Reducing Weed Risks from Fodder
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
Grass Genera in Townsville
Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers. -
Rapistrum Rugosum Bastard Cabbage Family: Brassicaceae (Mustard Family) Duration & Habit: Annual Herb
RAPISTRUM RUGOSUM BASTARD CABBAGE FAMILY: BRASSICACEAE (MUSTARD FAMILY) DURATION & HABIT: ANNUAL HERB Photographer: Mark Simmons Source: Lady Bird Johnson Wildflower Center Description: Bastard cabbage is an annual, many-branched, herbaceous plant that grows from 1 to 5 feet or more in height. It has a robust taproot that can become quite large and deep-rooted. Leaves are deep green, lobed and wrinkled, and sometimes have a reddish cast. The terminal lobe is larger than the lateral lobes, especially on the basal leaves. Younger leaves growing higher up on the plant are less lobed and more elongated. Bastard cabbage typically flowers from early spring into summer, bearing clusters of small, showy yellow flowers at the tips of its branches, resembling those of broccoli and cabbage. Bastard cabbage can be identified more easily and certainly by its unusually shaped fruit - a two-segmented seed capsule, called a silique. The seed capsule is stalked, with a long beak at the tip, and contains 1-2 seeds. The seeds are oval-shaped, dark brown, smooth, and tiny (about 1/16-inch). Two subspecies of plant are recognized: R. rugosum ssp. rugosum and R. rugosum ssp. orientale. Bastard cabbage is also known as turnip-weed, common giant mustard, ball mustard, wild turnip, wild rape and tall mustard-weed. Designated a terrestrial noxious-weed seed in Texas. Ecological Threat : Bastard cabbage is an early successional plant that develops a broad, robust mass of basal leaves, which allows it to successfully out-compete native plant species. In some places, it forms a monoculture (a vegetative cover of mostly one species). -
Session 3: Non-Traditional Biological Control Agents 102 Session 3 Non-Traditional Biological Control Agents
Session 3: Non-Traditional Biological Control Agents 102 Session 3 Non-Traditional Biological Control Agents XIII International Symposium on Biological Control of Weeds - 2011 Session 3 Non-Traditional Biological Control Agents 103 The Case for Biological Control of Exotic African Grasses in Australia and USA Using Introduced Detritivores D. Sands1 and J. A. Goolsby2 1 CSIRO Division of Ecosystem Sciences, PO box 2583, Brisbane, Queensland 4001 Australia Email: [email protected] 2 U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beneficial Insects Research Unit, 2413 E Hwy 83, Weslaco, Texas 78596 USA Email: [email protected] Abstract Many species of African grasses were introduced into Australia and the USA to improve the quality and biomass of green pastures for domestic livestock. However, a range of non-target environmental impacts eventuated from these introductions, including spatial displacement of indigenous ecosystems, and induced changes to soils and nutrient re-cycling. The accumulation in biomass of flammable and senescing grasses predisposes grassland and woodland ecosystems to increasing impacts from wildfires, threatening indigenous plants and animals, and the recovery after fires of natural ecosystems. Very few detritivores have adapted to feed on and decompose detritus from African grasses in Australia and the USA, resulting in accumulation of dead leaves and a build-up of fuel increasing the risks from wildfires. In grasslands and woodlands of the Northern Hemisphere, epigeic detritivores and leaf-shredders include groups of invertebrates such as earthworms and isopods. In Australia, larvae of leaf-shredding moths, beetles and several other insects are important detritivores including oecophorid moths, cryptocephaline beetles, termites and cockroaches; some specifically adapted to breakdown of sub-surface plant materials in dry and moist ecosystems. -
Plant Conservation Alliance®S Alien Plant Working Group
FACT SHEET: ANNUAL BASTARD-CABBAGE Annual Bastard-Cabbage Rapistrum rugosum (L.) All. Mustard family (Brassicaceae) NATIVE RANGE Central Europe, the Mediterranean, northern Africa and western, temperate Asia DESCRIPTION Annual bastard-cabbage is an annual, many-branched, herbaceous plant that grows from 1 to 5 feet or more in height and has a taproot that can become quite large. Leaves are deep green, lobed and wrinkled, and sometimes have a reddish cast. The terminal lobe is larger than the lateral lobes, especially on the basal leaves. Younger leaves growing higher up on the plant are less lobed and more elongated. Annual bastard-cabbage typically flowers from early spring into summer, bearing clusters of small, showy yellow flowers at the tips of its branches, resembling those of broccoli and cabbage. Annual bastard-cabbage can be identified more easily and certainly by its unusually shaped fruit - a two-segmented seed capsule, called a silique. The seed capsule is stalked, with a long beak at the tip, and contains 1-2 seeds. The seeds are oval-shaped, dark brown, smooth, and tiny (about 1/16-inch). Two subspecies of this plant are recognized: R. rugosum ssp. rugosum and R. rugosum ssp. orientale. Annual bastard cabbage is also known as turnip-weed, common giant mustard, ball mustard, wild turnip, wild rape and tall mustard-weed. It is designated a terrestrial noxious-weed seed in the state of Texas. ECOLOGICAL THREAT Annual bastard-cabbage is an early successional plant that develops a broad, robust mass of basal leaves, which allows it to successfully outcompete native plant species. -
Distribution and Diversity of Grass Species in Banni Grassland, Kachchh District, Gujarat, India
Patel Yatin et al. IJSRR 2012, 1(1), 43-56 Research article Available online www.ijsrr.org ISSN: 2279-0543 International Journal of Scientific Research and Reviews Distribution and Diversity of Grass Species in Banni Grassland, Kachchh District, Gujarat, India 1* 2 3 Patel Yatin , Dabgar YB , and Joshi PN 1Shri Jagdish Prasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan 2R.R. Mehta Colg. of Sci. and C.L. Parikh College of Commerce, Palanpur, Banaskantha, Gujarat. 3Sahjeevan, 175-Jalaram Society, Vijay Nagar, Bhuj- Kachchh, Gujarat ABSTRACT: Banni, an internationally recognized unique grassland stretch of Western India. It is a predominantly flat land with several shallow depressions, which act as seasonal wetlands after monsoon and during winter its converts into sedge mixed grassland, an ideal dual ecosystem. An attempt was made to document ecology, biomass and community based assessment of grasses in Banni, we surveyed systematically and recorded a total of 49 herbaceous plant species, being used as fodder by livestock. In which, the maximum numbers of species (21 Nos.) were recorded in Echinocloa and Cressa habitat; followed by Sporobolus and Elussine habitat (20 species); and Desmostechia-Aeluropus and Cressa habiat (19 species). A total of 21 highest palatable species were recorded in Echinocloa-Cressa communities followed by Sporobolus-Elussine–Desmostechia (20 species and 18 palatable species) and Aeluropus–Cressa (19 species and 17 palatable species). For long-term conservation of Banni grassland, we also suggest a participatory co-management plan. KEY WORDS: Banni, Grassland, Palatability, Communities, Conservation. *Corresponding Author: Yatin Patel Research Scholar, Shri Jagdish Prasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan E-mail: [email protected] IJSRR 1(1) APRIL-JUNE 2012 Page 43 Patel Yatin et al. -
Final Repport
final repport Project code: B.NBP.0716 Prepared by: Ann Lawrie Royal Melbourne Institute of Technology Date published: February 2014 PUBLISHED BY Meat & Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059 Giant Rat’s Tail grass susceptibility to fungi effective in biological control of Giant Parramatta Grass Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication. This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. Giant Rat's Tail grass susceptibility to fungi effective in biological control of Giant Parramatta Grass __________________________________________________________________________________ Abstract Sporobolus pyramidalis (Giant Rat’s Tail grass - GRT) was tested in seedling and pot trials to see if inoculation with Nigrospora oryzae and Fusarium sp. would produce the same symptoms in GRT as those observed in S. fertilis (Giant Parramatta Grass - GPG) – blight in pot trials and crown rot in the field. Seed germination was maximal at over 90% with surface-sterilisation and alternating temperatures of 15/35°C. In seedling trials in Petri dishes, inoculation with N. oryzae significantly reduced height but there was no chlorosis of the youngest leaf or mortality, whereas inoculation with Fusarium proliferatum or with both fungi killed the seedlings. -
Alien Flora of Europe: Species Diversity, Temporal Trends, Geographical Patterns and Research Needs
Preslia 80: 101–149, 2008 101 Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs Zavlečená flóra Evropy: druhová diverzita, časové trendy, zákonitosti geografického rozšíření a oblasti budoucího výzkumu Philip W. L a m b d o n1,2#, Petr P y š e k3,4*, Corina B a s n o u5, Martin H e j d a3,4, Margari- taArianoutsou6, Franz E s s l7, Vojtěch J a r o š í k4,3, Jan P e r g l3, Marten W i n t e r8, Paulina A n a s t a s i u9, Pavlos A n d r i opoulos6, Ioannis B a z o s6, Giuseppe Brundu10, Laura C e l e s t i - G r a p o w11, Philippe C h a s s o t12, Pinelopi D e l i p e t - rou13, Melanie J o s e f s s o n14, Salit K a r k15, Stefan K l o t z8, Yannis K o k k o r i s6, Ingolf K ü h n8, Hélia M a r c h a n t e16, Irena P e r g l o v á3, Joan P i n o5, Montserrat Vilà17, Andreas Z i k o s6, David R o y1 & Philip E. H u l m e18 1Centre for Ecology and Hydrology, Hill of Brathens, Banchory, Aberdeenshire AB31 4BW, Scotland, e-mail; [email protected], [email protected]; 2Kew Herbarium, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, United Kingdom; 3Institute of Bot- any, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic, e-mail: [email protected], [email protected], [email protected], [email protected]; 4Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 01 Praha 2, Czech Republic; e-mail: [email protected]; 5Center for Ecological Research and Forestry Applications, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain, e-mail: [email protected], [email protected]; 6University of Athens, Faculty of Biology, Department of Ecology & Systematics, 15784 Athens, Greece, e-mail: [email protected], [email protected], [email protected], [email protected], [email protected]; 7Federal Environment Agency, Department of Nature Conservation, Spittelauer Lände 5, 1090 Vienna, Austria, e-mail: [email protected]; 8Helmholtz Centre for Environmental Research – UFZ, Department of Community Ecology, Theodor-Lieser- Str. -
Evolutionary Consequences of Dioecy in Angiosperms: the Effects of Breeding System on Speciation and Extinction Rates
EVOLUTIONARY CONSEQUENCES OF DIOECY IN ANGIOSPERMS: THE EFFECTS OF BREEDING SYSTEM ON SPECIATION AND EXTINCTION RATES by JANA C. HEILBUTH B.Sc, Simon Fraser University, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2001 © Jana Heilbuth, 2001 Wednesday, April 25, 2001 UBC Special Collections - Thesis Authorisation Form Page: 1 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. The University of British Columbia Vancouver, Canada http://www.library.ubc.ca/spcoll/thesauth.html ABSTRACT Dioecy, the breeding system with male and female function on separate individuals, may affect the ability of a lineage to avoid extinction or speciate. Dioecy is a rare breeding system among the angiosperms (approximately 6% of all flowering plants) while hermaphroditism (having male and female function present within each flower) is predominant. Dioecious angiosperms may be rare because the transitions to dioecy have been recent or because dioecious angiosperms experience decreased diversification rates (speciation minus extinction) compared to plants with other breeding systems. -
Hygrophila Pinnatifida Plant (Source: Ševčík, 2012)
Weed Risk Assessment for Hygrophila United States pinnatifida (Dalzell) Sreem Department of (Acanthaceae) – Fern hygrophila Agriculture Animal and Plant Health Inspection Service January 28, 2015 Version 1 Left: Submerged Hygrophila pinnatifida plant (source: Ševčík, 2012). Right: Emerged H. pinnatifida specimen (© Kew Royal Botanic Gardens, 1878). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Hygrophila pinnatifida Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use weed risk assessment (WRA)— specifically, the PPQ WRA model (Koop et al., 2012)—to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. Because the PPQ WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States or for any area within it. -
Second Contribution to the Vascular Flora of the Sevastopol Area
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Wulfenia Jahr/Year: 2015 Band/Volume: 22 Autor(en)/Author(s): Seregin Alexey P., Yevseyenkow Pavel E., Svirin Sergey A., Fateryga Alexander Artikel/Article: Second contribution to the vascular flora of the Sevastopol area (the Crimea) 33-82 © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.zobodat.at Wulfenia 22 (2015): 33 – 82 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Second contribution to the vascular flora of the Sevastopol area (the Crimea) Alexey P. Seregin, Pavel E. Yevseyenkov, Sergey A. Svirin & Alexander V. Fateryga Summary: We report 323 new vascular plant species for the Sevastopol area, an administrative unit in the south-western Crimea. Records of 204 species are confirmed by herbarium specimens, 60 species have been reported recently in literature and 59 species have been either photographed or recorded in field in 2008 –2014. Seventeen species and nothospecies are new records for the Crimea: Bupleurum veronense, Lemna turionifera, Typha austro-orientalis, Tyrimnus leucographus, × Agrotrigia hajastanica, Arctium × ambiguum, A. × mixtum, Potamogeton × angustifolius, P. × salicifolius (natives and archaeophytes); Bupleurum baldense, Campsis radicans, Clematis orientalis, Corispermum hyssopifolium, Halimodendron halodendron, Sagina apetala, Solidago gigantea, Ulmus pumila (aliens). Recently discovered Calystegia soldanella which was considered to be extinct in the Crimea is the most important confirmation of historical records. The Sevastopol area is one of the most floristically diverse areas of Eastern Europe with 1859 currently known species. Keywords: Crimea, checklist, local flora, taxonomy, new records A checklist of vascular plants recorded in the Sevastopol area was published seven years ago (Seregin 2008). -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.