The Fundamental Stellar Parameters of FGK Stars in the SEEDS Survey

Total Page:16

File Type:pdf, Size:1020Kb

The Fundamental Stellar Parameters of FGK Stars in the SEEDS Survey MNRAS 000, 1–?? (2017) Preprint 17 September 2018 Compiled using MNRAS LATEX style file v3.0 The Fundamental Stellar Parameters of FGK Stars in the SEEDS Survey Evan A. Rich1 John P. Wisniewski1 Michael W. McElwain2 Jun Hashimoto3,4 Tomoyuki Kudo5, Nobuhiko Kusakabe4, Yoshiko K. Okamoto6, Lyu Abe7, Eiji Akiyama 5, Wolfgang Brandner8, Timothy D. Brandt9, Phillip Cargile10, Joseph C. Carson11, Thayne M Currie5, Sebastian Egner5, Markus Feldt8, Misato Fukagawa12, Miwa Goto2, Carol A. Grady13,14,15, Olivier Guyon5, Yutaka Hayano5, Masahiko Hayashi4, Saeko S. Hayashi5, Leslie Hebb16, Krzysztof G. He lminiak17, Thomas Henning8, Klaus W. Hodapp18, Miki Ishii4, Masanori Iye4, Markus Janson19, Ryo Kandori4, Gillian R. Knapp20, Masayuki Kuzuhara21, Jungmi Kwon22, Taro Matsuo23, Satoshi Mayama24, Shoken Miyama25, Munetake Momose26, Jun-Ichi Morino4, Amaya Moro-Martin27,28, Takao Nakagawa29, Tetsuo Nishimura5, Daehyeon Oh30, Tae-Soo Pyo5, Joshua Schlieder31,8, Eugene Serabyn32, Michael L. Sitko33,34, Takuya Suenaga4,35, Hiroshi Suto4, Ryuji Suzuki4, Yasuhiro H. Takahashi4,22, Michihiro Takami36, Naruhisa Takato5, Hiroshi Terada5, Christian Thalmann37, Daigo Tomono5, Edwin L. Turner9, Makoto Watanabe38, Toru Yamada39, Hideki Takami4, Tomonori Usuda4,24, Motohide Tamura4,22 Note: All affiliations are located after the conclusion section of the paper. Accepted 2017 August 8. Received 2017 August 7; in original form 2017 February 2 ABSTRACT Large exoplanet surveys have successfully detected thousands of exoplanets to-date. Utilizing these detections and non-detections to constrain our understanding of the formation and evolution of planetary systems also requires a detailed understanding of the basic properties of their host stars. We have determined the basic stellar properties arXiv:1708.02541v1 [astro-ph.SR] 8 Aug 2017 of F, K, and G stars in the Strategic Exploration of Exoplanets and Disks with Sub- aru (SEEDS) survey from echelle spectra taken at the Apache Point Observatory’s 3.5m telescope. Using ROBOSPECT to extract line equivalent widths and TGVIT to calculate the fundamental parameters, we have computed Teff , log g , vt , Fe H , chromospheric activity, and the age for our sample. Our methodology( was) calibrated[ / ] against previously published results for a portion of our sample. The distribution of Fe H in our sample is consistent with that typical of the Solar neighborhood. Ad- ditionally,[ / ] we find the ages of most of our sample are < 500Myrs, but note that we cannot determine robust ages from significantly older stars via chromospheric activity age indicators. The future meta-analysis of the frequency of wide stellar and sub- stellar companions imaged via the SEEDS survey will utilize our results to constrain the occurrence of detected co-moving companions with the properties of their host stars. Key words: (stars:) planetary systems – stars: fundamental parameters – stars: abundances © 2017 The Authors 2 Rich et al. 1 INTRODUCTION to correlate the observed detections of brown dwarfs and Jovian-mass planets with the properties of their host stars. Since the discovery of the first exoplanet surrounding a Fundamental stellar atmospheric parameters such as ef- Sun-like star (Mayor & Queloz 1995), dedicated planet sur- fective temperature (T ), surface gravity (log g ), and iron eff ( ) veys such as, those utilizing the Kepler Space Telescope abundance ( Fe H ), can be calculated using a variety of [ / ] (Borucki et al. 2009, 2010, 2011), the California Planet well tested and vetted codes. For example, MOOG (Sneden Search (Howard et al. 2010; Wright et al. 2011) and the 1973) utilizes plane-parallel atmospheric models to perform Anglo-Australian Telescope planet search (Tinney et al. Local Thermodynamic Equilibrium spectral analysis or syn- 2001; Butler et al. 2001; Wittenmyer et al. 2014) have ex- thesis, given a set of equivalent widths (EW) measured from panded the number of confirmed exoplanets to-date to more a stellar spectrum and a line list. Spectroscopy Made Easy than 3,000 exoplanets (exoplanets.org). These surveys have ∼ (SME; Valenti & Piskunov 1996; Valenti & Fischer 2005; yielded sufficient numbers of detections to enable correla- Piskunov & Valenti 2017) uses Kurucz (Castelli & Kurucz tions with their host star properties, such as mass and metal- 2004) or MARCS (Gustafsson et al. 2008) atmospheric mod- licity, to better constrain our understanding of how planets els and line data from the Vienna Atomic Line Database form. (VALD; Kupka et al. 1999, 2000; Ryabchikova et al. 1997; A variety of studies have sought to identify trends be- Piskunov et al. 1995) to fit synthesized spectra to observed tween the frequency of exoplanets and a given host star’s spectra. Temperature Gravity microtrubulent Velocity IT- fundamental parameters. Shortly after the first detections of erations (TGVIT; Takeda et al. 2002a, 2005) employs tab- exoplanets, it was recognized that there was a trend between ulated EWs computed from a grid of atmospheric models the occurrence of Jovian-mass exoplanets and their host with varying atmospheric parameters. In this paper, we have star metallicity (eg. Gonzalez 1997; Fischer & Valenti 2005). adopted TGVIT to characterize the fundamental properties More recently, this relation has been extended for Jovian- of the SEEDS survey target list. mass planets surrounding intermediate mass sub-giants to We present fundamental atmospheric parameters (Teff , M-dwarf hosts Johnson et al. (2010) and to terrestrial-size log g , Fe H ), microturbulent velocity, chromospheric ac- ( ) [ / ] exoplanets (R<1.7 REarth) (Wang & Fischer 2015). Jovian tivity, and age determinations of the FGK stars in the mass planets are seen to increase in frequency around SEEDS survey. In section 2 we present the observations and their host stars from M-dwarf stars to A-dwarfs stars reduction methods for our echelle spectra. Next, we discuss (Johnson et al. 2010). It has also been suggested that the our methodology for measuring line strengths (section 3.1) frequency of planets varies inversely with the lithium abun- and then using TGVIT (section 3.2) to calculate the fun- dance of the host star (Israelian et al. 2009), though this damental stellar parameters from these line strengths. We trend is still hotly debated (Carlos et al. 2016). These trends compare our analysis with a calibration sample in Section have been identified for planets detected via radial veloc- 3.3. We also discuss the chromospheric activity ages (sec- ity or transit observations; it remains unclear whether such tion 3.4) derived from our spectra. We discuss our results in relationships hold for wide-separation planets detected via Section 4. direct imaging surveys. The majority of exoplanets at small angular separations exhibit correlations with their host stars (e.g. Johnson et al. 2 OBSERVATIONS AND DATA REDUCTION 2010), which is expected from the core accretion forma- tion (Pollack et al. 1996). Since it is unclear whether exo- We observed 110 F,G,K-type stars in the SEEDS master tar- planets detected at wide separation from their host stars get list with the Astrophysical Research Consortium Echelle form via core accretion or disc instability (Boss 2001), it Spectrograph (ARCES) on the Astrophysical Research Con- is critical to robustly characterize the fundamental stellar sortium 3.5 meter telescope at the Apache Point Observa- properties of large direct imaging surveys to better under- tory (APO) (Wang et al. 2003). ARCES provides R 31,500 ˚ ∼ stand the implications and biases of their detection rates. spectra that cover the wavelength range of 3500 A to 10,200 ˚ Partial characterization of the stellar properties of com- A. These observations were made between 2010 October 2 ˚ pleted large planet imaging surveys has been performed to 2016 April 13 at a signal to noise (SNR) at 6000 A rang- (e.g. Nielsen et al. 2008 for VLT/NACO and Biller et al. ing from 83 to 483. Table 1 list the basic properties of our 2013; Nielsen et al. 2013 for Gemini/NICI surveys); and target sample. These data were reduced using standard techniques in will likely occur for ongoing surveys using Gemini GPI 1 (Macintosh et al. 2014) and SPHERE (Beuzit et al. 2008; IRAF. After bias subtraction and flat fielding, the spec- Vigan et al. 2016). The most recent large planet imaging tral orders were extracted. We utilized ThAr lamp exposures survey to be completed is the Strategic Exploration of Ex- taken after each science observation to perform wavelength oplanets and Disks with Subaru (SEEDS) survey (Tamura calibration on these data, and then applied standard helio- 2009; Tamura 2016), whose primary goal was to survey centric velocity corrections. We determined that the wave- ˚ ˚ nearby Solar analogs to search for directly imaged planets length range 4478 A - 6968 A contained a large number of Fe and the discs from which they formed. This survey has an- I and Fe II lines at sufficiently high SNR to extract accurate nounced a number of brown dwarf and exoplanet discov- fundamental stellar parameters. Thus we next continuum eries, including GJ 504 b (Kuzuhara et al. 2013), κ And b (Carson et al. 2013), GJ 758 B (Thalmann et al. 2009), 1 IRAF is distributed by the National Optical Astronomy Obser- Pleiades HII 3441 b (Konishi et al. 2016), and ROXs 42B vatory, which is operated by the Association of Universities for b (Currie et al. 2014). Characterizing the fundamental pa- Research in Astronomy (AURA) under a cooperative agreement rameters of the host stars of this survey will enable one with the National Science Foundation. MNRAS 000, 1–?? (2017) Stellar Parameters of SEEDS Survey 3 normalized the orders spanning this wavelength range using 3.2 Determining Fundamental Atmospheric continuum in IRAF (Tody 1993, 1986) and a 3rd-4th order Parameters spline function. The orders containing these continuum nor- We used the well established FORTRAN based program malized data were then merged into a single-order spectrum. TGVIT (Takeda et al. 2002a, 2005) to calculate the funda- The systemic velocity for each source (see Table 4) was com- mental atmospheric parameters (T , log g , Fe H ) and puted using an IDL-based program that cross correlated a eff ( ) [ / ] v for our sample.
Recommended publications
  • Dungeon062120 - Dungeon Level 1 Room # 1 Banquet - 20Ft
    Dungeon062120 - Dungeon Level 1 Room # 1 Banquet - 20ft. long x 45ft. wide x 25ft. tall mattress; idol; clashing; scream(ing) Brass Door, Normal on the east wall leading to a 50ft. long x 15ft. wide x 15ft. tall hallway. Sample Names: Xan the hostile Aqua- Felon (Abnormal brain function); Morenia the repugnant First Bird (Inertron) Contact Helliron Trap; DL 1; Search DC 11 (20 Chr damage, no save) Pillar or Column that (causes/has/or is) Attacks [x1] Magic cannot be cast in the room, existing effects are OK 616gp fishing net a sparkling white and gold mini skirt, 900gp Bright Photo album: All your Psionicist classes use the ''set XP table''(3kxp at 2nd, doubles til 9th,600kxp at 10th,+300kxp per level afterward).; 1980gp Amber Shortbow, composite [1d10] +1 Th/+0 dmg 20+/x3; 1Z: Sleep your entire group (incl. yourself) (save); CL 7; SL 1, 1304gp DL I Tiny Outer-NE Cthulhoid-Horrors x(16) x[6] AC 12, HD 2, hp 8, #Att 2, TH ÷ AC/Save DC by 2, dmg 3 Str 14, Dex 16, Con 16, Int 16, Wis 12, Chr 16, 0.03kxp Telepathy, immune acid and poison, resist cold, electricity, and fire., Has a bizarre anatomy, strange abilities, an alien mindset, or any combination of the three. Prepared effects: [Wiz SL1] Fire Shield 1: Anyone who melees with you takes 10% dmg back Combat effects: [Psi27 minor] Pain: Target takes LVLd10 dmg and is at -LVL to hit (save for half effect) Dungeon062120 - Dungeon Level 1 Room # 2 Office - 25ft. long x 45ft.
    [Show full text]
  • A High Contrast Survey for Extrasolar Giant Planets with the Simultaneous Differential Imager (SDI)
    A High Contrast Survey for Extrasolar Giant Planets with the Simultaneous Differential Imager (SDI) Item Type text; Electronic Dissertation Authors Biller, Beth Alison Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 03/10/2021 23:58:44 Link to Item http://hdl.handle.net/10150/194542 A HIGH CONTRAST SURVEY FOR EXTRASOLAR GIANT PLANETS WITH THE SIMULTANEOUS DIFFERENTIAL IMAGER (SDI) by Beth Alison Biller A Dissertation Submitted to the Faculty of the DEPARTMENT OF ASTRONOMY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2 0 0 7 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dis- sertation prepared by Beth Alison Biller entitled “A High Contrast Survey for Extrasolar Giant Planets with the Simultaneous Differential Imager (SDI)” and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Date: June 29, 2007 Laird Close Date: June 29, 2007 Don McCarthy Date: June 29, 2007 John Bieging Date: June 29, 2007 Glenn Schneider Final approval and acceptance of this dissertation is contingent upon the candi- date's submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.
    [Show full text]
  • The Hipparcos HR Diagram of Nearby Stars in the Metallicity Range-1.0
    A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: 08(08.01.1;08.08.1;08.09.3;08.12.1;10.01.1;10.19.1) ASTROPHYSICS The Hipparcos HR diagram of nearby stars in the metallicity range: -1.0 < [Fe/H] < 0.3 A new constraint on the theory of stellar interiors and model atmospheres Y. Lebreton1⋆, M.-N. Perrin2, R. Cayrel2, A. Baglin3, and J. Fernandes4 1 DASGAL, CNRS URA 335, Observatoire de Paris, Place J. Janssen, 92195 Meudon, France 2 DASGAL, CNRS URA 335, Observatoire de Paris, 61 Av. de l’Observatoire, 75014 Paris, France 3 DESPA, CNRS URA 264, Observatoire de Paris, Place J. Janssen, 92195 Meudon, France 4 Observat´orio Astron´omico da Universidade de Coimbra, 3040 Coimbra, Portugal Received /Accepted Abstract. The Hipparcos mission has provided very high effects, µ Cas A falls on its expected isochrone, within the quality parallaxes of a sample of a hundred nearby disk error bars corresponding to its mass. stars, of spectral types F to K. In parallel, bolometric All stars with -0.3 < [Fe/H] < 0.3 are located be- fluxes, effective temperatures, and accurate Fe/H ratios tween the helium-scaled isochrones corresponding to these of many of these stars became available through infrared metallicities. However five of them are not located exactly photometry and detailed spectroscopic analyses. These where they are expected to be for their metallicity. This new accurate data allow to build the Hertzsprung–Russell may reflect a helium content lower than the metallicity- diagram of stars of the solar neighbourhood with the scaled value.
    [Show full text]
  • Chromospheric Changes in K Stars with Activity 3
    Mon. Not. R. Astron. Soc. 000, 1–?? (2009) Printed 31 October 2018 (MN LATEX style file v2.2) Chromospheric changes in K stars with activity Mariela C. Vieytes⋆, Pablo J. D. Mauas, and Rodrigo F. D´ıaz † Instituto de Astronom´ıa y F´ısica del Espacio, CC. 67 Suc. 28 (1428)Buenos Aires, Argentina Accepted . Received ; in original form ABSTRACT We study the differences in chromospheric structure induced in K stars by stellar activity, to expand our previous work for G stars, including the Sun as a star. We selected six stars of spectral type K with 0.82< B −V <0.90, including the widely studied Epsilon Eridani and a variety of magnetic activity levels. We computed chro- mospheric models for the stars in the sample, in most cases in two different moments of activity. The models were constructed to obtain the best possible match with the Ca II K and the Hβ observed profiles. We also computed in detail the net radiative losses for each model to constrain the heating mechanism that can maintain the structure in the atmosphere. We find a strong correlation between these losses and SCaII, the index generally used as a proxy for activity, as we found for G stars. Key words: radiative transfer - stars: atmosphere - stars: activity 1 INTRODUCTION under study. They found that the value of the K1 index and the temperature gradient in the lower chromosphere of Solar and stellar chromospheric models have been developed these stars, as a function of Teff , divides active and inac- to study the dependency of chromospheric plasma parame- tive stars, and that the cooling rate in chromospheric lines ters with height and temperature.
    [Show full text]
  • COMMISSIONS 27 and 42 of the I.A.U. INFORMATION BULLETIN on VARIABLE STARS Nos. 4101{4200 1994 October { 1995 May EDITORS: L. SZ
    COMMISSIONS AND OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS Nos Octob er May EDITORS L SZABADOS and K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI KONKOLY OBSERVATORY H BUDAPEST PO Box HUNGARY IBVSogyallakonkolyhu URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN 2 CONTENTS 1994 No page E F GUINAN J J MARSHALL F P MALONEY A New Apsidal Motion Determination For DI Herculis ::::::::::::::::::::::::::::::::::::: D TERRELL D H KAISER D B WILLIAMS A Photometric Campaign on OW Geminorum :::::::::::::::::::::::::::::::::::::::::::: B GUROL Photo electric Photometry of OO Aql :::::::::::::::::::::::: LIU QUINGYAO GU SHENGHONG YANG YULAN WANG BI New Photo electric Light Curves of BL Eridani :::::::::::::::::::::::::::::::::: S Yu MELNIKOV V S SHEVCHENKO K N GRANKIN Eclipsing Binary V CygS Former InsaType Variable :::::::::::::::::::: J A BELMONTE E MICHEL M ALVAREZ S Y JIANG Is Praesep e KW Actually a Delta Scuti Star ::::::::::::::::::::::::::::: V L TOTH Ch M WALMSLEY Water Masers in L :::::::::::::: R L HAWKINS K F DOWNEY Times of Minimum Light for Four Eclipsing of Four Binary Systems :::::::::::::::::::::::::::::::::::::::::: B GUROL S SELAN Photo electric Photometry of the ShortPeriod Eclipsing Binary HW Virginis :::::::::::::::::::::::::::::::::::::::::::::: M P SCHEIBLE E F GUINAN The Sp otted Young Sun HD EK Dra ::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::: M BOS Photo electric Observations of AB Doradus ::::::::::::::::::::: YULIAN GUO A New VR Cyclic Change of H in Tau ::::::::::::::
    [Show full text]
  • Formation and Evolution of Planetary Systems: Upper Limits to the Gas Mass in Disks Around Sun-Like Stars
    Formation and Evolution of Planetary Systems: Upper Limits to the Gas Mass in Disks Around Sun-like Stars I. Pascucci1, U. Gorti2, D. Hollenbach3, J. Najita4, M. R. Meyer1, J. M. Carpenter5, L. A. Hillenbrand5, G. J. Herczeg5, D. L. Padgett5, E. E. Mamajek6, M. D. Silverstone1, W. M. Schlingman1, J. S. Kim1, E. B. Stobie1, J. Bouwman7, S. Wolf7, J. Rodmann7, D. C. Hines8, J. Lunine9, R. Malhotra9 ABSTRACT We have carried out a sensitive search for gas emission lines at infrared and millimeter wave- lengths for a sample of 15 young sun–like stars selected from our dust disk survey with the Spitzer Space Telescope. We have used mid–infrared lines to trace the warm (300–100K) gas in the inner disk and millimeter transitions of 12CO to probe the cold ( 20K) outer disk. We report no gas line detections from our sample. Line flux upper limits are∼ first converted to warm and cold gas mass limits using simple approximations allowing a direct comparison with values from the lit- erature. We also present results from more sophisticated models following Gorti and Hollenbach (2004) which confirm and extend our simple analysis. These models show that the [S i] line at 25.23 µm can set constraining limits on the gas surface density at the disk inner radius and traces disk regions up to a few AU. We find that none of the 15 systems have more than 0.04 MJ of gas within a few AU from the disk inner radius for disk radii from 1 AU up to 40AU.
    [Show full text]
  • Target Selection for the SUNS and DEBRIS Surveys for Debris Discs in the Solar Neighbourhood
    Mon. Not. R. Astron. Soc. 000, 1–?? (2009) Printed 18 November 2009 (MN LATEX style file v2.2) Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood N. M. Phillips1, J. S. Greaves2, W. R. F. Dent3, B. C. Matthews4 W. S. Holland3, M. C. Wyatt5, B. Sibthorpe3 1Institute for Astronomy (IfA), Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ 2School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS 3UK Astronomy Technology Centre (UKATC), Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ 4Herzberg Institute of Astrophysics (HIA), National Research Council of Canada, Victoria, BC, Canada 5Institute of Astronomy (IoA), University of Cambridge, Madingley Road, Cambridge, CB3 0HA Accepted 2009 September 2. Received 2009 July 27; in original form 2009 March 31 ABSTRACT Debris discs – analogous to the Asteroid and Kuiper-Edgeworth belts in the Solar system – have so far mostly been identified and studied in thermal emission shortward of 100 µm. The Herschel space observatory and the SCUBA-2 camera on the James Clerk Maxwell Telescope will allow efficient photometric surveying at 70 to 850 µm, which allow for the detection of cooler discs not yet discovered, and the measurement of disc masses and temperatures when combined with shorter wavelength photometry. The SCUBA-2 Unbiased Nearby Stars (SUNS) survey and the DEBRIS Herschel Open Time Key Project are complimentary legacy surveys observing samples of ∼500 nearby stellar systems. To maximise the legacy value of these surveys, great care has gone into the target selection process. This paper describes the target selection process and presents the target lists of these two surveys.
    [Show full text]
  • Analysis of the Herschel DEBRIS Sun-Like Star Sample
    MNRAS 475, 3046–3064 (2018) doi:10.1093/mnras/stx3188 Advance Access publication 2017 December 11 Analysis of the Herschel DEBRIS Sun-like star sample B. Sibthorpe,1,2‹ G. M. Kennedy,3 M. C. Wyatt,4 J.-F. Lestrade,5 J. S. Greaves,6 B. C. Matthews7 and G. Ducheneˆ 8,9 1SRON Netherlands Institute for Space Research, PO Box 800, 9700 AV, Groningen, the Netherlands 2Airbus Defence and Space, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2AS, UK 3Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK 4Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 5Observatoire de Paris - LERMA, CNRS, 61 Av. de l’Observatoire, 75014, Paris, France 6School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA, UK 7National Research Council of Canada, 5071 West Saanich Rd, Victoria, BC V9E 2E7, Canada 8Astronomy Department, University of California Berkeley, Berkeley, CA 94720-3411, USA 9Universite´ Grenoble Alpes, CNRS, Institut d’Astrophysique de Grenoble, F-38000 Grenoble, France Accepted 2017 November 27. Received 2017 November 3; in original form 2017 August 13 ABSTRACT This paper presents a study of circumstellar debris around Sun-like stars using data from the Herschel DEBRIS Key Programme. DEBRIS is an unbiased survey comprising the nearest ∼90 stars of each spectral type A-M. Analysis of the 275 F-K stars shows that excess emission +2.6 from a debris disc was detected around 47 stars, giving a detection rate of 17.1−2.3 per cent, with lower rates for later spectral types.
    [Show full text]
  • THE STAR FORMATION NEWSLETTER an Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds
    THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar evolution and molecular clouds No. 132 — 9 October 2003 Editor: Bo Reipurth ([email protected]) Abstracts of recently accepted papers Molecular cloud structure and star formation near HH 216 in M 16 M. Andersen1, J. Knude2, B. Reipurth3, A. Castets4, L. A.˚ Nyman5,6, M. J. McCaughrean1 and S. Heathcote7 1 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany 2 Niels Bohr Institute for Astronomy, Physics and Geophysics, DK-2100 Copenhagen, Denmark 3 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 4 Observatoire de l’Universit´ede Bordeaux I, B.P. 89, 33270 Floirac, France 5 SEST, ESO-La Silla, Casilla 19001, Santiago 19, Chile 6 Onsala Space Observatory, 43992 Sweden 7 SOAR, Cerro Tololo Inter-American Observatory, Casilla 603, La Serena, Chile E-mail contact: [email protected] We present millimetre, optical, and near-infrared observations of M 16 in the vicinity of the Herbig-Haro object HH 216. The line profiles of the CO(J = 2 − 1) spectra are broad and consist of both emission originating from four warm molecular cores and a large cloud or cloud system across the whole field. The CS(J = 2 − 1) and the C18O(J = 2 − 1) lines are relatively broad compared with those observed in low-mass star formation regions, but not unusually broad for higher-mass star-forming regions. The virial masses found are much larger than the mass estimates based on the assumption of LTE. The optical images suggest that HH 216 is the terminating bow shock of a large Herbig-Haro flow which includes a jet.
    [Show full text]
  • Arxiv:1207.6212V2 [Astro-Ph.GA] 1 Aug 2012
    Draft: Submitted to ApJ Supp. A Preprint typeset using LTEX style emulateapj v. 5/2/11 PRECISE RADIAL VELOCITIES OF 2046 NEARBY FGKM STARS AND 131 STANDARDS1 Carly Chubak2, Geoffrey W. Marcy2, Debra A. Fischer5, Andrew W. Howard2,3, Howard Isaacson2, John Asher Johnson4, Jason T. Wright6,7 (Received; Accepted) Draft: Submitted to ApJ Supp. ABSTRACT We present radial velocities with an accuracy of 0.1 km s−1 for 2046 stars of spectral type F,G,K, and M, based on ∼29000 spectra taken with the Keck I telescope. We also present 131 FGKM standard stars, all of which exhibit constant radial velocity for at least 10 years, with an RMS less than 0.03 km s−1. All velocities are measured relative to the solar system barycenter. Spectra of the Sun and of asteroids pin the zero-point of our velocities, yielding a velocity accuracy of 0.01 km s−1for G2V stars. This velocity zero-point agrees within 0.01 km s−1 with the zero-points carefully determined by Nidever et al. (2002) and Latham et al. (2002). For reference we compute the differences in velocity zero-points between our velocities and standard stars of the IAU, the Harvard-Smithsonian Center for Astrophysics, and l’Observatoire de Geneve, finding agreement with all of them at the level of 0.1 km s−1. But our radial velocities (and those of all other groups) contain no corrections for convective blueshift or gravitational redshifts (except for G2V stars), leaving them vulnerable to systematic errors of ∼0.2 km s−1 for K dwarfs and ∼0.3 km s−1 for M dwarfs due to subphotospheric convection, for which we offer velocity corrections.
    [Show full text]
  • Does Magnetic Field Impact Tidal Dynamics Inside the Convective
    A&A 631, A111 (2019) Astronomy https://doi.org/10.1051/0004-6361/201936477 & c A. Astoul et al. 2019 Astrophysics Does magnetic field impact tidal dynamics inside the convective zone of low-mass stars along their evolution? A. Astoul1, S. Mathis1, C. Baruteau2, F. Gallet3, A. Strugarek1, K. C. Augustson1, A. S. Brun1, and E. Bolmont4 1 AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France e-mail: [email protected] 2 IRAP, Observatoire Midi-Pyrénées, Université de Toulouse, 14 avenue Edouard Belin, 31400 Toulouse, France 3 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France 4 Observatoire de Genève, Université de Genève, 51 chemin des Maillettes, 1290 Sauverny, Switzerland Received 7 August 2019 / Accepted 21 September 2019 ABSTRACT Context. The dissipation of the kinetic energy of wave-like tidal flows within the convective envelope of low-mass stars is one of the key physical mechanisms that shapes the orbital and rotational dynamics of short-period exoplanetary systems. Although low-mass stars are magnetically active objects, the question of how the star’s magnetic field impacts large-scale tidal flows and the excitation, propagation and dissipation of tidal waves still remains open. Aims. Our goal is to investigate the impact of stellar magnetism on the forcing of tidal waves, and their propagation and dissipation in the convective envelope of low-mass stars as they evolve. Methods. We have estimated the amplitude of the magnetic contribution to the forcing and dissipation of tidally induced magneto- inertial waves throughout the structural and rotational evolution of low-mass stars (from M to F-type).
    [Show full text]
  • Warwick.Ac.Uk/Lib-Publications
    Original citation: Sibthorpe, B., Kennedy, Grant M., Wyatt, M. C., Lestrade, J-F., Greaves, J. S., Matthews, B. C. and Duchêne, G. (2017) Analysis of the Herschel DEBRIS sun-like star sample. Monthly Notices of the Royal Astronomical Society, 475 (3). pp. 3046-3064. doi:10.1093/mnras/stx3188 Permanent WRAP URL: http://wrap.warwick.ac.uk/102991 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. Publisher’s statement This article has been published in Monthly Notices of the Royal Astronomical Society©: 2017 owners: the Authors; Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. A note on versions: The version presented in WRAP is the published version or, version of record, and may be cited as it appears here. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Mon.
    [Show full text]