Imaging in Gout and Other Crystal-Related Arthropathies 625
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Updated Treatment for Calcium Pyrophosphate Deposition Disease: an Insight
Open Access Review Article DOI: 10.7759/cureus.3840 Updated Treatment for Calcium Pyrophosphate Deposition Disease: An Insight Shumaila M. Iqbal 1 , Sana Qadir 2 , Hafiz M. Aslam 3 , Madiha A. Qadir 4 1. Internal Medicine, University at Buffalo / Sisters of Charity Hospital, Buffalo, USA 2. Internal Medicine, S & A Pediatrics, Parsippany, USA 3. Internal Medicine, Seton Hall University / Hackensack Meridian School of Medicine, Trenton, USA 4. Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK Corresponding author: Shumaila M. Iqbal, [email protected] Abstract Calcium pyrophosphate disease (CPPD) is caused by the deposition of calcium pyrophosphate (CPP) crystals in the joint tissues, particularly fibrocartilage and hyaline cartilage. CPP crystals trigger inflammation, causing local articular tissue damage. Our review article below covers different aspects of CPPD. It discusses how CPPD can manifest as different kinds of arthritis, which may be symptomatic or asymptomatic. The metabolic and endocrine disease associations and routine investigations used in the diagnostic workup are briefly reviewed. Conventional and newer therapies for the treatment of CPPD are outlined. Overall, this extensive review would provide an updated insight to clinicians for evidence-based treatment of CPPD. Categories: Rheumatology Keywords: calcium pyrophosphate deposition disease, calcium pyrophosphate crystal, arthritis, colchicine, immunomodulants, nsaid Introduction And Background Calcium pyrophosphate deposition disease (CPPD) is caused by the deposition of calcium pyrophosphate (CCP) crystals in the articular cartilage, resulting in inflammation and degenerative changes in the affected joint. CPPD is a collective term that comprises all the various forms of CPP crystal-induced arthropathies. The acute arthritis attack caused by CPP crystals deposition triggers the same inflammatory reaction in the joint tissues as do the monosodium urate crystals in gout patients. -
Absolute Risk, 252 Acetabular Dysplasia, 38, 211, 213 Acetabular Protrusion, 38 Achondroplasia, 195, 197, 199–200, 205 Genetic
Cambridge University Press 978-0-521-86137-3 - Palaeopathology Tony Waldron Index More information Index absolute risk, 252 angular kyphosis acetabular dysplasia, 38, 211, 213 in Scheuermann’s disease, 45 acetabular protrusion, 38 in tuberculosis, 93–4 achondroplasia, 195, 197, 199–200, 205 ankylosing spondylitis, 57–60, 65 genetic defect in, 199 ankylosis in, 58 skeletal changes in, 200 bamboo spine in, 59 acoustic neuroma, 229–31 erosions in, 59 acromegaly, 78, 207–8 first description, 57 and DISH, 208 HLA B27 58 and, skeletal changes in, 208 operational definition of, 59 acromelia, 198 prevalence of, 58 aDNA sacroiliitis and, 59 in leprosy, 101 skip lesions in, 59 in syphilis, 108 ankylosis, 51 in tuberculosis, 92, 95–6 following fracture, 146 Albers-Schonberg˝ disease, see in ankylosing spondylitis, 58 osteopetrosis in brucellosis, 96 Alstrom syndrome, 78 in DISH, 73 alveolar margin, see periodontal disease in erosive osteoarthritis, 55 amputation, 158–61 in rheumatoid arthritis, 51 indications for, 160–1 in septic arthritis, 89 ancient DNA, see aDNA in tuberculosis, 93–4 anaemia, 136–7 annulus fibrosus, 42–3, 45 cribra obitalia and, 136–7 ante-mortem tooth loss, 238–9 aneurysms, 224–7 and periodontal disease, 238–9 aortic, 224–5 and scurvy, 132 and syphilis, 224 causes of, 238 of vertebral artery, 225–6 anterior longitudinal ligament popliteal, 226 in ankylosing spondylitis, 59 aneurysmal bone cyst, 177 in DISH, 73 angiosarcoma, 182 anti-CCP antibodies, 49, 53 © Cambridge University Press www.cambridge.org Cambridge University Press -
ACR Appropriateness Criteria® Chronic Knee Pain
Revised 2018 American College of Radiology ACR Appropriateness Criteria® Chronic Knee Pain Variant 1: Adult or child greater than or equal to 5 years of age. Chronic knee pain. Initial imaging. Procedure Appropriateness Category Relative Radiation Level Radiography knee Usually Appropriate ☢ Image-guided aspiration knee Usually Not Appropriate Varies CT arthrography knee Usually Not Appropriate ☢ CT knee with IV contrast Usually Not Appropriate ☢ CT knee without and with IV contrast Usually Not Appropriate ☢ CT knee without IV contrast Usually Not Appropriate ☢ MR arthrography knee Usually Not Appropriate O MRI knee without and with IV contrast Usually Not Appropriate O MRI knee without IV contrast Usually Not Appropriate O Bone scan knee Usually Not Appropriate ☢☢☢ US knee Usually Not Appropriate O Radiography hip ipsilateral Usually Not Appropriate ☢☢☢ Variant 2: Adult or child greater than or equal to 5 years of age. Chronic knee pain. Initial knee radiograph negative or demonstrates joint effusion. Next imaging procedure. Procedure Appropriateness Category Relative Radiation Level MRI knee without IV contrast Usually Appropriate O Image-guided aspiration knee May Be Appropriate Varies CT arthrography knee May Be Appropriate ☢ CT knee without IV contrast May Be Appropriate ☢ US knee May Be Appropriate (Disagreement) O Radiography hip ipsilateral May Be Appropriate ☢☢☢ Radiography lumbar spine May Be Appropriate ☢☢☢ MR arthrography knee May Be Appropriate O MRI knee without and with IV contrast Usually Not Appropriate O CT knee with IV contrast Usually Not Appropriate ☢ CT knee without and with IV contrast Usually Not Appropriate ☢ Bone scan knee Usually Not Appropriate ☢☢☢ ACR Appropriateness Criteria® 1 Chronic Knee Pain Variant 3: Adult or child greater than or equal to 5 years of age. -
Imaging Shoulder Impingement
UCLA UCLA Previously Published Works Title Imaging shoulder impingement. Permalink https://escholarship.org/uc/item/0kg9j32r Journal Skeletal radiology, 22(8) ISSN 0364-2348 Authors Gold, RH Seeger, LL Yao, L Publication Date 1993-11-01 DOI 10.1007/bf00197135 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Skeletal Radiol (1993) 22:555-561 Skeletal Radiology Review Imaging shoulder impingement Richard H. Gold, M.D., Leannc L. Seeger, M.D., Lawrence Yao, M.D. Department of Radiological Sciences, UCLA School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90024-1721, USA Abstract. Appropriate imaging and clinical examinations more components of the coracoacromial arch superiorly. may lead to early diagnosis and treatment of the shoulder The coracoacromial arch is composed of five basic struc- impingement syndrome, thus preventing progression to a tures: the distal clavicle, acromioclavicular joint, anteri- complete tear of the rotator cuff. In this article, we discuss or third of the acromion, coracoacromial ligament, and the anatomic and pathophysiologic bases of the syn- anterior third of the coracoid process (Fig. 1). Repetitive drome, and the rationale for certain imaging tests to eval- trauma leads to progressive edema and hemorrhage of uate it. Special radiographic projections to show the the rotator cuff and hypertrophy of the synovium and supraspinatus outlet and inferior surface of the anterior subsynovial fat of the subacromial bursa. In a vicious third of the acromion, combined with magnetic reso- cycle, the resultant loss of space predisposes the soft nance images, usually provide the most useful informa- tissues to further injury, with increased pain and disabili- tion regarding the causes of impingement. -
21362 Arthritis Australia a to Z List
ARTHRITISINFORMATION SHEET Here is the A to Z of arthritis! A D Goodpasture’s syndrome Achilles tendonitis Degenerative joint disease Gout Achondroplasia Dermatomyositis Granulomatous arteritis Acromegalic arthropathy Diabetic finger sclerosis Adhesive capsulitis Diffuse idiopathic skeletal H Adult onset Still’s disease hyperostosis (DISH) Hemarthrosis Ankylosing spondylitis Discitis Hemochromatosis Anserine bursitis Discoid lupus erythematosus Henoch-Schonlein purpura Avascular necrosis Drug-induced lupus Hepatitis B surface antigen disease Duchenne’s muscular dystrophy Hip dysplasia B Dupuytren’s contracture Hurler syndrome Behcet’s syndrome Hypermobility syndrome Bicipital tendonitis E Hypersensitivity vasculitis Blount’s disease Ehlers-Danlos syndrome Hypertrophic osteoarthropathy Brucellar spondylitis Enteropathic arthritis Bursitis Epicondylitis I Erosive inflammatory osteoarthritis Immune complex disease C Exercise-induced compartment Impingement syndrome Calcaneal bursitis syndrome Calcium pyrophosphate dehydrate J (CPPD) F Jaccoud’s arthropathy Crystal deposition disease Fabry’s disease Juvenile ankylosing spondylitis Caplan’s syndrome Familial Mediterranean fever Juvenile dermatomyositis Carpal tunnel syndrome Farber’s lipogranulomatosis Juvenile rheumatoid arthritis Chondrocalcinosis Felty’s syndrome Chondromalacia patellae Fibromyalgia K Chronic synovitis Fifth’s disease Kawasaki disease Chronic recurrent multifocal Flat feet Kienbock’s disease osteomyelitis Foreign body synovitis Churg-Strauss syndrome Freiberg’s disease -
Geriatric Rheumatology: a Comprehensive Approach Encourages You to Think from the Older Patient’S Perspective
Geriatric Rheumatology wwwwwwwwwwwwwwwwwwwwww Yuri Nakasato • Raymond L. Yung Editors Geriatric Rheumatology A Comprehensive Approach Editors Yuri Nakasato Raymond L. Yung Sanford Health Systems Department of Internal Medicine Fargo, ND, USA University of Michigan [email protected] Ann Arbor, Michigan, USA [email protected] ISBN 978-1-4419-5791-7 e-ISBN 978-1-4419-5792-4 DOI 10.1007/978-1-4419-5792-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011928680 © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. -
Psoriasis, Psoriatic Arthritis and Secondary Gout – 3 Case Reports
https://doi.org/10.5272/jimab.2018242.1972 Journal of IMAB Journal of IMAB - Annual Proceeding (Scientific Papers). 2018 Apr-Jun;24(2) ISSN: 1312-773X https://www.journal-imab-bg.org Case report PSORIASIS, PSORIATIC ARTHRITIS AND SECONDARY GOUT – 3 CASE REPORTS Mina I. Ivanova, Rositsa Karalilova, Zguro Batalov. Departement of Rheumatology, Faculty of Medicine, UMHAT Kaspela, Medical University - Plovdiv, Bulgaria. ABSTRACT: cells in the skin (Langerhans cells) migrate to the regional Background: One of the most common complica- lymph nodes, where interacts with T-lymphocytes. This tions in psoriasis is the development of secondary gout that provokes the immune response leading to the activation often remains undiagnosed for many years. In some cases, of T cells and release of cytokines. The local effects of the clinical symptoms of gout precede the manifestation cytokines lead to a cell-mediated immune response. In pso- of cutaneous psoriasis, leading to progression of the dis- riasis skin lesions are results of hyperplasia of the epider- ease and early onset of complications. According to the mis, which leads to enhanced cell reproduction, world data, there is a strong correlation between psoriasis hyperproliferation and at the same time shortening vulgaris and psoriatic arthritis on the one hand and gout keratinocytes’ life. This leads to increased production of on the other ranging from 3 to 40%. In Bulgaria, there are uric acid, as it enhances the exchange of nucleic acids. no studies observing the frequency of secondary gout in Psoriatic arthritis (PsA) occurs in 0.05 to 0.25% from psoriatic patients. the general population. -
Crystal Deposition in Joints: Prevalence and Relevance for Arthritis
Editorial Crystal Deposition in Joints: Prevalence and Relevance for Arthritis Within the present world of arthritis research and practice, surfaces as one manifestation of systemic urate metabolism investigators of crystal-associated arthritis appear to be a disorders13. While MSU crystals deposit on cartilage sur- small, aging, and dwindling endangered species whose faces, these crystals can accumulate and erode into carti- interests are seen to be peripheral to those of most rheuma- lage. In contrast, CPPD crystal deposition is restricted to tologists. This contrasts dramatically with the high preva- hyaline and fibrocartilages and reflects a metabolic disorder lence of these diseases1,2. Both gout [urate crystal within cartilage itself14. While CPPD crystals have been (monosodium urate, MSU) arthropathy] and pseudogout said to form principally in cartilage mid-zone, this study [calcium pyrophosphate dihydrate (CPPD) crystal arthropa- and our own unpublished observations show that CPPD thy] are common and distinct forms of arthritis that were crystals can form in hyaline cartilage superficial zones, distinguished and characterized clinically decades ago3-7. It within the cartilage surface and sometimes without deeper is easy to speculate on the reasons for the current clinical underlying deposits. MSU and CPPD crystal deposits on lack of interest. These include: specific therapy for gout, cartilage surfaces cannot be distinguished from each other absence of specific therapy for pseudogout, and blurring of by the naked eye. However, these crystals can be identified the clinical distinction between these diseases and by experienced observers using compensated polarized osteoarthritis (OA). It is an important but separate issue that light microscopy or by more elaborate methods such as OA itself, as a clinical disease descriptor, encompasses a Fourier transform infra-red spectroscopy or powder x-ray or wide range of diseases, distinguished only sometimes as pri- electron diffraction. -
View a Copy of This Licence, Visit Iveco Mmons. Org/ Licen Ses/ By/4. 0/
Leyens et al. Orphanet J Rare Dis (2021) 16:326 https://doi.org/10.1186/s13023-021-01945-8 RESEARCH Open Access The combined prevalence of classifed rare rheumatic diseases is almost double that of ankylosing spondylitis Judith Leyens1,2, Tim Th. A. Bender1,3, Martin Mücke1, Christiane Stieber4, Dmitrij Kravchenko1,5, Christian Dernbach6 and Matthias F. Seidel7* Abstract Background: Rare diseases (RDs) afect less than 5/10,000 people in Europe and fewer than 200,000 individuals in the United States. In rheumatology, RDs are heterogeneous and lack systemic classifcation. Clinical courses involve a variety of diverse symptoms, and patients may be misdiagnosed and not receive appropriate treatment. The objec- tive of this study was to identify and classify some of the most important RDs in rheumatology. We also attempted to determine their combined prevalence to more precisely defne this area of rheumatology and increase awareness of RDs in healthcare systems. We conducted a comprehensive literature search and analyzed each disease for the speci- fed criteria, such as clinical symptoms, treatment regimens, prognoses, and point prevalences. If no epidemiological data were available, we estimated the prevalence as 1/1,000,000. The total point prevalence for all RDs in rheumatol- ogy was estimated as the sum of the individually determined prevalences. Results: A total of 76 syndromes and diseases were identifed, including vasculitis/vasculopathy (n 15), arthritis/ arthropathy (n 11), autoinfammatory syndromes (n 11), myositis (n 9), bone disorders (n 11),= connective tissue diseases =(n 8), overgrowth syndromes (n 3), =and others (n 8).= Out of the 76 diseases,= 61 (80%) are clas- sifed as chronic, with= a remitting-relapsing course= in 27 cases (35%)= upon adequate treatment. -
Arthritis and Other Rheumatic Disorders ICD-9-CM to ICD-10-CM Estimated Crosswalk
AORC ICD-9-CM to ICD-10-CM Conversion Codes Arthritis and Other Rheumatic Disorders ICD-9-CM to ICD-10-CM Estimated Crosswalk ICD-9-CM ICD-10-CM Osteoarthritis and allied disorders 715 Osteoarthrosis generalized, site unspecified M15.0 Primary generalized (osteo)arthritis M15.9 Polyosteoarthritis, unspecified 715.04 Osteoarthrosis, generalized, hand M15.1 Heberden's nodes (with arthropathy) M15.2 Bouchard's nodes (with arthropathy) 715.09 Osteoarthrosis, generalized, multiple sites M15.0 Primary generalized (osteo)arthritis 715.1 Osteoarthrosis, localized, primary, site unspecified M19.91 Primary osteoarthritis, unspecified site 715.11 Osteoarthrosis, localized, primary, shoulder region M19.019 Primary osteoarthritis, unspecified shoulder 715.12 Osteoarthrosis, localized, primary, upper arm M19.029 Primary osteoarthritis, unspecified elbow 715.13 Osteoarthrosis, localized, primary, forearm M19.039 Primary osteoarthritis, unspecified wrist 715.14 Osteoarthrosis, localized, primary, hand M19.049 Primary osteoarthritis, unspecified hand 715.15 Osteoarthrosis, localized, primary, pelvic region and thigh M16.10 Unilateral primary osteoarthritis, unspecified hip 715.16 Osteoarthrosis, localized, primary, lower leg M17.10 Unilateral primary osteoarthritis, unspecified knee 715.17 Osteoarthrosis, localized, primary, ankle and foot M19.079 Primary osteoarthritis, unspecified ankle and foot 715.18 Osteoarthrosis, localized, primary, other specified sites M19.91 Primary osteoarthritis, unspecified site 715.2 Osteoarthrosis, localized, secondary, -
Hemarthrosis
Case Report DOI: 10.5455/amaj.2016.02.012 Hemarthrosis: Concurrent acute presentation of pyrophosphate dehydrate and uric acid crystals in an elderly patient with a history of rheumatoid ar- thritis diagnosed with septic arthritis Feredun Azari, BS-MD Rauf Shahbazov, MD, PhD* Concomitant septic arthritis in the presence of crystalline disease is a rare presen- tation of acute hemarthrosis and knee pain. Literature review showed that co-occur- Department of Surgery, rence of these entities is an infrequent phenomenon but it needs to be acknowledged University of Virginia, that these studies are few in number and were done on small patient population. This Charlottesville, Virginia, USA case challenges the notion that presence of crystals in the synovial fluid rules out sep- tic arthritis even in the setting of low synovial WBC count. Additionally, the presence Correspondence: of pseudogout in patients suffering from gout is a rare entity as well. These findings Rauf Shahbazov MD, PhD, Organ Trans- in literature are described in case reports dispersed over the past three decades. We plantation Unit, University of Virginia present a case where concurrent treatment of gout, pseudogout, and septic arthritis Medical Center, Charlottesville, Virginia, in a patient who presented with acute hemarhtrosis. USA email: [email protected] Keywords: gout, pseudogout, rheumatoid arthritis, infection Phone: 434-872-1373 Introduction tions [1]. Vigilance is needed to have a low ge related crystal induced arthropathies threshold for ruling out septic arthritis in Aare a common phenomenon presenting this patient population. This is usually done to the primary care office or the emergency via synovial fluid analysis but as demon- department [1,2]. -
Arthritis Due to Deposition Diseases: Differential Diagnosis in Conventional Radiology
Arthritis due to deposition diseases: differential diagnosis in conventional radiology Poster No.: C-1599 Congress: ECR 2016 Type: Educational Exhibit Authors: A. P. Pissarra, R. R. Domingues Madaleno, I. Abreu, B. Graça, F. Caseiro Alves; Coimbra/PT Keywords: Education and training, Arthritides, Education, Diagnostic procedure, Conventional radiography, Musculoskeletal joint, Bones, Extremities DOI: 10.1594/ecr2016/C-1599 Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third- party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file. As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited. You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages. Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations. www.myESR.org Page 1 of 30 Learning objectives The purpose of this article is to describe the typical imaging findings on plain film of deposition diseases arthropathies, differentiating them according to their radiographic appearance and body segments most commonly affected by the substance deposition.