Calcium Apatite Deposition Disease: Diagnosis and Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Calcium Apatite Deposition Disease: Diagnosis and Treatment Hindawi Publishing Corporation Radiology Research and Practice Volume 2016, Article ID 4801474, 16 pages http://dx.doi.org/10.1155/2016/4801474 Review Article Calcium Apatite Deposition Disease: Diagnosis and Treatment Nicholas M. Beckmann Department of Diagnostic and Interventional Imaging, UT Health, Houston, TX, USA Correspondence should be addressed to Nicholas M. Beckmann; [email protected] Received 28 September 2016; Accepted 24 October 2016 Academic Editor: Ali Guermazi Copyright © 2016 Nicholas M. Beckmann. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Calcium apatite deposition disease (CADD) is a common entity characterized by deposition of calcium apatite crystals within and around connective tissues, usually in a periarticular location. CADD most frequently involves the rotator cuff. However, it can theoretically occur in almost any location in the musculoskeletal system, and many different locations of CADD have been described. When CADD presents in an unexpected location it can pose a diagnostic challenge, particularly when associated with pain or swelling, and can be confused with other pathologic processes, such as infection or malignancy. However, CADD has typical imaging characteristics that usually allows for a correct diagnosis to be made without additional imaging or laboratory workup, even when presenting in unusual locations. This is a review of the common and uncommon presentations of CADD in the appendicular and axial skeleton as well as an updated review of pathophysiology of CADD and current treatments. 1. Overview is unknown. Several authors have speculated that the forma- tion may be the result of tendon degeneration, while others Calcium apatite deposition disease has been given many have proposed that the calcifications are a cell-mediated reac- names (calcific periarthritis, calcific bursitis, periarthritis cal- tive process [11–14]. Uhthoff and Loebr proposed a natural carea, periarthritis calcarea, and hydroxyapatite rheumatism) progression of calcific tendinitis that can be divided into four butismostcommonlyknownascalcifictendinitis.Itisarel- phases: precalcific, formative, resorptive, and postcalcific [15]. atively common phenomenon characterized by formation of In the precalcific phase, collagen fibers of the tendon undergo calcium deposits both in and around tendons and other con- metaplasia into fibrocartilage tissue. During the formative nective tissue structures. Calcific tendinitis most commonly phase, chondrocytes begin to develop within the areas of occurs in between the ages of 30–60, although cases have been fibrocartilage formation with eventual formation of calcified described in patients as young as 3 years old [1, 2]. A large apatite crystals. After the formative phase, the area of calci- majority of cases of calcific tendinitis occur at the shoulder, fication can remain asymptomatic in a “resting state” for an particularly involving the supraspinatus and infraspinatus indefinite period of time. Typically, however, the calcifi- tendons. The hip is the next most common location of cationswillprogresstoaninflammatoryresorptivephase involvement, followed by the spine. Although rarely reported, characterized by the appearance of leukocytes, lymphocytes, calcific tendinitis has been described involving numerous and giant cells forming a “calcium granuloma.” Finally, the other sites as well [3–6]. calcification will enter the postcalcific phase where a repar- Historically, calcium deposits in calcific tendinitis have ative process incites new capillary and collagen fiber forma- been thought to represent collections of hydroxyapatite crys- tion. tals leading to the used of the term hydroxyapatite deposition Calcific tendinitis typically presents with a single site disease (HADD) to describe this disease process [7, 8]. How- of involvement. However, bilateral presentation of shoulder ever, more recent studies by Hamada et al. in 2001 and 2006 calcific tendinosis is not uncommon, occurring in anywhere demonstrated the calcium deposits of calcific tendinitis to be from 5 to 23% of patients in larger studies of rotator cuff cal- composed of carbonate apatite instead of hydroxyapatite as cific tendinitis [16–18]. Bilateral involvement has been rarely previously thought [9, 10]. The exact etiology of these deposits described in the hip [19], and bilateral involvement has not 2 Radiology Research and Practice been described in any other joint. There is a slight female excludes other etiologies of pain when the presenting symp- predilection for calcific tendinitis with calcific tendinitis toms are atypical. MRI appearance of the calcifications varies occurring approximately 50% more frequently in women depending on the radiographic appearance of the calcifica- than men [2]. A study by Harvie et al. showed an association tions, and the degree of soft tissue inflammation depends between estrogen and thyroid hormone disorders and the on the stage of the calcifications. In the acutely symptomatic development of calcific tendinitis, which may account for at phase, soft tissue edema will typically be seen surrounding least a portion of the female predilection [17]. Sengar et al. the region of calcification (Figure 3(a)) [4, 15, 29]. Discrete, discovered an association between the HLA-A1 gene and homogeneous calcifications on radiographs appear as homo- calcific tendinitis, suggesting a genetic predisposition to the geneous signal voids on all MRI sequences (Figure 3(b)), disease [20]. An association has also been found between while ill-defined inhomogeneous calcifications on radio- adult onset diabetes and calcific tendinitis [21]. graphs appear as heterogeneous low and intermediate signal on both T1 and fluid sensitive MRI sequences (Figure 3(a)). 2. Clinical Presentation Ultrasound is not commonly needed to make the diag- nosis of calcific tendinitis, but it is commonly used in image- Calcium apatite deposition is often seen incidentally on guided treatment of the calcifications. Four morphologies of radiographs in asymptomatic patients. When patients are tendon calcification have been described on ultrasound (Fig- symptomatic, symptoms can vary from an acute episode ure 4): arc-shaped (echogenic arc of calcification with deep of severe pain to chronic mild discomfort. Typically, acute acoustic shadowing), nodular (single echogenic focus of cal- episodes of pain are single occurrences that resolve sponta- cification without acoustic shadowing), fragmented (two or neously, although patients can experience recurrence of pain more echogenic foci of calcification with or without acoustic months after the initial episode [22]. Occasionally, patients shadowing), and cystic (hyperechoic wall with anechoic will present with symptoms of neuropathy [5, 6, 23]. These region, weakly hypoechoic region, or layering content) [30]. acute episodes of pain are what frequently lead to patients The nodular, fragmented, and cystic morphologies on ultra- presenting for treatment and can be a diagnostic challenge sound are associated with the acute, symptomatic phase of for clinicians. Acute episodes of calcific tendinitis frequently calcific tendinitis while the arc morphology is more sugges- present with severe pain along with mild swelling and warmth tive of the chronic or asymptomatic phase [30]. Increased of the affected tissue, which can be easily mistaken for infec- flowonpowerDopplerisstronglyassociatedwithacute tion [24, 25]. Restricted range of motion may or may not be symptomatic calcific tendinopathy but is present in only present. Laboratory and vital signs are usually normal; how- about one-third of cases [31]. In the rotator cuff, thickening of ever,itisnotuncommonforpatientstohavemildlyelevated the subacromial-subdeltoid bursa is strongly associated with inflammatory markers, mild leukocytosis, or low grade fever, acute symptomatic calcific tendinopathy but is present in less which can also raise the concern for infection [4, 25–27]. than one-third of cases [31]. Furthermore, it is not uncommon for acute calcific tendinitis Nuclear medicine exams are rarely used to diagnose episodes to be preceded by low level trauma, and the amor- calcific tendinitis. Not surprisingly, cases of calcific tendinitis phous calcifications may be mistaken for a neoplastic process have been described as demonstrating increased radiotracer [4, 24, 26]. activity on both positron emission tomography and techne- tium-99m bone scans (Figure 5) [32–34]. This increased 3. Imaging activity is likely related to the inflammatory phase of calcific tendinitis and can be confused for malignancy or bony The diagnosis of calcific tendinitis is most frequently made metastatic disease. on radiographs. Calcifications have been described typically Rarely, calcific tendinitis can extend to involve the under- appearing as fluffy, ill-defined, and inhomogeneous or as lying bone at the tendon attachment site. Approximately 80% discrete, homogeneous, and well defined (Figure 1) [8, 15, 28]. ofosseousinvolvementbycalcifictendinitisoccursatthepro- The fluffy, ill-defined calcifications are associated withthe ximal femur and proximal humerus with the femur diaphy- acutely symptomatic phase of calcific tendinitis, while the sis most commonly involved followed by the humerus tuber- better defined, homogeneous calcifications tend to be present osities. Cortical erosion
Recommended publications
  • Right Ring Finger Volar Mass in a 14-Year-Old
    6/6/2017 Right Ring Finger Volar Mass in a 14­Year­Old Boy CASE REPORT FREE Right Ring Finger Volar Mass in a 14­Year­Old Boy Mary P. Fox, MD; Jack E. McKay, MD; Randall D. Craver, MD; Nicholas D. Pappas, MD Orthopedics Posted May 22, 2017 DOI: 10.3928/01477447­20170518­01 Abstract A trigger digit is relatively uncommon in adolescents and often has a different etiology in that age group vs adults. In the pediatric population, trigger digits frequently arise from a variety of underlying anatomic situations, including thickening of the flexor digitorum superficialis or flexor digitorum profundus tendons, an abnormal relationship between the flexor digitorum superficialis and flexor digitorum profundus tendons, a proximal flexor digitorum superficialis decussation, or constriction of the pulleys. In addition, underlying conditions such as mucopolysaccharidosis, juvenile rheumatoid arthritis, Ehlers­Danlos syndrome, and central nervous system disorders such as delayed motor development have been associated with triggering. Less commonly, triggering secondary to intratendinous or peritendinous calcifications or granulations has been described, which is what occurred in the current case. This report describes a case of tenosynovitis with psammomatous calcification treated with excision of the mass from the flexor digitorum superficialis tendon and release of both the A1 and palmar aponeurosis pulleys in an adolescent patient. [Orthopedics. 201x; xx(x):xx–xx.] The etiology for a trigger digit in the adolescent population can be complex and extensive, including underlying anatomic causes or other pathological processes such as fracture, tumor, or traumatic soft tissue injuries.1–5 Current literature has not described a case of tenosynovitis secondary to a peritendinous soft tissue mass consisting of psammomatous calcification in the adolescent population.
    [Show full text]
  • Calcific Tendinitis of the Shoulder
    CME Further Education Certified Advanced Training Orthopäde 2011 [jvn]:[afp]-[alp] P. Diehl1, 2 L. Gerdesmeyer3, 4 H. Gollwitzer3 W. Sauer2 T. Tischer1 DOI 10.1007/s00132-011-1817-3 1 Orthopaedic Clinic and Polyclinic, Rostock University 2 East Munich Orthopaedic Centre, Grafing 3 Orthopaedics and Sports Orthopaedics Clinic, Klinikum rechts der Isar, Online publication date: [OnlineDate] Munich Technical University Springer-Verlag 2011 4 Oncological and Rheumatological Orthopaedics Section, Schleswig-Holstein University Clinic, Kiel Campus Editors: R. Gradinger, Munich R. Graf, Stolzalpe J. Grifka, Bad Abbach A. Meurer, Friedrichsheim Calcific tendinitis of the shoulder Abstract Calcific tendinitis of the shoulder is a process involving crystal calcium deposition in the rotator cuff tendons, which mainly affects patients between 30 and 50 years of age. The etiology is still a matter of dispute. The diagnosis is made by history and physical examination with specific attention to radiologic and sonographic evidence of calcific deposits. Patients usually describe specific radiation of the pain to the lateral proximal forearm, with tenderness even at rest and during the night. Nonoperative management including rest, nonsteroidal anti-inflammatory drugs, subacromial corticosteroid injections, and shock wave therapy is still the treatment of choice. Nonoperative treatment is successful in up to 90 % of patients. When nonsurgical measures fail, surgical removal of the calcific deposit may be indicated. Arthroscopic treatment provides excellent results in more than 90 % of patients. The recovery process is very time consuming and may take up to several months in some cases. Keywords Rotator cuff Tendons Tendinitis Calcific tendinitis Calcification, pathologic English Translation oft he original article in German „Die Kalkschulter – Tendinosis calcarea“ in: Der Orthopäde 8 2011 733 This article explains the causes and development of calcific tendinitis of the shoulder, with special focus on the diagnosis of the disorder and the existing therapy options.
    [Show full text]
  • Imaging Shoulder Impingement
    UCLA UCLA Previously Published Works Title Imaging shoulder impingement. Permalink https://escholarship.org/uc/item/0kg9j32r Journal Skeletal radiology, 22(8) ISSN 0364-2348 Authors Gold, RH Seeger, LL Yao, L Publication Date 1993-11-01 DOI 10.1007/bf00197135 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Skeletal Radiol (1993) 22:555-561 Skeletal Radiology Review Imaging shoulder impingement Richard H. Gold, M.D., Leannc L. Seeger, M.D., Lawrence Yao, M.D. Department of Radiological Sciences, UCLA School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90024-1721, USA Abstract. Appropriate imaging and clinical examinations more components of the coracoacromial arch superiorly. may lead to early diagnosis and treatment of the shoulder The coracoacromial arch is composed of five basic struc- impingement syndrome, thus preventing progression to a tures: the distal clavicle, acromioclavicular joint, anteri- complete tear of the rotator cuff. In this article, we discuss or third of the acromion, coracoacromial ligament, and the anatomic and pathophysiologic bases of the syn- anterior third of the coracoid process (Fig. 1). Repetitive drome, and the rationale for certain imaging tests to eval- trauma leads to progressive edema and hemorrhage of uate it. Special radiographic projections to show the the rotator cuff and hypertrophy of the synovium and supraspinatus outlet and inferior surface of the anterior subsynovial fat of the subacromial bursa. In a vicious third of the acromion, combined with magnetic reso- cycle, the resultant loss of space predisposes the soft nance images, usually provide the most useful informa- tissues to further injury, with increased pain and disabili- tion regarding the causes of impingement.
    [Show full text]
  • Pediatric Trigger Finger Due to Osteochondroma
    HANXXX10.1177/1558944715627634HANDde Oliveira et al 627634research-article2016 Case Report HAND 1 –7 Pediatric Trigger Finger due to © American Association for Hand Surgery 2016 DOI: 10.1177/1558944715627634 Osteochondroma: A Report of Two Cases hand.sagepub.com Ricardo Kaempf de Oliveira1, Pedro J. Delgado2, and João Guilherme Brochado Geist3 Abstract Background: The trigger finger is characterized by the painful blocking of finger flexor tendons of the hand, while crossing the A1 pulley. It is a rare disease in children and, when present, is usually located in the thumb, and does not have any defined cause. Methods: We report 2 pediatric trigger finger cases affecting the long digits of the hand that were caused by an osteochondroma located at the proximal phalanx. Both children held the diagnosis of juvenile multiple osteochondromatosis. They had presented at the initial visit with a painful finger blocking. Surgical approach was decided with wide regional exposure, as compared with the trigger finger traditional surgical techniques, with the opening of the A1 pulley and the initial portion of the A2 pulley, along with bone tumor resection. Results: Patients evolved uneventfully, and recovered the affected finger motion. Conclusion: It is important to highlight that pediatric trigger finger is a distinct ailment from the adult trigger finger, and also in children is important to differentiate whenever the disease either affects the thumb or the long fingers. A secondary cause shall be sought whenever the long fingers are affected by a trigger finger. Keywords: trigger finger, pediatric, flexor tendon, bone tumor Introduction Case 1 The trigger finger, also known as stenosing tenosynovi- A 13-year-old girl who had juvenile multiple osteochondro- tis, is rare in the pediatric population and, when present, matosis (JMO) reported 18-month long complaints of left is usually located on the thumb and associated with a hand ring finger pain and snapping.
    [Show full text]
  • Imaging in Gout and Other Crystal-Related Arthropathies 625
    ImaginginGoutand Other Crystal-Related Arthropathies a, b Patrick Omoumi, MD, MSc, PhD *, Pascal Zufferey, MD , c b Jacques Malghem, MD , Alexander So, FRCP, PhD KEYWORDS Gout Crystal arthropathy Calcification Imaging Radiography Ultrasound Dual-energy CT MRI KEY POINTS Crystal deposits in and around the joints are common and most often encountered as inci- dental imaging findings in asymptomatic patients. In the chronic setting, imaging features of crystal arthropathies are usually characteristic and allow the differentiation of the type of crystal arthropathy, whereas in the acute phase and in early stages, imaging signs are often nonspecific, and the final diagnosis still relies on the analysis of synovial fluid. Radiography remains the primary imaging tool in the workup of these conditions; ultra- sound has been playing an increasing role for superficially located crystal-induced ar- thropathies, and computerized tomography (CT) is a nice complement to radiography for deeper sites. When performed in the acute stage, MRI may show severe inflammatory changes that could be misleading; correlation to radiographs or CT should help to distinguish crystal arthropathies from infectious or tumoral conditions. Dual-energy CT is a promising tool for the characterization of crystal arthropathies, partic- ularly gout as it permits a quantitative assessment of deposits, and may help in the follow-up of patients. INTRODUCTION The deposition of microcrystals within and around the joint is a common phenomenon. Intra-articular microcrystals
    [Show full text]
  • Physiopathology of Intratendinous Calcific Deposition Francesco Oliva1, Alessio Giai Via1 and Nicola Maffulli2*
    Oliva et al. BMC Medicine 2012, 10:95 http://www.biomedcentral.com/1741-7015/10/95 REVIEW Open Access Physiopathology of intratendinous calcific deposition Francesco Oliva1, Alessio Giai Via1 and Nicola Maffulli2* involved tendon is the supraspinatus tendon, and in 10% Abstract of patients the condition is bilateral (Figure 1) [1]. The In calcific tendinopathy (CT), calcium deposits in the nomenclature of this condition is confusing, and, for substance of the tendon, with chronic activity-related example, in the shoulder terms such as calcific periar- pain, tenderness, localized edema and various degrees thritis, periarticular apatite deposition, and calcifying of decreased range of motion. CT is particularly tendinitis have been used [2]. We suggest to use the common in the rotator cuff, and supraspinatus, terms ‘calcific tendinopathy’,asitunderlinesthelackof Achilles and patellar tendons. The presence of calcific aclearpathogenesiswhentheprocessislocatedinthe deposits may worsen the clinical manifestations of body of tendon, and ‘insertional calcific tendinopathy’,if tendinopathy with an increase in rupture rate, slower the calcium deposit is located at the bone-tendon recovery times and a higher frequency of post- junction. operative complications. The aetiopathogenesis of CT Calcific insertional tendinopathy of the Achilles tendon is still controversial, but seems to be the result of an manifests in different patients populations, including active cell-mediated process and a localized attempt young athletes and older, sedentary and overweight indi- of the tendon to compensate the original decreased viduals [3]. Usually, radiographs evidence ossification at stiffness. Tendon healing includes many sequential the insertion of the Achilles tendon or a spur (fish-hook processes, and disturbances at different stages of osteophyte) on the superior portion of the calcaneus.
    [Show full text]
  • A Systematic Review of Shockwave Therapies in Soft Tissue Conditions: Focusing on the Evidence Cathy Speed
    Downloaded from http://bjsm.bmj.com/ on February 8, 2018 - Published by group.bmj.com Review A systematic review of shockwave therapies in soft tissue conditions: focusing on the evidence Cathy Speed Cambridge Centre for Health ABSTRACT other tissues.2 Many of the physical effects are and Performance, Vision Park, Background ‘Shock wave’ therapies are now considered to be dependent on the energy delivered Histon, Cambridge, UK extensively used in the treatment of musculoskeletal to a focal area. The concentrated SW energy per 2 Correspondence to injuries. This systematic review summarises the evidence unit area, the energy flux density,(EFD, in mJ/mm ), Dr Cathy Speed, base for the use of these modalities. is a term used to reflect the flow of SW energy in a Rheumatology, Sport & Methods A thorough search of the literature was perpendicular direction to the direction of propaga- Exercise Medicine, Cambridge performed to identify studies of adequate quality to tion and is taken as one of the most important Centre for Health and ‘ ’ 3 Performance, Conqueror assess the evidence base for shockwave therapies on descriptive parameters of SW dosage . There House, Vision Park, pain in specific soft tissue injuries. Both focused remains no consensus as to the definition of ‘high Cambridge CB24 9ZR, UK; extracorporeal shockwave therapy (F-ESWT) and radial and ‘low’ energy ESWT, but as a guideline, low- [email protected] pulse therapy (RPT) were examined. energy ESWT is EFD≤0.12 mJ/mm2, and high fi 2 4 Accepted 25 June 2013 Results 23 appropriate studies were identi ed. There is energy is >0.12 mJ/mm .
    [Show full text]
  • Extracorporeal Shock Wave Treatment for Plantar Fasciitis and Other Musculoskeletal Conditions
    MEDICAL POLICY POLICY TITLE EXTRACORPOREAL SHOCK WAVE TREATMENT FOR PLANTAR FASCIITIS AND OTHER MUSCULOSKELETAL CONDITIONS POLICY NUMBER MP-2.034 Original Issue Date (Created): 7/1/2002 Most Recent Review Date (Revised): 3/23/2020 Effective Date: 6/1/2020 POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS BENEFIT VARIATIONS DISCLAIMER CODING INFORMATION REFERENCES POLICY HISTORY I. POLICY Extracorporeal shock wave therapy (ESWT) using either a high- or low-dose protocol or radial ESWT, is considered investigational as a treatment of musculoskeletal conditions, including but not limited to plantar fasciitis; tendinopathies including tendinitis of the shoulder, tendinitis of the elbow (lateral epicondylitis), Achilles tendinitis and patellar tendinitis; stress fractures; avascular necrosis of the femoral head; delayed union and non-union of fractures; and spasticity. There is insufficient evidence to support a conclusion concerning the health outcomes or benefits associated with this procedure. II. PRODUCT VARIATIONS TOP This policy is only applicable to certain programs and products administered by Capital BlueCross and subject to benefit variations as discussed in Section VI. Please see additional information below. FEP PPO: Refer to FEP Medical Policy Manual MP-2.01.40, Extracorporeal Shock Wave Treatment for Plantar Fasciitis and Other Musculoskeletal Conditions. The FEP Medical Policy Manual can be found at: https://www.fepblue.org/benefit-plans/medical-policies-and-utilization- management-guidelines/medical-policies. III. DESCRIPTION/BACKGROUND TOP CHRONIC MUSCULOSKELETAL CONDITIONS Chronic musculoskeletal conditions (e.g., tendinitis) can be associated with a substantial degree of scarring and calcium deposition. Calcium deposits may restrict motion and encroach on other structures, such as nerves and blood vessels, causing pain and decreased function.
    [Show full text]
  • Calcific Tendinitis
    Shoulder Calcific Tendinitis Information for patients Orthopaedic Shoulder Service This leaflet will give you some information about Calcific Tendinitis and how it can be managed. Calcific tendonitis is a build-up of calcium in the rotator cuff tendon (group of tendons wrapped around the ball of the shoulder joint, which helps you to raise and rotate your arm). This calcium deposit may cause a build-up of pressure in the tendon, causing a chemical irritation/inflammation which can lead to you experiencing intense pain. It usually affects people between the age of 30-50 and women are more likely to experience this condition. Key points ❖ Calcium deposits cause significant pain and restrict movement in the shoulder ❖ It gets better by itself with time. The severe pain usually resolves within a few months but it can take up to five years for the condition to get completely better ❖ The aim of the treatment is to reduce the inflammation in the shoulder tendon through pain control, anti-inflammatory treatment and gradual rehabilitation of the shoulder ❖ Other treatment options include injections, needling and surgery 2 Shoulder Calcific Tendinitis Calcium deposit in Collar Bone rotator cuff tendon Humerus Shoulder Blade What are the symptoms? The symptoms can vary. Some people may have intermittent moderate pain in their shoulder and upper arm, which may interfere with their sleep Others, may have an acute attack of intense continuous pain with severe limitation of shoulder movement which can last for weeks The restricted movement can stop you putting your hand behind you, or being able to reach as far as the back of your head Shoulder Calcific Tendinitis 3 What can I do to help ease the pain? There is strong evidence that simple painkillers and anti- inflammatory tablets significantly help people to manage the pain.
    [Show full text]
  • Calcific Tendinitis of the Hand and Foot: a Report of Four Cases
    www.ksmrm.org JKSMRM 16(2) : 177-183, 2012 Print ISSN 1226-9751 Case Report Calcific Tendinitis of the Hand and Foot: A Report of Four Cases Hyung Ook Lee1, Young Hwan Lee1, Sung Hee Mun1, Ung Rae Kang1, Chae Kyung Lee2, Kyung Jin Suh3 1Department of Radiology, School of Medicine, Catholic University of Daegu 2Department of Radiology, Pohang St. Mary’s Hospital 3Department of Radiology, School of Medicine, Dongguk University Gyeongju Hospital Calcific tendinitis of hand and foot is rare and frequently misdiagnosed because of its rare incidence and its similar clini- cal presentation to other conditions such as infection. Awareness of the typical location as well as familiarity with the imaging findings is essential for making a correct diagnosis of this rare condition. We report four cases of calcific tendinitis of hand and foot, occurring in the flexor hallucis brevis, abductor digiti minimi, and abductor pollicis brevis. Index words : Tendon∙Tendon, Magnetic resonance∙Tendinitis this condition. We describe the radiography, US, CT, INTRODUCTION and MR imaging findings of four cases of calcific tendinitis occurring in the hand and foot. Calcific tendinitis most commonly occurs in the shoulder and less common locations include the hip, elbow, wrist, and knee (1-3). Its occurrence in the CASE REPORT hand and foot has been sporadically reported in the literature (4-9). Clinically, calcific tendinitis of hand Patient 1 and foot is presented by severe pain, swelling, and A 32-year-old woman presented with a 2-day history erythema, and is frequently misdiagnosed because of of pain on the plantar aspect of the right forefoot in its rare incidence and its similar clinical presentation the area of first metatarsal head.
    [Show full text]
  • Shoulder Tendinitis Protocol
    175 Cambridge Street, 4th floor Boston, MA 02114 617-726-7500 SHOULDER TENDINITIS Shoulder tendinitis is a common overuse injury in sports (such as swimming, baseball and tennis) where the arm is used in an overhead motion. The pain – usually felt at the tip of the shoulder and referred or radiated down the arm – occurs when the arm is lifted overhead or twisted. In extreme cases, pain will be present all of the time and it may even wake you from a deep sleep. The shoulder is a closely fitted joint. The humerus (upper arm bone), the tendons of the rotator cuff that connect to the muscles that lift the arm, and associated bursa (friction reducing membranes), move back and forth through a very tight archway of bone and ligament called the coracoacromial arch. When the arm is raised, the archway becomes smaller and compresses the tendons and bursa. Repetitive use of the arm makes the tendons and bursa prone to injury and inflammation. Bursitis occurs when the bursa becomes inflamed and painful due to compression inside of the coracoacromial arch. Tendinitis occurs when a rotator cuff tendon becomes inflamed, swollen and tender. Symptoms of tendinitis and bursitis usually last for only a few days, but may recur or become chronic. Stages of tendinitis • Overuse tendinitis. Shoulder motions used during activities like golfing, throwing or overhead lifting may cause repetitive stress within the rotator cuff, leading to irritation, bruising or fraying of the tendon. This can cause shoulder pain and weakness in the joint. • Calcific tendinitis. Inflammation over a long period of time can sometimes result in a build- up of calcium deposits within the rotator cuff tendons.
    [Show full text]
  • Complications of Calcific Tendinitis of the Shoulder
    J Orthopaed Traumatol (2015) 16:175–183 DOI 10.1007/s10195-015-0339-x REVIEW ARTICLE Complications of calcific tendinitis of the shoulder: a concise review Giovanni Merolla • Mahendar G. Bhat • Paolo Paladini • Giuseppe Porcellini Received: 27 October 2014 / Accepted: 30 January 2015 / Published online: 20 February 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Calcific tendinitis (CT) of the rotator cuff (RC) Introduction muscles in the shoulder is a disorder which remains asymptomatic in a majority of patients. Once manifested, it Calcifying tendinitis (CT) of the shoulder is a frequently can present in different ways which can have negative ef- occurring painful disorder characterized by the presence of fects both socially and professionally for the patient. The calcified deposits in the tendons of the rotator cuff (RC) treatment modalities can be either conservative or surgical. mainly affecting the supraspinatus tendon but occasionally There is poor literature evidence on the complications of is seen in the infraspinatus and subscapularis [1–5]. this condition with little consensus on the treatment of The prevalence has been reported to be 2.7 percent in choice. In this review, the literature was extensively sear- asymptomatic individuals, more common in females be- ched in order to study and compile together the compli- tween the 4th and 6th decades of life and in sedentary cations of CT of the shoulder and present it in a clear form workers [6, 7]. Two speculative hypotheses have been in- to ease the understanding for all the professionals involved troduced to explain the etiology of CT [8].
    [Show full text]