Glossary of Optical Terms Compiled by Davis Vision
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Visual Acuity Assessment
VISUAL ACUITY ASSESSMENT J. R. WEATHERILL Bradford Tests of visual function in cataract patients are performed recognised that patients with macular dysfunction have in order to answer two questions: (I) To what extent is the difficulty in reading out of proportion to their Snellen cataract responsible for the patient's symptoms? (2) Will acuity. This difficultyis probably due to parafoveal scoto removal of the cataract improve the patient's sight? To mas which prevent the whole word being seen at the same answer the firstquestion the optical qualities of the eye are time. If a patient reports that the main problem is with assessed, and to answer the second tests are employed reading, it is helpful to observe whether the patient holds which assess retinal and neural function and which are the page steadily or keeps moving it to avoid scotomas. relatively unaffected by the optical degradation caused by With current reading tests patients with poor macular opacities in the media. At Bradford we employ the tests function can read small print for brief periods, particularly listed in Table I. if they are used to reading and recognise the overall shape of the words. A Logmar equivalent for near vision com Snellen Acuity prising random words of equal length and composed of Although the Snellen acuity test measures the function of letters without either ascenders or descenders, read under only the central 1_20 in monochrome at 100% contrast, it controlled conditions of illumination and at a standard dis is nonetheless the 'gold standard' by which ophthal tance, would provide a more accurate measure of macular mologists judge and are judged. -
GUIDE for the Evaluation of VISUAL Impairment
International Society for Low vision Research and Rehabilitation GUIDE for the Evaluation of VISUAL Impairment Published through the Pacific Vision Foundation, San Francisco for presentation at the International Low Vision Conference VISION-99. TABLE of CONTENTS INTRODUCTION 1 PART 1 – OVERVIEW 3 Aspects of Vision Loss 3 Visual Functions 4 Functional Vision 4 Use of Scales 5 Ability Profiles 5 PART 2 – ASSESSMENT OF VISUAL FUNCTIONS 6 Visual Acuity Assessment 6 In the Normal and Near-normal range 6 In the Low Vision range 8 Reading Acuity vs. Letter Chart Acuity 10 Visual Field Assessment 11 Monocular vs. Binocular Fields 12 PART 3 – ESTIMATING FUNCTIONAL VISION 13 A General Ability Scale 13 Visual Acuity Scores, Visual Field Scores 15 Calculation Rules 18 Functional Vision Score, Adjustments 20 Examples 22 PART 4 – DIRECT ASSESSMENT OF FUNCTIONAL VISION 24 Vision-related Activities 24 Creating an Activity Profile 25 Participation 27 PART 5 – DISCUSSION AND BACKGROUND 28 Comparison to AMA scales 28 Statistical Use of the Visual Acuity Score 30 Comparison to ICIDH-2 31 Bibliography 31 © Copyright 1999 by August Colenbrander, M.D. All rights reserved. GUIDE for the Evaluation of VISUAL Impairment Summer 1999 INTRODUCTION OBJECTIVE Measurement Guidelines for Collaborative Studies of the National Eye Institute (NEI), This GUIDE presents a coordinated system for the Bethesda, MD evaluation of the functional aspects of vision. It has been prepared on behalf of the International WORK GROUP Society for Low Vision Research and Rehabilitation (ISLRR) for presentation at The GUIDE was approved by a Work Group VISION-99, the fifth International Low Vision including the following members: conference. -
2018 Department of Ophthalmology Chair Report
SAVE THE▼ DATE Department of 200 Ophthalmology Years www.NYEE.edu Anniversary SPECIALTY REPORT | FALL 2018 www.NYEE.edu Celebration Join us for 200 Years and Counting: Bicentennial Cocktail Celebration October 15, 2020 Research Breakthrough: The Plaza 768 5th Avenue Gene Transfer New York, NY Therapy Restores 200 Years and Counting: Ophthalmology Vision in Mice Symposium October 16, 2020 Stay tuned for details on tickets and registration information. Cover image: Slice of a central retina section showing all layers (ONL, INL, GCL). Red indicates rod photoreceptors, located in outer nuclear layer (ONL). Green indicates Müller glial cells, whose cell bodies are located in inner nuclear layer (INL), and their branches across all three layers. Dark blue indicates the nucleus of all cells in three layers (GCL). Icahn School of Medicine at Medical Directors Neuro-Ophthalmology Uveitis and Ocular Immunology Mount Sinai Departmental Mark Kupersmith, MD Douglas Jabs, MD, MBA Avnish Deobhakta, MD Leadership System Chief, System Chief, Uveitis and Ocular Medical Director, NYEE - Neuro-Ophthalmology, Immunology, MSHS James C. Tsai, MD, MBA East 85th Street MSHS President, NYEE Stephanie Llop, MD System Chair, Department of Robin N. Ginsburg, MD 3 Message From the System Chair of the DepartmentValerie Elmalem, of Ophthalmology MD Sophia Saleem, MD Ophthalmology, MSHS Medical Director, NYEE- Joel Mindel, MD East 102nd Street Louis4 R. Pasquale,Breaking MD New Ground in Gene Transfer Therapy to Restore Vision Affiliated Leadership Ocular Oncology Site Chair, Department of Gennady Landa, MD Paul Finger, MD Ebby Elahi, MD, MBA Ophthalmology, MSH and MSQ Medical Director, NYEE- 6 This i-Doctor Is Transforming the Field of Ophthalmology President, NYEE/MSH System Vice Chair, Translational Williamsburg and Tribeca Ophthalmic Pathology Ophthalmology Alumni Ophthalmology Research, MSHS Jodi Sassoon, MD Society Kira Manusis, MD Inside Feature Site Chair, Pathology, NYEE Medical Director, NYEE- Paul A. -
Visual Performance of Scleral Lenses and Their Impact on Quality of Life In
A RQUIVOS B RASILEIROS DE ORIGINAL ARTICLE Visual performance of scleral lenses and their impact on quality of life in patients with irregular corneas Desempenho visual das lentes esclerais e seu impacto na qualidade de vida de pacientes com córneas irregulares Dilay Ozek1, Ozlem Evren Kemer1, Pinar Altiaylik2 1. Department of Ophthalmology, Ankara Numune Education and Research Hospital, Ankara, Turkey. 2. Department of Ophthalmology, Ufuk University Faculty of Medicine, Ankara, Turkey. ABSTRACT | Purpose: We aimed to evaluate the visual quality CCS with scleral contact lenses were 0.97 ± 0.12 (0.30-1.65), 1.16 performance of scleral contact lenses in patients with kerato- ± 0.51 (0.30-1.80), and 1.51 ± 0.25 (0.90-1.80), respectively. conus, pellucid marginal degeneration, and post-keratoplasty Significantly higher contrast sensitivity levels were recorded astigmatism, and their impact on quality of life. Methods: with scleral contact lenses compared with those recorded with We included 40 patients (58 eyes) with keratoconus, pellucid uncorrected contrast sensitivity and spectacle-corrected contrast marginal degeneration, and post-keratoplasty astigmatism who sensitivity (p<0.05). We found the National Eye Institute Visual were examined between October 2014 and June 2017 and Functioning Questionnaire overall score for patients with scleral fitted with scleral contact lenses in this study. Before fitting contact lens treatment to be significantly higher compared with scleral contact lenses, we noted refraction, uncorrected dis- that for patients with uncorrected sight (p<0.05). Conclusion: tance visual acuity, spectacle-corrected distance visual acuity, Scleral contact lenses are an effective alternative visual correction uncorrected contrast sensitivity, and spectacle-corrected contrast method for keratoconus, pellucid marginal degeneration, and sensitivity. -
Action and Perception Are Temporally Coupled by a Common Mechanism That Leads to a Timing Misperception
The Journal of Neuroscience, January 28, 2015 • 35(4):1493–1504 • 1493 Behavioral/Cognitive Action and Perception Are Temporally Coupled by a Common Mechanism That Leads to a Timing Misperception Elena Pretegiani,1,2 Corina Astefanoaei,3 XPierre M. Daye,1,4 Edmond J. FitzGibbon,1 Dorina-Emilia Creanga,3 Alessandra Rufa,2 and XLance M. Optican1 1Laboratory of Sensorimotor Research, NEI, NIH, DHHS, Bethesda, Maryland, 20892-4435, 2EVA-Laboratory, University of Siena, 53100 Siena, Italy, 3Alexandru Ioan Cuza University, Physics Faculty, 700506 Iasi, Romania, and 4Institut du cerveau et de la moelle´pinie e `re (ICM), INSERM UMRS 975, 75013 Paris, France We move our eyes to explore the world, but visual areas determining where to look next (action) are different from those determining what we are seeing (perception). Whether, or how, action and perception are temporally coordinated is not known. The preparation time course of an action (e.g., a saccade) has been widely studied with the gap/overlap paradigm with temporal asynchronies (TA) between peripheral target onset and fixation point offset (gap, synchronous, or overlap). However, whether the subjects perceive the gap or overlap, and when they perceive it, has not been studied. We adapted the gap/overlap paradigm to study the temporal coupling of action and perception. Human subjects made saccades to targets with different TAs with respect to fixation point offset and reported whether they perceived the stimuli as separated by a gap or overlapped in time. Both saccadic and perceptual report reaction times changed in the same way as a function of TA. The TA dependencies of the time change for action and perception were very similar, suggesting a common neural substrate. -
UCSF Ophthalmology Advice Guide Authors: Seanna Grob, MD, MAS
UCSF Ophthalmology Advice Guide Authors: Seanna Grob, MD, MAS and Neeti Parikh, MD Hello! We are excited that you are interested in ophthalmology! It is truly a special field in medicine. From saving someone’s vision after severe eye trauma, to restoring vision with cataract, retina, or cornea surgery, to preserving someone’s vision with glaucoma management and surgery, to reconstructing someone’s periocular area after trauma, burns, or tumor removal, amazing things can happen in ophthalmology. Ophthalmologists love their job and the majority say they would pick this specialty again if they had the choice. An incredible amount of job satisfaction comes from saving someone’s vision! We are here for you in the UCSF Department of Ophthalmology! We have put together this guide to help you through the process. This guide is meant to be very comprehensive. We want to make sure you are aware of all the opportunities and resources you have so that you can plan accordingly. You do not have to do everything we mention! Please feel free to reach out with questions about the specialty, how to get involved, and how to become a great ophthalmology applicant! 1 Medical School A well-rounded application is important for a successful match and any way you can prove to ophthalmology programs that you are dedicated to the field will be helpful to you. As more objective data (such as grades and board scores become less prevalent) other parts of your application will become more important. Various experiences you seek out are not only fun and educational, but will offer exposure to this wonderful field. -
The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life. -
Cut-And-Assemble Paper Eye Model
CUT-AND-ASSEMBLE PAPER EYE MODEL Background information: This activity assumes that you have study materials available for your students. However, if you need a quick review of how the eye works, try one of these videos on YouTube. (Just use YouTube’s search feature with these key words.) “Anatomy and Function of the Eye: posted by Raphael Fernandez (2 minutes) “Human Eye” posted by Smart Learning for All (cartoon, 10 minutes) “A Journey Through the Human Eye” posted by Bausch and Lomb (2.5 minutes) “How the Eye Works” posted by AniMed (2.5 minutes) You will need: • copies of the pattern pages printed onto lightweight card stock (vellum bristol is fine, or 65 or 90 pound card stock) • scissors • white glue or good quality glue stick (I always advise against “school glue.”) • clear tape (I use the shiny kind, not the “invisible” kind, as I find the shiny kind more sticky.) • a piece of thin, clear plastic (a transparency [used in copiers] is fine, or a piece of recycled clear packaging as long as it is not too thick-- it should be fairly flimsy and bend very easily) • colored pencils: red for blood vessels and muscle, and brown/blue/green for coloring iris (your choice) (Also, you can use a few other colors for lacrimal gland, optic nerve, if you want to.) • thin permanent marker for a number labels on plastic parts (such as a very thin point Sharpie) Assembly: 1) After copying pattern pages onto card stock, cut out all parts. On the background page that says THE HUMAN EYE, cut away the black rectangles and trim the triangles at the bottom, as shown in picture above. -
Study Guide Medical Terminology by Thea Liza Batan About the Author
Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails proficiencyincommunicatingwithhealthcareprofessionalssuchasphysicians,nurses, or dentists. -
Bass – Glaucomatous-Type Field Loss Not Due to Glaucoma
Glaucoma on the Brain! Glaucomatous-Type Yes, we see lots of glaucoma Field Loss Not Due to Not every field that looks like glaucoma is due to glaucoma! Glaucoma If you misdiagnose glaucoma, you could miss other sight-threatening and life-threatening Sherry J. Bass, OD, FAAO disorders SUNY College of Optometry New York, NY Types of Glaucomatous Visual Field Defects Paracentral Defects Nasal Step Defects Arcuate and Bjerrum Defects Altitudinal Defects Peripheral Field Constriction to Tunnel Fields 1 Visual Field Defects in Very Early Glaucoma Paracentral loss Early superior/inferior temporal RNFL and rim loss: short axons Arcuate defects above or below the papillomacular bundle Arcuate field loss in the nasal field close to fixation Superotemporal notch Visual Field Defects in Early Glaucoma Nasal step More widespread RNFL loss and rim loss in the inferior or superior temporal rim tissue : longer axons Loss stops abruptly at the horizontal raphae “Step” pattern 2 Visual Field Defects in Moderate Glaucoma Arcuate scotoma- Bjerrum scotoma Focal notches in the inferior and/or superior rim tissue that reach the edge of the disc Denser field defects Follow an arcuate pattern connected to the blind spot 3 Visual Field Defects in Advanced Glaucoma End-Stage Glaucoma Dense Altitudinal Loss Progressive loss of superior or inferior rim tissue Non-Glaucomatous Etiology of End-Stage Glaucoma Paracentral Field Loss Peripheral constriction Hereditary macular Loss of temporal rim tissue diseases Temporal “islands” Stargardt’s macular due -
Ophthalmology Abbreviations Alphabetical
COMMON OPHTHALMOLOGY ABBREVIATIONS Listed as one of America’s Illinois Eye and Ear Infi rmary Best Hospitals for Ophthalmology UIC Department of Ophthalmology & Visual Sciences by U.S.News & World Report Commonly Used Ophthalmology Abbreviations Alphabetical A POCKET GUIDE FOR RESIDENTS Compiled by: Bryan Kim, MD COMMON OPHTHALMOLOGY ABBREVIATIONS A/C or AC anterior chamber Anterior chamber Dilators (red top); A1% atropine 1% education The Department of Ophthalmology accepts six residents Drops/Meds to its program each year, making it one of nation’s largest programs. We are anterior cortical changes/ ACC Lens: Diagnoses/findings also one of the most competitive with well over 600 applicants annually, of cataract whom 84 are granted interviews. Our selection standards are among the Glaucoma: Diagnoses/ highest. Our incoming residents graduated from prestigious medical schools ACG angle closure glaucoma including Brown, Northwestern, MIT, Cornell, University of Michigan, and findings University of Southern California. GPA’s are typically 4.0 and board scores anterior chamber intraocular ACIOL Lens are rarely lower than the 95th percentile. Most applicants have research lens experience. In recent years our residents have gone on to prestigious fellowships at UC Davis, University of Chicago, Northwestern, University amount of plus reading of Iowa, Oregon Health Sciences University, Bascom Palmer, Duke, UCSF, Add power (for bifocal/progres- Refraction Emory, Wilmer Eye Institute, and UCLA. Our tradition of excellence in sives) ophthalmologic education is reflected in the leadership positions held by anterior ischemic optic Nerve/Neuro: Diagno- AION our alumni, who serve as chairs of ophthalmology departments, the dean neuropathy ses/findings of a leading medical school, and the director of the National Eye Institute. -
The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size ⁎ Geoffrey F
Intelligence 35 (2007) 97–114 The evolution of human intelligence and the coefficient of additive genetic variance in human brain size ⁎ Geoffrey F. Miller a, , Lars Penke b a University of New Mexico, USA b Institut für Psychologie, Humboldt-Universität zu Berlin, Germany Received 3 November 2005; received in revised form 17 August 2006; accepted 18 August 2006 Available online 12 October 2006 Abstract Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic variance (CVA) in human brain size, since CVAs are widely used in evolutionary genetics as indexes of recent selection. Here we calculate for the first time that this CVA is about 7.8, based on data from 19 recent MRI studies of adult human brain size in vivo: 11 studies on brain size means and standard deviations, and 8 studies on brain size heritabilities. This CVA appears lower than that for any other human organ volume or life-history trait, suggesting that the brain has been under strong stabilizing (average-is-better) selection. This result is hard to reconcile with most current theories of human mental evolution, which emphasize directional (more-is-better) selection for higher intelligence and larger brains. Either these theories are all wrong, or CVAs are not as evolutionarily informative as most evolutionary geneticists believe, or, as we suggest, brain size is not a very good index for understanding the evolutionary genetics of human intelligence.