Sharks Rays Cirrhigaleus Australis Squalus Albifrons Squalus Altipinnis Squalus Chloroculus Squalus Crassispinus

Total Page:16

File Type:pdf, Size:1020Kb

Sharks Rays Cirrhigaleus Australis Squalus Albifrons Squalus Altipinnis Squalus Chloroculus Squalus Crassispinus New Australian Mandarin Shark Eastern Highfin Spurdog Western Highfin Spurdog Greeneye Spurdog Fatspine Spurdog sharks rays Cirrhigaleus australis Squalus albifrons Squalus altipinnis Squalus chloroculus Squalus crassispinus Edmunds’ Spurdog Eastern Longnose Spurdog Western Longnose Spurdog Bartail Spurdog Western Gulper Shark & Squalus edmundsi Squalus grahami Squalus nasutus Squalus notocaudatus Centrophorus westraliensis Southern Dogfish Tropical Sawshark Eastern Angel Shark Western Angel Shark Elongate Carpetshark Floral Banded Wobbegong Dwarf Spotted Wobbegong Network Wobbegong Roughskin Catshark Pinocchio Catshark Centrophorus zeehaani Pristiophorus delicatus Squatina albipunctata Squatina pseudocellata Parascyllium elongatum Orectolobus floridus Orectolobus parvimaculatus Orectolobus reticulatus Apristurus ambliceps Apristurus australis Bighead Catshark Dusky Catshark Whitefin Swellshark Cook’s Swellshark Reticulate Swellshark Flagtail Swellshark Speckled Swellshark Saddled Swellshark Narrowbar Swellshark Northern Sawtail Shark Apristurus bucephalus Bythaelurus incanus Cephaloscyllium albipinnum Cephaloscyllium cooki Cephaloscyllium hiscosellum Cephaloscyllium signourum Cephaloscyllium speccum Cephaloscyllium variegatum Cephaloscyllium zebrum Figaro striatus Speckled Catshark Short-tail Catshark Western Spotted Gummy Shark Eastern Spotted Gummy Shark Northern River Shark Eyebrow Wedgefish Eastern Numbfish Ornate Numbfish Western Round Skate Blue Skate Halaelurus sellus Parmaturus bigus Mustelus stevensi Mustelus walkeri Glyphis garricki Rhynchobatus palpebratus Narcine nelsoni Narcine ornata Irolita westraliensis Notoraja azurea Blotched Skate Sandy Skate Mosaic Skate False Peacock Skate Dusky Skate Pygmy Thornback Skate Deepwater Skate Pale Tropical Skate Grey Skate Longnose Skate Notoraja sticta Pavoraja arenaria Pavoraja mosaica Pavoraja pseudonitida Pavoraja umbrosa Dentiraja flindersi Dipturus acrobelus Dipturus apricus Dipturus canutus Dipturus confusus Endeavour Skate False Argus Skate Graham’s Skate Heald’s Skate Blacktip Skate Ocellate Skate Queensland Deepwater Skate Weng’s Skate Sawback Skate Arafura Skate Dipturus endeavouri Dipturus falloargus Dipturus grahami Dipturus healdi Dipturus melanospilus Dipturus oculus Dipturus queenslandicus Dipturus wengi Leucoraja pristispina Okamejei arafurensis Thintail Skate Challenger Skate Maugean Skate Western Leg Skate Indigo Leg Skate Eastern Leg Skate Yellow Shovelnose Stingaree Eastern Shovelnose Stingaree Dwarf Black Stingray Blackspotted Whipray Okamejei leptoura Rajella challengeri Zearaja maugeana Sinobatis bulbicauda Sinobatis caerulea Sinobatis filicauda Trygonoptera galba Trygonoptera imitata Dasyatis parvonigra Himantura astra Freshwater Whipray Leopard Whipray Speckled Maskray Ningaloo Maskray Whitefin Chimaera Southern Chimaera Longspine Chimaera Shortspine Chimaera Black Ghostshark Marbled Ghostshark Himantura dalyensis Himantura leoparda Neotrygon picta Neotrygon ningalooensis Chimaera argiloba Chimaera fulva Chimaera macrospina Chimaera obscura Hydrolagus homonycteris Hydrolagus marmoratus MARINE BIODIVERSITY hub Since 2007, the CSIRO’s Biogeography and Taxonomy team has described 80 new species of sharks, rays and chimaeras from Australian waters, in collaboration with numerous international experts. This represents more than a quarter of Australia’s, and about 7% of the world’s, shark and ray fauna. Full species accounts are available in the recently published Sharks and Rays of Australia, Second The NERP Marine Biodiversity Hub is supported through funding from the Australian Government’s National Environmental Research Program, administered by the Department of Sustainability, Environment, Edition by Peter Last and John Stevens. The collage of the 80 new species above highlights the very high diversity of sharks, rays and chimaeras found within the Australian region. The Biogeography Water, Population and Communities (DSEWPaC). Our goal is to support marine stakeholders in evidence-based decision making for marine biodiversity management. Stakeholders include DSEWPaC, the and Taxonomy team at CSIRO Marine and Atmospheric Research in Hobart consists of: Peter Last, Daniel Gledhill, William White, John Pogonoski, Alastair Graham and Louise Conboy. Australian Fisheries Management Authority (AFMA), the Australian Petroleum Production and Exploration Association (APPEA) and the Integrated Marine Observing System (IMOS). www.nerpmarine.edu.au.
Recommended publications
  • Shark Cartilage, Cancer and the Growing Threat of Pseudoscience
    [CANCER RESEARCH 64, 8485–8491, December 1, 2004] Review Shark Cartilage, Cancer and the Growing Threat of Pseudoscience Gary K. Ostrander,1 Keith C. Cheng,2 Jeffrey C. Wolf,3 and Marilyn J. Wolfe3 1Department of Biology and Department of Comparative Medicine, Johns Hopkins University, Baltimore, Maryland; 2Jake Gittlen Cancer Research Institute, Penn State College of Medicine, Hershey, Pennsylvania; and 3Registry of Tumors in Lower Animals, Experimental Pathology Laboratories, Inc., Sterling, Virginia Abstract primary justification for using crude shark cartilage extracts to treat cancer is based on the misconception that sharks do not, or infre- The promotion of crude shark cartilage extracts as a cure for cancer quently, develop cancer. Other justifications represent overextensions has contributed to at least two significant negative outcomes: a dramatic of experimental observations: concentrated extracts of cartilage can decline in shark populations and a diversion of patients from effective cancer treatments. An alleged lack of cancer in sharks constitutes a key inhibit tumor vessel formation and tumor invasions (e.g., refs. 2–5). justification for its use. Herein, both malignant and benign neoplasms of No available data or arguments support the medicinal use of crude sharks and their relatives are described, including previously unreported shark extracts to treat cancer (6). cases from the Registry of Tumors in Lower Animals, and two sharks with The claims that sharks do not, or rarely, get cancer was originally two cancers each. Additional justifications for using shark cartilage are argued by I. William Lane in a book entitled “Sharks Don’t Get illogical extensions of the finding of antiangiogenic and anti-invasive Cancer” in 1992 (7), publicized in “60 Minutes” television segments substances in cartilage.
    [Show full text]
  • Sharks for the Aquarium and Considerations for Their Selection1 Alexis L
    FA179 Sharks for the Aquarium and Considerations for Their Selection1 Alexis L. Morris, Elisa J. Livengood, and Frank A. Chapman2 Introduction The Lore of the Shark Sharks are magnificent animals and an exciting group Though it has been some 35 years since the shark in Steven of fishes. As a group, sharks, rays, and skates belong to Spielberg’s Jaws bit into its first unsuspecting ocean swim- the biological taxonomic class called Chondrichthyes, or mer and despite the fact that the risk of shark-bite is very cartilaginous fishes (elasmobranchs). The entire supporting small, fear of sharks still makes some people afraid to swim structure of these fish is composed primarily of cartilage in the ocean. (The chance of being struck by lightning is rather than bone. There are some 400 described species of greater than the chance of shark attack.) The most en- sharks, which come in all different sizes from the 40-foot- grained shark image that comes to a person’s mind is a giant long whale shark (Rhincodon typus) to the 2-foot-long conical snout lined with multiple rows of teeth efficient at marble catshark (Atelomycterus macleayi). tearing, chomping, or crushing prey, and those lifeless and staring eyes. The very adaptations that make sharks such Although sharks have been kept in public aquariums successful predators also make some people unnecessarily since the 1860s, advances in marine aquarium systems frightened of them. This is unfortunate, since sharks are technology and increased understanding of shark biology interesting creatures and much more than ill-perceived and husbandry now allow hobbyists to maintain and enjoy mindless eating machines.
    [Show full text]
  • Sharks in Crisis: a Call to Action for the Mediterranean
    REPORT 2019 SHARKS IN CRISIS: A CALL TO ACTION FOR THE MEDITERRANEAN WWF Sharks in the Mediterranean 2019 | 1 fp SECTION 1 ACKNOWLEDGEMENTS Written and edited by WWF Mediterranean Marine Initiative / Evan Jeffries (www.swim2birds.co.uk), based on data contained in: Bartolí, A., Polti, S., Niedermüller, S.K. & García, R. 2018. Sharks in the Mediterranean: A review of the literature on the current state of scientific knowledge, conservation measures and management policies and instruments. Design by Catherine Perry (www.swim2birds.co.uk) Front cover photo: Blue shark (Prionace glauca) © Joost van Uffelen / WWF References and sources are available online at www.wwfmmi.org Published in July 2019 by WWF – World Wide Fund For Nature Any reproduction in full or in part must mention the title and credit the WWF Mediterranean Marine Initiative as the copyright owner. © Text 2019 WWF. All rights reserved. Our thanks go to the following people for their invaluable comments and contributions to this report: Fabrizio Serena, Monica Barone, Adi Barash (M.E.C.O.), Ioannis Giovos (iSea), Pamela Mason (SharkLab Malta), Ali Hood (Sharktrust), Matthieu Lapinksi (AILERONS association), Sandrine Polti, Alex Bartoli, Raul Garcia, Alessandro Buzzi, Giulia Prato, Jose Luis Garcia Varas, Ayse Oruc, Danijel Kanski, Antigoni Foutsi, Théa Jacob, Sofiane Mahjoub, Sarah Fagnani, Heike Zidowitz, Philipp Kanstinger, Andy Cornish and Marco Costantini. Special acknowledgements go to WWF-Spain for funding this report. KEY CONTACTS Giuseppe Di Carlo Director WWF Mediterranean Marine Initiative Email: [email protected] Simone Niedermueller Mediterranean Shark expert Email: [email protected] Stefania Campogianni Communications manager WWF Mediterranean Marine Initiative Email: [email protected] WWF is one of the world’s largest and most respected independent conservation organizations, with more than 5 million supporters and a global network active in over 100 countries.
    [Show full text]
  • Western Spotted Catshark, Asymbolus Occiduus
    Published Date: 1 March 2019 Western Spotted Catshark, Asymbolus occiduus Report Card Sustainable assessment IUCN Red List IUCN Red List Australian Endemic to Australia Global Least Concern Assessment Assessment Assessors Simpfendorfer, C. & Heupel, M.R. Report Card Remarks Little known shark with limited fishing across its range Summary The Western Spotted Catshark is a small, little known temperate catshark. It is endemic to southern Australia and has a reasonably large geographic and depth range. The species is unlikely to Source: CSIRO National Fish Collection. License: CC BY Attribution be negatively affected by commercial fisheries because there is limited fishing throughout its range. Therefore, it is assessed as Least Concern (IUCN) and Sustainable (SAFS). Distribution The Western Spotted Catshark is distributed along the southern and western coasts of Australia from Fowlers Bay (South Australia) to Perth (Western Australia) (Last and Stevens 2009). Stock structure and status There is currently no information on population size, structure, or trend for the species. Fisheries The Western Spotted Catshark is caught incidentally and very infrequently in the Southern and Eastern Scalefish and Shark Fishery (SESSF). An estimated 69 kg of the species were caught and discarded annually from 2000 to 2006 (Walker and Gason 2007). Habitat and biology The Western Spotted Catshark is found at depths of 98 to 400 m and is most abundant on the outer continental shelf and common off the Western Australian coast. The biology of the species is almost entirely unknown. Adults and juveniles differ significantly in their colour patterns and the association between the two forms was only made recently (Last and Stevens 2009).
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • NPOA Sharks Booklet.Indd
    National Plan of Action for the Conservation and Management of Sharks (NPOA-Sharks) November 2013 South Africa Department of Agriculture, Forestry and Fisheries Private Bag X2, Rogge Bay, 8012 Tel: 021 402 3911 Fax: +27 21 402 3364 www.daff.gov.za Design and Layout: FNP Communications and Gerald van Tonder Photographs courtesy of: Department of Agriculture, Forestry and Fisheries (DAFF), Craig Smith, Charlene da Silva, Rob Tarr Foreword South Africa’s Exclusive Economic Zone is endowed with a rich variety of marine living South Africa is signatory to the Code of Conduct for Responsible Fisheries – voluntarily agreed to by members of the United Nations Food and Agriculture Organisation (FAO) – and, as such, is committed to the development and implementation of National Plans of Action (NPOAs) as adopted by the twenty-third session of the FAO Committee on Fisheries in February 1999 and endorsed by the FAO Council in June 1999. Seabirds – aimed at reducing incidental catch and promoting the conservation of seabirds Fisheries and now regularly conducts Ecological Risk Assessments for all the commercial practices. Acknowledging the importance of maintaining a healthy marine ecosystem and the possibility of major detrimental effects due to the disappearance of large predators, South from the list of harvestable species. In accordance with international recommendations, South Africa subsequently banned the landing of a number of susceptible shark species, including oceanic whitetip, silky, thresher and hammerhead sharks. improves monitoring efforts for foreign vessels discharging shark products in its ports. To ensure long-term sustainability of valuable, but biologically limited, shark resources The NPOA-Sharks presented here formalises and streamlines ongoing efforts to improve conservation and management of sharks caught in South African waters.
    [Show full text]
  • Morphological and Mitochondrial DNA Divergence Validates Blackmouth, Galeus Melastomus, and Atlantic Sawtail Catsharks, Galeus Atlanticus,Asseparatespecies
    Journal of Fish Biology (2007) 70 (Supplement C), 346–358 doi:10.1111/j.1095-8649.2007.01455.x, available online at http://www.blackwell-synergy.com Morphological and mitochondrial DNA divergence validates blackmouth, Galeus melastomus, and Atlantic sawtail catsharks, Galeus atlanticus,asseparatespecies R. CASTILHO*†, M. FREITAS*, G. SILVA*, J. FERNANDEZ-CARVALHO‡ AND R. COELHO‡ *Biodiversity and Conservation Group, CCMAR, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal and ‡Coastal Fisheries Research Group, CCMAR, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal (Received 30 August 2006, Accepted 17 January 2007) A total of 60 morphometric traits and nucleotide sequences of the entire mtDNA NADH dehydrogenase subunit 2 (ND2) gene [1047 base pair (bp)] in 23 individuals of blackmouth, Galeus melastomus, and 13 individuals of sawtail catsharks, Galeus atlanticus, caught in Southern Portugal, were examined to test the validity of these two taxa. These sharks closely resemble each other, have overlapping geographical ranges and are difficult to identify by morphological characters. Non-metric multidimensional scaling of morphometric variables indicates a clear separation between the two species, with 10 characters each contributing 2Á12–2Á45% of the total variability between species. Maximum likelihood, parsimony and neighbour-joining trees revealed two major mtDNA haplotype clades, corresponding to the two species, with an average corrected sequence divergence between them of 3Á39 Æ 0Á56%. Within species divergences between haplotypes averaged 0Á27 Æ 0Á18% in G. melastomus and 0Á12 Æ 0Á08% in G. atlanticus. A total of 35 diagnostic nucleotide site differences and four restriction fragment length polymorphism recognition sites in the ND2 gene can be used to distinguish the two species.
    [Show full text]
  • Tiger Shark (Galeocerdo Cuvier) on the East Coast of Australia
    The biology and ecology of the tiger shark (Galeocerdo cuvier) on the east coast of Australia. Bonnie Jane Holmes BSc (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Biological Sciences ABSTRACT The tiger shark (Galeocerdo cuvier) (Péron and Lesueur 1822) is the largest of the carcharhinids, with a circumglobal distribution in both tropical and warm temperate coastal and pelagic waters. In the western Pacific, G. cuvier movements are wide-ranging, encompassing the east coast of Australia and south Pacific Islands. Throughout the region, G. cuvier is exposed to a range of commercial, recreational, artisanal and illegal foreign fishery impacts, as both a target and by-product species. Listed as ‘near threatened’ on the International Union for Conservation of Nature (IUCN) Red List, suitable long term species-specific catch, catch rate and biological data are seldom available for large shark species like G. cuvier, particularly where historical commercial fishery logbook reporting has been poor. Shark control programs targeting large sharks along Australia’s east coast have been in operation for over 60 years, using relatively standardised fishing gear in nearshore waters all year round, with historical catch and effort data recorded by shark contractors. Historical catch, catch rate and biological data collected through the Queensland Shark Control Program (QSCP) since 1993 were investigated, which revealed significant declines (p < 0.05) in catch rates of G. cuvier at some tropical and all sub-tropical locations along the Queensland coast. Significant temporal declines in the average size of G. cuvier also occurred at four of the nine locations analysed (p < 0.05), which could be indicative of fishing reducing abundance in these areas.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Teeth Penetration Force of the Tiger Shark Galeocerdo Cuvier and Sandbar Shark Carcharhinus Plumbeus
    Journal of Fish Biology (2017) 91, 460–472 doi:10.1111/jfb.13351, available online at wileyonlinelibrary.com Teeth penetration force of the tiger shark Galeocerdo cuvier and sandbar shark Carcharhinus plumbeus J. N. Bergman*†‡, M. J. Lajeunesse* and P. J. Motta* *University of South Florida, Department of Integrative Biology, 4202 East Fowler Avenue, Tampa, FL 33620, U.S.A. and †Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, 100 Eighth Avenue S.E., Saint Petersburg, FL 33701, U.S.A. (Received 16 February 2017, Accepted 15 May 2017) This study examined the minimum force required of functional teeth and replacement teeth in the tiger shark Galeocerdo cuvier and the sandbar shark Carcharhinus plumbeus to penetrate the scales and muscle of sheepshead Archosargus probatocephalus and pigfish Orthopristis chrysoptera. Penetra- tion force ranged from 7·7–41·9and3·2–26·3 N to penetrate A. probatocephalus and O. chrysoptera, respectively. Replacement teeth required significantly less force to penetrate O. chrysoptera for both shark species, most probably due to microscopic wear of the tooth surfaces supporting the theory shark teeth are replaced regularly to ensure sharp teeth that are efficient for prey capture. © 2017 The Fisheries Society of the British Isles Key words: biomechanics; bite force; Elasmobranchii; teleost; tooth morphology. INTRODUCTION Research on the functional morphology of feeding in sharks has typically focused on the kinematics and mechanics of cranial movement (Ferry-Graham, 1998; Wilga et al., 2001; Motta, 2004; Huber et al., 2005; Motta et al., 2008), often neglecting to integrate the function of teeth (but see Ramsay & Wilga, 2007; Dean et al., 2008; Whitenack et al., 2011).
    [Show full text]
  • First Report of the Whitesaddled Catshark Scyliorhinus Hesperius
    Hacohen-Domené et al. Marine Biodiversity Records (2016) 9:101 DOI 10.1186/s41200-016-0103-9 MARINE RECORD Open Access First report of the whitesaddled catshark Scyliorhinus hesperius (Springer 1966) in Guatemala’s Caribbean Sea Ana Hacohen-Domené1* , Francisco Polanco-Vásquez1 and Rachel T. Graham2 Abstract Background: The present study represents the first record of Scyliorhinus hesperius in Guatemala’s Caribbean Sea. Methods: Five male whitesaddled catsharks, S. hesperius, were captured in 200 m deep waters of Guatemala’s Caribbean coast. Results and Conclusion: All specimens were male with total lengths ranging from 420 mm to 510 mm. These fish represent the first record of mature male S. hesperius, the first record for this species in Guatemalan territorial waters,andarangeextensionintheWesternCentralAtlantic. Keywords: Deep-water chondrichthyans, First record, Range extension, Caribbean, Background (TL). Additionally Springer (1966) examined 12 specimens, Scyliorhinidae (catsharks) constitute the largest shark sex not specified, ranging in total length from 177–460 mm. family with at least 160 species distributed across 17 All specimens were captured between 274 m and 530 m genera (Ebert et al. 1996). These species are broadly depth in the Western Caribbean near Jamaica and distributed throughout temperate and tropical waters, Honduras and southward towards Panama and Columbia inhabiting the bottom of shallow and deep waters over (Springer 1966). Later, Ross and Quattrini (2009) reported 100 m (Nakaya 1975). Catsharks are small, demersal sightings of three individual sharks S. hesperius resting on species, and relatively poor swimmers (Compagno et al. thick coral rubble between 580–604 m depth, off of 2005). Jacksonville, Florida, while conducting deep water dives The genus Scyliorhinus Blainville 1816, is comprised on deep reefs along the southeastern US continental of 16 species distributed in cold, subtemperate to shelf slope.
    [Show full text]
  • Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
    The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation.
    [Show full text]