Chapter 8 DRAFT 11 March, 2003

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 8 DRAFT 11 March, 2003 WHO Guidelines for Drinking-Water Quality 3 – Chapter 8 DRAFT 11 March, 2003 8. CHEMICALS ASPECTS In general, approaches to the management of chemical hazards vary between those where the source water quality is a significant contributor (with control effected through source water inputs or through treatment or blending), and those from materials and chemicals used in the production and distribution of drinking-water, (controlled by process optimisation or product specification). Most chemicals arising from source waters are of health concern only after extended exposure. The principal exception is nitrate. Typically changes in water quality occur progressively except for those substances that are discharged or leach intermittently to flowing surface waters or groundwater supplies, for example, from contaminated landfill sites In some cases, there are groups of chemicals which arise from the same sources for example the disinfection by-products, and it may not be necessary to set standards for all of the substances for which there are guideline values. If chlorination is practised, the trihalomethanes, of which chloroform is the major component, are likely to be the main disinfection by-products, together with the chlorinated acetic acids in some instances. In some cases, control of chloroform levels and, where appropriate, trichloroacetic acid levels will also provide an adequate measure of control over other chlorination by-products. Several of the inorganic elements for which guideline values have been recommended are recognized to be essential elements in human nutrition. No attempt has been made here to define a minimum desirable concentration of such substances in drinking-water. 8.1 Chemical hazards in drinking-water A number of chemical contaminants have been shown to cause adverse health effects in humans as a consequence of prolonged exposure through drinking-water. However, this is only a very small proportion of the chemicals that may reach drinking-water from various sources. The lists of chemicals addressed in these Guidelines do not imply that all of these chemicals will always be present, or that other chemicals not addressed will not be present. The substances considered here have been assessed for possible health effects and guideline values have only been proposed on the basis of health concerns. Additional consideration of the potential effects of chemical contaminants on the acceptability of drinking-water to consumers is included in chapter 10: Acceptability Aspects. Some substances of health concern have aesthetic effects that would normally lead to rejection of water at concentrations significantly lower than those of health concern. For such substances, health- based reference values are needed, for instance, for use in interpreting data collected in response to customer complaints. In section 1.2 it is indicated that “In developing national drinking-water standards based on these guideline values, it will be necessary to take into account a variety of geographical, socioeconomic, dietary and other conditions affecting potential exposure. This may lead to national standards that differ appreciably from the guideline values.” This is particularly 189 WHO Guidelines for Drinking-Water Quality 3 – Chapter 8 DRAFT 11 March, 2003 applicable to chemical contaminants, for which there is a long list, and setting standards for, or including, all of them in monitoring programmes is neither feasible nor desirable. It is, important that chemical contaminants are prioritised so that the most important are considered for inclusion in national standards or monitoring programmes. The scientific basis for guideline values has been made as clear as possible in the summaries presented here. This is particularly important in helping to modify guideline values to suit national requirements or in assessing the significance for health of concentrations of a contaminant that are greater than the guideline value. Chemical contaminants in drinking-water may be categorised in various ways, however, the most appropriate is to consider the primary source of the contaminant i.e. to group chemicals according to where control may be effectively exercised. This aids in the development of approaches that are designed to prevent or minimise contamination, rather than those that rely primarily on the measurement of contaminant levels in final waters. Sources of chemicals in drinking-water related to health are therefore divided into six major source groups, see table 8.1 Table 8.1 Categorisation of source of chemical constituents Source of chemical constituents Examples of sources Naturally occurring Rocks, soils and the effects of the geological setting and climate Industry and human settlements Mining (extractive industries) and manufacturing and processing industries, sewage, solid wastes, urban runoff, fuel leakages Agricultural activities Manures, fertilisers, intensive animal practices and pesticides Water treatment and distribution systems Coagulants, disinfection by-products, and piping materials Larvicides used in water for Public Health Larvaecides used in the control of insect vectors Cyanobacteria Eutrophic lakes Some contaminants may fall into more than one category but the primary category is the one under which the guideline summary evaluation is listed. The categories are not always clear cut. The group of naturally occurring contaminants includes many of the inorganic chemicals that are found in drinking-water as a consequence of release from rocks and soils by rainfall, some of which may become problematical only where there is environmental disturbance such as in mining areas. The criteria use to decide whether a Guideline Value is established for a particular chemical constituent are: i. the chemical is of significant international concern; ii. there is credible evidence of occurrence of the chemical in drinking-water; iii. there is evidence of actual toxicity combined with evidence of occurrence in drinking – water at concentrations close to, or above those of health concern; or 190 WHO Guidelines for Drinking-Water Quality 3 – Chapter 8 DRAFT 11 March, 2003 iv. the chemical is being considered, or is included in the WHO-PES programme (approval programme for direct application to drinking-water for control of insect vectors of disease). 8.2 Derivation of chemical guideline values Guideline Values are derived for many chemical constituents of drinking-water. A Guideline Value represents the concentration of a constituent which does not result in any significant risk to health over a lifetime of consumption There are two principal sources of information on health effects resulting from exposure to chemicals that can be used in deriving guideline values. The first is investigation in human populations. The value of such studies for many substances is limited, owing to lack of quantitative information on the concentration to which people are exposed or on simultaneous exposure to other agents. However, for some substances such studies are sometimes the primary basis on which guidelines are developed. The second, and most frequently used source of information is toxicity studies using laboratory animals. The limitations of toxicology studies include the relatively small number of animals used and the relatively high doses administered, which creates uncertainty as to the relevance of particular findings to human health. This is because there is a need to extrapolate the results to the low doses to which human populations are usually exposed. In most cases, the study used to derive the guideline value is supported by a range of other studies, including human data, and these are also considered in carrying out a health risk assessment. In order to derive a guideline value to protect human health, it is necessary to select the most suitable study or studies. Data from well-conducted studies, where a clear dose-response relationship has been demonstrated, are preferred. Expert judgement was exercised in the selection of the most appropriate study from the range of information available. 8.2.1: Approaches taken To approaches to the derivation of Guideline Values are used: one for “threshold chemicals” and the other for “non-threshold chemicals” (mostly genotoxic carcinogens). It is generally considered that the initiating event in the process of genotoxic chemical carcinogenesis is the induction of a mutation in the genetic materials (DNA) of somatic cells (i.e. cells other than ova or sperm), and that there is a possibility of risk at any exposure (i.e. no threshold). On the other hand, there are carcinogens that are capable of producing tumours in animals or humans without exerting a genotoxic activity, but acting through an indirect mechanism. It is generally believed that a threshold dose exists for non-genotoxic carcinogens. In deriving Guideline Values for carcinogens, consideration was given to the potential mechanism/s by which the substance may cause cancer, in order to decide whether a threshold or non-threshold approach should be used (see 8.2.1 for Threshold chemical effect and 8.2.6 Non-threshold chemicals). The evaluation of the potential carcinogenicity of chemical substances is usually based on long-term animal studies. Sometimes data are available on carcinogenicity in humans, however mostly from occupational exposure. 191 WHO Guidelines for Drinking-Water Quality 3 – Chapter 8 DRAFT 11 March, 2003 On the basis of the available evidence, IARC categorises chemical substances with respect to their potential
Recommended publications
  • I. Signal Words and Warning Signs
    1 I. SIGNAL WORDS AND WARNING SIGNS Signal words are required on nearly all pesticide products registered and labeled for sale in the United States. The signal word gives a pesticide user a way to quickly assess the relative hazard level associated with using a product. There are three signal words in use today: CAUTION, WARNING and DANGER. note: The value “Oral LD50” (Low Dose 50) is a measurement of amount of pesticide (mg/kg) that kills 50 out of 100 laboratory animals that are force fed the pesticide under study. 2 These three signal words are associated with toxicity categories established by the U.S. Environmental Protection Agency (EPA). These four categories can be roughly described as: o Toxicity category I is Highly toxic and Severely irritating, o Toxicity category II is Moderately toxic and Moderately irritating, o Toxicity category III is Slightly toxic and Slightly irritating, o Toxicity category IV is practically non-toxic and not an irritant. LD50/LC50: A common measure of acute toxicity is the lethal dose (LD50) or lethal concentration (LC50) that causes death (resulting from a single or limited exposure) in 50 percent of the treated animals. LD50 is generally expressed as the dose in milligrams (mg) of chemical per kilogram (kg) of body weight. LC50 is often expressed as mg of chemical per volume (e.g., liter (L)) of medium (i.e., air or water) the organism is exposed to. Chemicals are considered highly toxic when the LD50/LC50 is small and practically non-toxic when the value is large. However, the LD50/LC50 does not reflect any effects from long-term exposure (i.e., cancer, birth defects or reproductive toxicity) that may occur at levels below those that cause death.
    [Show full text]
  • 12 Chemical Fact Sheets
    1212 ChemicalChemical factfact sheetssheets A conceptual framework for Introduction implementing the Guidelines (Chapter 1) (Chapter 2) he background docudocu-- ments referred to in FRAMEWORK FOR SAFE DRINKING-WATER SUPPORTING Tments referred to in INFORMATION thisthis chapterchapter (as the princi-princi- Health-based targets Public health context Microbial aspects pal reference for each fact (Chapter 3) and health outcome (Chapters 7 and 11) sheet) may be found on Water safety plans Chemical aspects (Chapter 4) (Chapters 8 and 12) thethe Water, Sanitation, HyHy-- System Management and Radiological Monitoring giene and Health web site assessment communication aspects at http://www.who.int/ (Chapter 9) Acceptability Surveillance water_sanitation_health/ aspects (Chapter 5) dwq/chemicals/en/indewater-quality/guidelines/x. (Chapter 10) htmlchemicals/en/. A complete. A complete list of rlist eferences of references cited citedin this in Application of the Guidelines in specic circumstances chapter,this chapter, including including the (Chapter 6) background documents Climate change, Emergencies, Rainwater harvesting, Desalination forfor each cchemical, hemical, is pro-pro- systems, Travellers, Planes and vided in Annex 22.. ships, etc. 12.1 Chemical contaminants in drinking-water Acrylamide Residual acrylamideacrylamide monomermonomer occursoccurs inin polyacrylamidepolyacrylamide coagulantscoagulants used used in in thethe treattreat-- ment of drinking-water. In general, thethe maximummaximum authorizedauthorized dosedose ofof polymerpolymer isis 11 mg/l. mg/l. At a monomer content of 0.05%, this corresponds to a maximum theoretical concen-- trationtration ofof 0.5 µg/l of the monomer in water.water. Practical concentrations maymay bebe lowerlower byby aa factor factor of 2–3. This applies applies to to thethe anionic anionic and and non-ionic non-ionic polyacrylamides, polyacrylamides, but but residual residual levelslevels fromfrom cationic polyacrylamides maymay bebe higher.higher.
    [Show full text]
  • HSE Drinking Water Group
    October 26th 2018 Health Service Executive, National Drinking Water Group Pesticides in Drinking Water Frequently Asked Questions What are pesticides? • Pesticides are chemicals or mixtures of chemicals that are used to control pests. • A pest can be a small animal (rat), an insect (fly), an unwanted plant (weed) or a micro- organism (bacteria or virus). • When used to control unwanted plants or weeds, pesticides are called herbicides. • Among pesticides, herbicides are the greatest threat to drinking water. • The word ‘pesticides’ will be used in this leaflet to mean all pesticides and herbicides. • Pesticides work by preventing (stopping growth), destroying (killing), repelling (keeping away), or reducing (making smaller) a particular pest. Where are pesticides used? • They are used in farming and in forestry to control weeds and rodents (e.g. rats). • They are used in homes on gardens, lawns and drive-ways. • They are used by transport authorities to keep roadsides and railway verges clear. • They are used in public parks and golf courses. How do pesticides get in to drinking water? • Most public drinking water supplies in Ireland come from surface water e.g. rivers, lakes and streams. Pesticides can get in to surface water in a few different ways: . By direct spraying of rushes and other weeds with pesticides close to a river or stream . From pesticide run-off from land into a stream during heavy rain . Sprayed pesticide can drift in the wind onto a stream, river or lake. • Pesticides can also seep through soil into groundwater (wells). • Pesticides can get into drinking water through misuse or careless handling of containers during storage or disposal.
    [Show full text]
  • Impacts of Genetically Engineered Crops on Pesticide Use: the First Thirteen Years by Charles Benbrook
    The Organic Center www.organic-center.org Critical Issue Report: Th e First Th irteen Years Impacts of Genetically Engineered Crops on Pesticide Use: The First Thirteen Years by Charles Benbrook November 2009 The Organic Center Critical Issue Report Page November 2009 The First Thirteen Years i PREFACE Th is report explores the impact of the adoption of genetically engineered (GE) corn, soybean, and cotton on pesticide use in the United States, drawing principally on data from the United States Department of Agriculture. Th e most striking fi nding is that GE crops have been responsible for an increase of 383 million pounds of herbicide use in the U.S. over the fi rst 13 years of commercial use of GE crops (1996- 2008). Th is dramatic increase in the volume of herbicides applied swamps the decrease in insecticide use attributable to GE corn and cotton, making the overall chemical footprint of today’s GE crops decidedly negative. Th e report identifi es, and discusses in detail, the primary cause of the increase -- the emergence of herbicide-resistant weeds. Th e steep rise in the pounds of herbicides applied on most GE crop acres is not news to farmers. Weed control is now widely acknowledged as a serious management problem within GE cropping systems. Farmers and weed scientists across the heartland and cotton belt are now struggling to devise aff ordable and eff ective strategies to deal with the resistant weeds emerging in the wake of herbicide-tolerant crops. But skyrocketing herbicide use is news to the public at large, which still harbors the illusion, fed by misleading industry claims and advertising, that biotechnology crops are reducing pesticide use.
    [Show full text]
  • 2, 4-D Dichlorophenoxyacetic Acid Poisoning; Case Report And
    ASIA PACIFIC JOURNAL of MEDICAL TOXICOLOGY APJMT 6;1 http://apjmt.mums.ac.ir March 2017 CASE REPORT 2, 4-D Dichlorophenoxyacetic Acid Poisoning; Case Report and Literature Review SUJATA HIRAN1,*, SUNIL KUMAR2 1Director and Head, Department of Medicine, J.L.N. Hospital and Research Centre, Bhilai, India 2 Senior Medical Officer, Department of Medicine, J.L.N. Hospital and Research Centre, Bhilai, India Abstract Background: 2, 4-dichlorophenoxyacetic acid, (2, 4-D) is a selective herbicide available as the acids, esters and several salts which vary in their chemical properties, environmental behaviour, and to a lesser extent toxicity. The salt and ester forms are derivatives of the parent acid. It is widely used as a weed killer. The 2, 4- D dimethylamine is one of the salts of this group. Case Presentation: We report a case of ingestion of 2, 4-D herbicide intentionally. The patient had presented in a local hospital but transferred to our hospital in a state of deep coma. CT scan head showed diffuse cerebral oedema. The patient recovered completely after treatment with forced alkaline diuresis. Discussion: Anticholinesterase compounds are the most commonly used insecticide and the commonest compound used as poison in India. This case report emphasizes that not all poisonings are caused by anticholinesterase compounds. The initial clinical manifestations of 2, 4-dichlorophenoxyacetic acid (2, 4 -D) poisoning are very similar to alcohol, sedative drugs, or aromatic chlorinated hydrocarbons making it even more difficult for the treating physician to suspect poisoning due to these compounds. It is thus important to identify the correct compound for proper management.
    [Show full text]
  • Potential Developmental Neurotoxicity of Pesticides Used in Europe
    Potential Developmental Neurotoxicity of Pesticides used in Europe The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bjørling-Poulsen, Marina, Helle Raun Andersen, and Philippe Grandjean. 2008. Potential developmental neurotoxicity of pesticides used in Europe. Environmental Health 7:50. Published Version doi:10.1186/1476-069X-7-50 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4584624 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Environmental Health BioMed Central Review Open Access Potential developmental neurotoxicity of pesticides used in Europe Marina Bjørling-Poulsen*1, Helle Raun Andersen1 and Philippe Grandjean1,2 Address: 1Department of Environmental Medicine, University of Southern Denmark, Winslowparken 17, 5000 Odense, Denmark and 2Department of Environmental Health, Harvard School of Public Health, Landmark Building 3E-110, 401 Park Drive, Boston, MA 02215, USA Email: Marina Bjørling-Poulsen* - [email protected]; Helle Raun Andersen - [email protected]; Philippe Grandjean - [email protected] * Corresponding author Published: 22 October 2008 Received: 26 August 2008 Accepted: 22 October 2008 Environmental Health 2008, 7:50 doi:10.1186/1476-069X-7-50 This article is available from: http://www.ehjournal.net/content/7/1/50 © 2008 Bjørling-Poulsen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • 112: Herbicides
    Page 1 of 47 Goldfrank's Toxicologic Emergencies, 10e > 112: Herbicides Darren M. Roberts HISTORY, CLASSIFICATION, AND EPIDEMIOLOGY An herbicide, any chemical that regulates the growth of a plant, encompasses a large number of xenobiotics of varying characteristics. Herbicides are used around the world for the destruction of plants in the home environment and also in agriculture where weeds are particularly targeted. Poisoning may occur following acute (intentional or unintentional poisoning) or chronic (such as occupational) exposures. Depending on the herbicide and the characteristics of the exposure, this may lead to clinically significant poisoning, including death. This chapter focuses on the most widely used herbicides and also those associated with significant clinical toxicity. In particular, risk assessment and the management of patients with a history of acute herbicide poisoning are emphasized. Prior to the 1940s, the main method of weed control and field clearance was manual labor, which was time consuming and expensive. A range of xenobiotics were tested, including metals and inorganic compounds; however, their efficacy was limited. The first herbicide marketed was 2,4-dichlorphenoxyacetic acid during the 1940s, followed by other phenoxy acid compounds. Paraquat was marketed in the early 1960s, followed by dicamba later that decade. The development of new herbicides is an active area of research and new herbicides and formulations are frequently released into the market. This includes a number of novel structural compounds for which clinical toxicology data are unavailable. Hundreds of xenobiotics are classified as herbicides and a much larger number of commercial preparations are marketed. Some commercial preparations contain more than one herbicide to potentiate plant destruction.
    [Show full text]
  • Chlorophenoxy Herbicides (Excluding 2,4-D and MCPA) in Drinking-Water
    WHO/SDE/WSH/03.04/44 English only Chlorophenoxy herbicides (excluding 2,4-D and MCPA) in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality ______________________________ Originally published in Guidelines for drinking-water quality, 2nd ed. Vol.2. Health criteria and other supporting information. World Health Organization, Geneva, 1996. © World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use.
    [Show full text]
  • 2006 Proceedings, Southern Weed Science Society, Volume 59 Preface
    PROCEEDINGS SOUTHERN WEED SCIENCE SOCIETY VISION FOR THE FUTURE th 59 Annual Meeting Servicing Agriculture In: ALABAMA MISSOURI ARKANSAS NORTH CAROLINA FLORIDA OKLAHOMA GEORGIA SOUTH CAROLINA KENTUCKY TENNESSEE LOUISIANA TEXAS MISSISSIPPI VIRGINIA PUERTO RICO January 23-25, 2006 Omni Hotel San Antonio, Texas ISSN: 0362-4463 2006 Proceedings, Southern Weed Science Society, Volume 59 Preface PREFACE These PROCEEDINGS of the 59th Annual Meeting of the Southern Weed Science Society contain papers and abstract of presentations made at the annual meeting. A list is also included giving the common and trade or code names, chemical names and manufacturers of all herbicides mentioned in the publication. Other information in these PROCEEDINGS includes: biographical data of recipients of the SWSS Distinguished Service, Outstanding Educator, Outstanding Young Weed Scientist, and Outstanding Graduate Students awards; the RESEARCH REPORT; lists of officers and committee members; minutes of all business meetings; and lists of registrants attending the annual meeting, sustaining members, charter members, and contributors to the SWSS Endowment Foundation. Only papers presented at the meeting and submitted to the Editor in the prescribed format for printing are included in the PROCEEDINGS. Papers may be up to five pages in length and abstracts are limited to one page. Authors are required to submit an original abstract according to the instructions available in the “Call for Papers” and on the SWSS web site (www.swss.ws). Templates are available in Word and WordPerfect to help ensure an acceptable format was followed. The use of commercial names in the PROCEEDINGS does not constitute an endorsement, nor does the non-use of similar products constitute a criticism, by the Southern Weed Science Society.
    [Show full text]
  • Residential Herbicide Use and Risk of Non-Hodgkin Lymphoma
    934 Cancer Epidemiology, Biomarkers & Prevention Residential Herbicide Use and Risk of Non-Hodgkin Lymphoma Patricia Hartge,1 Joanne S. Colt,1 Richard K. Severson,2 James R. Cerhan,3 Wendy Cozen,4 David Camann,5 Shelia Hoar Zahm,1 and Scott Davis6 1Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland; 2Department of Family Medicine and Karmanos Cancer Institute, Wayne State University, Detroit, Michigan; 3Mayo Clinic, College of Medicine, Rochester, Minnesota; 4University of Southern California, Los Angeles, California; 5Southwest Research Institute, San Antonio, Texas; and 6Fred Hutchinson Cancer Research Center and University of Washington, Seattle, Washington Abstract Context: Environmental exposure to herbicides has been Results: Herbicide use on the lawn or garden was similar hypothesized to contribute to the long-term increase in non- among cases and controls (adjusted relative risk, 1.02; 95% Hodgkin lymphoma (NHL). confidence interval, 0.84-1.23). Estimated risk did not Objective: To estimate the effects of residential herbicide increase with greater duration, frequency, or total number exposure on NHL risk. of applications of herbicides to the lawn, the garden, or to Design: Population-based case-control study. both combined. Risk was not elevated for respondents who Setting: Iowa and metropolitan Detroit, Los Angeles, and applied the herbicides themselves and not for those exposed Seattle, 1998 to 2000. during the 1970s, 1980s, or 1990s. We detected 2,4-dichlor- Participants: NHL patients ages 20 to 74 years and unaffected ophenoxy-acetic acid equally often in homes of cases and residents identified by random digit dialing and Medicare controls (78%).
    [Show full text]
  • Dicamba Reportrev2.Indd
    Drifting Toward Disaster How Dicamba Herbicides are Harming Cultivated and Wild Landscapes Drifting Toward Disaster How Dicamba Herbicides are Harming Cultivated and Wild Landscapes Authors: Lekha Knuffman, National Wildlife Federation, Kim Erndt-Pitcher, Prairie Rivers Network, Emily May, Xerces Society for Invertebrate Conservation Acknowledgments: Our sincerest thanks to our respective organizations for motivating this work and for providing assistance throughout the process of writing this report. We’d like to thank Michael Murray and David Weber for their invaluable contributions to the report. We are indebted to our many reviewers whose insights and suggestions greatly improved the work. We acknowledge and thank Julie Sibbing, Aviva Glaser, Aimée Code, Elliot Brinkman, and Robert Hirschfeld for their guidance, patience, and immeasurable support throughout. Finally, thank you to Dallas Glazik, Shelley Harper, Justin Evertson, and Raymond Nabors for sharing their stories and answering our questions. E.M. developed the original blueprint of this document as an internal memo for the Xerces Society. L.K. coordinated planning and execution of the collaboration. All authors contributed equally to writing and revisions of the final report. Design by: Maja Smith, MajaDesign, Inc. Copyright: © 2020 National Wildlife Federation, Prairie Rivers Network, Xerces Society for Invertebrate Conservation Suggested citation: Knuffman, L., Erndt-Pitcher, K., May, E. 2020. Drifting Toward Disaster: How Dicamba Herbicides are Harming Cultivated and Wild Landscapes. Washington, D.C.: National Wildlife Federation; Champaign, IL: Prairie Rivers Network; Portland, OR: Xerces Society for Invertebrate Conservation Cover images: Front cover (left to right): Symptoms of herbicide injury on showy milkweed. Credit: Xerces Society/Brianna Borders, Wetland habitat between corn fields.
    [Show full text]
  • New Use on Herbicide-Tolerant Corn and Soybean Environmental Protection Agency, Mailcode 28221T 1200 Pennsylvania Ave., NW Washington, D.C
    2,4-D: New Use on Herbicide-Tolerant Corn and Soybean Environmental Protection Agency, Mailcode 28221T 1200 Pennsylvania Ave., NW Washington, D.C. 20460 Docket No. EPA-HQ-OPP-2014-0195 June 30, 2014 Comments to EPA on EPA’s Proposed Registration of Enlist Duo Herbicide Containing 2,4- D and Glyphosate for New Uses on Herbicide-Tolerant Corn and Soybean The Center for Food Safety (CFS) hereby submits the following comments, including the attached scientific analysis in Appendix A, on the U.S. Environmental Protection Agency’s (EPA’s) proposed new registration of Dow Agrosciences’ (Dow’s) Enlist Duo herbicide, which contains the active ingredient 2,4-dichlorophenoxyacetic acid (2,4-D) and glyphosate, for proposed new uses on corn and soybean crops that have been genetically engineered to resistant the application of 2,4-D and glyphosate. CFS is a national, nonprofit public interest and environmental advocacy organization working to protect human health and the environment by curbing the use of harmful food production technologies. In furtherance of this mission, CFS uses legal actions, groundbreaking scientific and policy reports, books and other educational materials, and grassroots campaigns, on behalf of its more than 500,000 members. CFS is a recognized national leader on the issue of GE organisms and pesticides, and has worked on improving their regulation and addressing their impacts continuously since the organization’s inception in 1997. Dow’s proposed registration of Enlist Duo herbicide (GF-2726, EPA File Symbol 6217- AUO) is an end-use product containing 24.4% 2,4-D choline salt and 22.1% glyphosate,1 with proposed uses on Dow’s Enlist™ AAD-1 Corn, DAS-40278-9) (2,4-D resistant GE corn) and Enlist™ AAD-12 Soybean, DAS-68416-4 (2,4-D resistant GE soy) (collectively 2,4-D resistant GE corn and soybean or Enlist corn and soybean), which are sold under the same trademark name Enlist™.
    [Show full text]