 1 Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America, 2 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America, 3 The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America Abstract The mxaF gene, coding for the large (a) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera.
    [Show full text]
  • Metaproteomics Characterization of the Alphaproteobacteria
    Avian Pathology ISSN: 0307-9457 (Print) 1465-3338 (Online) Journal homepage: https://www.tandfonline.com/loi/cavp20 Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssus gallinae (De Geer, 1778) José Francisco Lima-Barbero, Sandra Díaz-Sanchez, Olivier Sparagano, Robert D. Finn, José de la Fuente & Margarita Villar To cite this article: José Francisco Lima-Barbero, Sandra Díaz-Sanchez, Olivier Sparagano, Robert D. Finn, José de la Fuente & Margarita Villar (2019) Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssusgallinae (De Geer, 1778), Avian Pathology, 48:sup1, S52-S59, DOI: 10.1080/03079457.2019.1635679 To link to this article: https://doi.org/10.1080/03079457.2019.1635679 © 2019 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group Accepted author version posted online: 03 Submit your article to this journal Jul 2019. Published online: 02 Aug 2019. Article views: 694 View related articles View Crossmark data Citing articles: 3 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=cavp20 AVIAN PATHOLOGY 2019, VOL. 48, NO. S1, S52–S59 https://doi.org/10.1080/03079457.2019.1635679 ORIGINAL ARTICLE Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssus gallinae (De Geer, 1778) José Francisco Lima-Barbero a,b, Sandra Díaz-Sanchez a, Olivier Sparagano c, Robert D. Finn d, José de la Fuente a,e and Margarita Villar a aSaBio.
    [Show full text]
  • Diversity of Sulfur-Oxidizing Bacteria at the Surface of Cattle Manure
    Microbes Environ. 35(3), 2020 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME18066 Short Communication Diversity of Sulfur-oxidizing Bacteria at the Surface of Cattle Manure Composting Assessed by an Analysis of the Sulfur Oxidation Gene soxB Yumi Mori1,2, Chika Tada1, Yasuhiro Fukuda1, and Yutaka Nakai1*† 1Laboratory of Sustainable Animal Environmental Science, Graduate School of Agricultural Science, Tohoku University, 232–3 Yomogida, Naruko-onsen, Osaki, Miyagi 989–6711, Japan; and 2Research Institute for Bioresource and Biotechnology, Ishikawa Prefectural University, 1–308 Suematsu, Nonoichi, Ishikawa 921–8836, Japan (Received May 7, 2018—Accepted June 16, 2020—Published online July 22, 2020) Sulfur-oxidizing bacterial diversity at the surface of cattle manure was characterized throughout the composting process using a sulfur oxidation gene (soxB) clone library approach. In the mesophilic phase, clones related to the genera Hydrogenophaga and Hydrogenophilus were characteristically detected. In the thermophilic phase, clones related to the genera Hydrogenophaga and Thiohalobacter were predominant. In the cooling phase, the predominant soxB sequences were related to the genus Pseudaminobacter and a new sulfur-oxidizing bacterium belonging to the class Alphaproteobacteria. The present study showed changes in the community composition of sulfur-oxidizing bacteria at the surface of compost throughout the composting process. Key words: cattle manure compost, cloning analysis, Proteobacteria, soxB, sulfur-oxidizing bacteria Chemolithotrophic sulfur-oxidizing bacteria (SOB) are post via sulfide oxidization (Beffa et al., 1995, 1996; Asano aerobic bacteria that belong to the phylum Proteobacteria et al., 2007). In addition, sulfate produced by SOB reduces and oxidize reduced inorganic sulfur compounds to sulfate the pH of compost, thereby decreasing the volatility of (Friedrich, 1997), thereby contributing to the sulfur cycle.
    [Show full text]
  • Pseudaminobacter Granuli Sp. Nov., Isolated from Granules Used in a Wastewater Treatment Plant
    Journal of Microbiology (2017) Vol. 55, No. 8, pp. 607–611 eISSN 1976-3794 DOI 10.1007/s12275-017-7257-y pISSN 1225-8873 Pseudaminobacter granuli sp. nov., isolated from granules used in a wastewater treatment plant Young Ki Hahn1, Minseok S. Kim2*, by Kämpfer et al. (1999). Members of the genus are Gram- 3,4 negative, rod-shaped, oxidase and catalase-positive. It con- and Wan-Taek Im * tains ubiquinone-10 (Q-10) as the predominant respiratory quinone. The major polyamines are spermidine, sys-homo- 1 Samsung Electronics, Seoul 06620, Republic of Korea spermidine and putrescine. The overall polar lipid patterns 2Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea are phosphatidylcholine (PC), phosphatidylglycerol (PG), 3Department of Biotechnology, Hankyong National University, phosphatidyl-dimethylethanolamine (PDE), phosphatidyl- Kyonggi-do 17579, Republic of Korea mono-methylethanolamine (PME), phosphatidyl-ethanol- 4 Center for Genetic Information, Graduate School of Bio and amine (PE), and diphosphatidylglycerol (DPG). At the time Information Technology, Hankyong National University, Kyonggi-do 17579, Republic of Korea of writing this manuscript, the genus consisted of 2 species with validly published names including the recently described (Received Jun 26, 2017 / Revised Jul 18, 2017 / Accepted Jul 18, 2017) species Pseudaminobacter defluvii and Pseudaminobacter salicylatoxidans (Kämpfer et al., 1999). The aim of this study was to determine the taxonomic posi- A Gram negative, aerobic, non-motile and rod-shaped bac- T terial strain designated as Gr-2T was isolated from granules tion of strain Gr-2 by performing phylogenetic analysis based used in a wastewater treatment plant in Korea, and its taxo- on the 16S rRNA gene sequence, and to analyze its chemo- taxonomic and phenotypic characteristics.
    [Show full text]
  • Biomineralization of Atrazine and Analysis of 16S Rrna and Catabolic Genes of Atrazine- Degraders in a Former Pesticide Mixing A
    Biomineralization of atrazine and analysis of 16S rRNA and catabolic genes of atrazine- degraders in a former pesticide mixing and machinery washing area at a farm site and in a constructed wetland DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By James F. Douglass Graduate Program in Microbiology The Ohio State University 2015 Dissertation Committee: Dr. Olli H. Tuovinen, Advisor Dr. Michael Boehm Dr. Charles Daniels Dr. Michael Ibba Copyright by James F. Douglass 2015 Abstract Atrazine is one of the most widely used herbicides in the world. It is primarily used in the production of corn in the United States. Although it may marginally increase crop yields, atrazine is also an endocrine disruptor in non-target organisms. Its moderate solubility in water allows for atrazine to contaminate surface and ground waters far removed from the point of application to soil. Although atrazine can be degraded abiotically, its primary mode of attenuation in natural environments is through bacterial - + degradation. Full mineralization of atrazine to CO2, H2O, Cl and NH4 has been demonstrated in Pseudomonas ADP, which contains the complete suite of atz atrazine catabolic genes. The overall hypothesis of this study is that the microorganisms and catabolic pathways reported in the literature do not universally account for the atrazine biodegradation observed in different natural environments. Furthermore, it is hypothesized that in situ pre-enrichment methods yield atrazine degraders uncultivable by classical laboratory enrichment, including anaerobic bacteria. The discovery of atrazine catabolic genes other than those in the atz pathway and the demonstrated involvement of consortia of bacteria in atrazine biodegradation suggest that the full diversity of environmental atrazine biodegradation has yet to be elucidated.
    [Show full text]
  • Genome Analysis of Phyllobacterium and Rhizobium Strains and Field Performance on Two Vegetable Crops
    agronomy Article Connecting the Lab and the Field: Genome Analysis of Phyllobacterium and Rhizobium Strains and Field Performance on Two Vegetable Crops José David Flores-Félix 1,2,* , Encarna Velázquez 2,3,4, Eustoquio Martínez-Molina 2,3,4, Fernando González-Andrés 5 , Andrea Squartini 6 and Raúl Rivas 2,3,4 1 CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal 2 Departamento de Microbiología y Genética, Universidad de Salamanca, 37007 Salamanca, Spain; [email protected] (E.V.); [email protected] (E.M.-M.); [email protected] (R.R.) 3 Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, 37185 Villamayor, Spain 4 Unidad Asociada USAL-CSIC (IRNASA), 37008 Salamanca, Spain 5 Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida de Portugal, 41, 24071 León, Spain; [email protected] 6 Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; [email protected] * Correspondence: jdfl[email protected]; Tel.: +34-923-294532; Fax: +34-923-294611 Abstract: The legume nodules are a rich source not only of rhizobia but also of endophytic bacteria exhibiting plant growth-promoting mechanisms with potential as plant biostimulants. In this work Citation: Flores-Félix, J.D.; we analyzed the genomes of Phyllobacterium endophyticum PEPV15 and Rhizobium laguerreae PEPV16 Velázquez, E.; Martínez-Molina, strains, both isolated from Phaseolus vulgaris nodules. In silico analysis showed that the genomes of E.; gonzález-Andrés, F.; Squartini, A.; these two strains contain genes related to N-acyl-homoserine lactone (AHL) and cellulose biosyn- Rivas, R.
    [Show full text]
  • Genome-Resolved Metagenomic Analyses Reveal the Presence of a Putative Bacterial Endosymbiont in an Avian Nasal Mite (Rhinonyssidae; Mesostigmata)
    microorganisms Article Genome-Resolved Metagenomic Analyses Reveal the Presence of a Putative Bacterial Endosymbiont in an Avian Nasal Mite (Rhinonyssidae; Mesostigmata) Carolina Osuna-Mascaró 1,*, Jorge Doña 2,3, Kevin P. Johnson 2 and Manuel de Rojas 4,* 1 Department of Biology, University of Nevada, 1664 N Virginia St., Reno, NV 89557, USA 2 Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; [email protected] (J.D.); [email protected] (K.P.J.) 3 Departamento de Biología Animal, Universitario de Cartuja, Calle Prof. Vicente Callao, 3, 18011 Granada, Spain 4 Department of Microbiology and Parasitology, Faculty of Pharmacy, Universidad de Sevilla, Calle San Fernando, 4, 41004 Sevilla, Spain * Correspondence: [email protected] (C.O.-M.); [email protected] (M.d.R.) Abstract: Rhinonyssidae (Mesostigmata) is a family of nasal mites only found in birds. All species are hematophagous endoparasites, which may damage the nasal cavities of birds, and also could be potential reservoirs or vectors of other infections. However, the role of members of Rhinonyssidae as disease vectors in wild bird populations remains uninvestigated, with studies of the microbiomes of Rhinonyssidae being almost non-existent. In the nasal mite (Tinaminyssus melloi) from rock doves (Columba livia), a previous study found evidence of a highly abundant putatively endosymbiotic bacteria from Class Alphaproteobacteria. Here, we expanded the sample size of this species (two Citation: Osuna-Mascaró, C.; Doña, different hosts- ten nasal mites from two independent samples per host), incorporated contamination J.; Johnson, K.P.; de Rojas, M. Genome-Resolved Metagenomic controls, and increased sequencing depth in shotgun sequencing and genome-resolved metagenomic Analyses Reveal the Presence of a analyses.
    [Show full text]
  • Diverse Bacteria Affiliated with the Genera Microvirga, Phyllobacterium
    PLANT MICROBIOLOGY crossm Diverse Bacteria Affiliated with the Genera Microvirga, Phyllobacterium, and Bradyrhizobium Nodulate Lupinus micranthus Growing in Soils of Northern Tunisia Downloaded from Abdelhakim Msaddak,a David Durán,b Mokhtar Rejili,a Mohamed Mars,a Tomás Ruiz-Argüeso,c Juan Imperial,b,c José Palacios,b Luis Reyb Research Unit Biodiversity and Valorization of Arid Areas Bioresources (BVBAA), Faculty of Sciences of Gabès Erriadh, Zrig,Tunisiaa; Centro de Biotecnología y Genómica de Plantas (UPM-INIA), ETSI Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spainb; CSIC, Madrid, Spainc http://aem.asm.org/ ABSTRACT The genetic diversity of bacterial populations nodulating Lupinus micran- Received 10 October 2016 Accepted 3 thus in five geographical sites from northern Tunisia was examined. Phylogenetic January 2017 analyses of 50 isolates based on partial sequences of recA and gyrB grouped strains Accepted manuscript posted online 6 into seven clusters, five of which belong to the genus Bradyrhizobium (28 isolates), January 2017 one to Phyllobacterium (2 isolates), and one, remarkably, to Microvirga (20 isolates). Citation Msaddak A, Durán D, Rejili M, Mars M, Ruiz-Argüeso T, Imperial J, Palacios J, Rey L. The largest Bradyrhizobium cluster (17 isolates) grouped with the B. lupini species, 2017. Diverse bacteria affiliated with the and the other five clusters were close to different recently defined Bradyrhizobium genera Microvirga, Phyllobacterium, and Bradyrhizobium nodulate Lupinus micranthus on March 2, 2017 by guest species. Isolates close to Microvirga were obtained from nodules of plants from growing in soils of northern Tunisia. Appl four of the five sites sampled.
    [Show full text]