Blowing Your Own Canopy

Total Page:16

File Type:pdf, Size:1020Kb

Blowing Your Own Canopy Nuts & Bolts Craft & Technique You CAN MAKE A CANOPY FOR tion window in one side of the your project two ways. You oven, and I put a lamp inside can pneumatically form the so I could inspect the blowing plastic sheet in a mold or process. form (commonly called Almost any readily available "blowing" a canopy), or you Making an aircraft canopy heat source will work with the can draw a sheet of plastic oven, and I used a 200 KBTU over a form. propane torch heater. I located PAUL MOFFAT, EAA 602025 Both methods have advan- it at the center bottom of the tages and disadvantages. A oven and used an air recirculat- blown canopy is generally free of de- ing blower to keep the air moving. fects that cause visual distortions, Just above the plane where the plas- and usually one person can perform Before heating the tic sheet would go I located a tem- the task. But, the canopy's shape is perature gauge. For the acrylic to difficult to control, the thickness of plastic, prepare a blow freely the oven needs to reach the plastic varies, and you shouldn't 325°F. glue the formed plastic because of female mold that The plastic sheet is attached to a crazing. flat sheet of plywood with !he pat- A drawn canopy does not alter matches the air- tern retainers, which are pieces of the plastic's thickness, you can use a wood screwed in place that outline smaller sheet of plastic than you craft structure the the shape of the canopy's base (and would if you were blowing the same also determine its vertical dimen- canopy, and you don't need as large canopy must fit so sions and shape). In the bottom of of an oven to warm the plastic be- the plywood base is a 1/4-inch steel fore drawing (or blowing) it But, you can bring the tube that introduces that air that • @ • ' when drawing a canopy the plastic s blows the canopy. temperature must be just right to outline shape in When attaching the plastic to the avoid the possibility of rips and dis- plywood base, creating an airtight tortion-causing ripples, and the task line with the seal with the retainers is important can require up to four people. because a leak will require more finished surface. pressure to blow the canopy. A leak Blowing a Canopy will also create a cold spot that To blow a canopy the causes distortion. When first thing you need is blowing the canopy the an oven in which to air pressure only needs heat the plastic sheet. to be about 10 psi, and I Your oven must be large control it with a needle enough to hold your fin- valve and measure it ished canopy, with room with a low pressure to spare. My oven meas- gauge. ured 4-foot square by 10 Before heating the feet long and could han- plastic start a 1 or 2 psi dle a 38-by-96-inch flow of air under the sheet of plastic. Before blowing the final version of the canopy we created plastic to lift it off the Making the oven of this test version (and used a plastic sheet too small for the plywood, which keeps ordinary plywood, I airplane) la you from having a ply- lined the interior with wood-grained canopy. Fiberglas batting, held in place with net. Using the heat-resistant glass The plastic sheet should be about chicken wire, to insulate the cabi- from an old lamp, I put an inspec- 1.5 times thicker than the target, but 94. JANUARY 2002 We formed this canopy by pulling a sheet of plastic over a mold. screw points. Before heating the plastic, prepare a fe- male mold that matches the aircraft structure the canopy two times may be more practical, must fit so you can bring the outline IK2000 TM shape in line with the finished sur- FLIGHT & ENGINE MONITOR Bl0wing a Shape face. This mold should have all sur- Combines 12 Instruments In When blown, the plastic wants to faces that may contact the plastic. 2 Independent, Redundant Displays! follow a spherical shape, which may * See if all at once - no scrolling be far from the shape you desire. To * Digital and graphic displays get the shape you want, use this * Tri-color bar graphs give instant alerts concept: The desired height equals * Use with all 4 & 6 cylinder engines the radius on the plywood. If you at- * Affordable! 10% of typical airframe cost tempt to shape the plastic according to the outline o! the retaining frame, Just add a GPS/COM & transponder and vou're readv to flv! the plastic will become grossly overblown. I-K Technologies As shown in Figure 1, the desired 310.745.1130 www.i-ktechnologies.com portion is a small part of the whole patent pending sheet. To preserve the desired shape Your oven must be large enough to the excess room would be best used hold your finished canopy, with for a second canopy. The retaining room to spare. My oven measured clamp follows the outline and is se- 4-foot square by 10 feet long. curly screwed to the sheet below. To keep the form airtight and to pre- To prevent scratching, cover the fe vent blowouts, you'll need a lot of male mold in soft felt that is liber- screws. A screw every 2 inches is ad- ally covered in grease. (Bacon fat equate, works well and is easily removed.) NOTE: After you blow the canopy Without this female mold and fi- remove the screws as soon as the nal step, the finished canopy may plastic is firm. Depending on the split as you draw it to the frame. The grade of plastic, the sheet will shrink forming is made easier if the mold is almost 2 inches over an 8-foot hinged on the top and closes over length. If the plastic is still screwed the bubble like a clamshell. That will in place, it will split at one or more avoid scrapes if the frame is pulled Excess, or second canopy, Desired shape for symmetry / Figure 1 ~,,_ Radius here = desired height curve For more information, visit SPORT AVIATION Sport Aviation 95 on the Web at www.eaa.org Automated Engine Monitoring... Craft & Technique ..m one instrument! From RPM to peak-detection leaning, the EIS does it all. Includes graphical and digital displays, customizable screens, and alarms with Actual Size 6"W x 2.75"H x 2.5"D external warning light. Models for all engmes...find out why the EIS is the chome of thousands of pilots. S473 S553 $995 2-stroke 2-cyl 4-stroke 4-cylinder Prices include probes. ml- propPiipr. The Wz ner PropelEer/ This is my first successful canopy If you are looking for performance, we sell it! (on my second overall attempt) from FAA certified Hydraulic or Electric Constant Speed Propellers for all high performance aircrat~, like LANCAIR., GLASAIR, CIRRUS, EXPRESS, QUESTAIR, VAN's, VELOCITY, the oven. Just visible in the top is a etc. 2-, 3-, 4-, 5- and 6-blade designs available up to 2000 hp. National, European and cold spot. This is the same canopy World Aerobatic Champions win with our specially designed, light weight, low noise and high performance propellers. pictured at the start of the article. FAA STC for Pitts S2A and S2B, Cessna 172, 182, TIP210, Piper PA 46-310P/350P, PA60-601,602 and more. down over the plastic. H~ Serwce Center" MT-Propeller Entwicklung GmbH MT-Propeller USA, Inc. Blown Plexiglas is more prone to Flugplatz Straubing-Wallmtihle 1180 Airport Terminal Drive D-94348 Atting, Germany De Land, FL 32724 cracking from added stress lines, so Tel: 011-49-9429-94090, Fax: 011-49-9429-8432 Tel: (386) 736-7762, Fax: (386) 736-7696 do not glue it with any solvent- e-mail: [email protected] e-mail: [email protected] Internet: www.mt-propeller.com based cement because the adhesive will craze the plastic. Silicone or other glues such as Goop work well. Goop is especially adhesive, and the plastic may never be separated on curing. Trade Show • Safety Seminar Sport Seminars • 99s Flying Companion Seminar This is a blowout, which was Speakers & Seminars caused by using too thin a sheet of plastic and the existence of a hot spot at the far end of the canopy. Chas Harrel • AOPA Pres. Phil Boyer Transport Canada • Catherine Fish Bythe Numbers s Once you have all the forms and EAA-Oshkosh • Catherine Fish oDoug Ritter patterns ready, check the plastic's airtight seal by applying around 8 Hall of Fame Banquet psi of air pressure and closing the Saturday Night - Tickets $30 valve. If the pressure remains con- stant, you've got an airtight seal. If it More information: doesn't hold, find and fix the leak. 1-866-WAA-SHOW To mark the canopy's target www.wash i ngton-avi at ion.o rg height I used a small wire hanger FREE PARKING • FREE R DE FOR FLY-INS from the oven's ceiling. When the For more information, visit SPORT AVIATION on the Web at www.eaa.org g6 JANUARY2002 plastic just reaches the marker I turn off the air pressure and open the oven to start the cooling process. Start with a 1/4-inch acrylic sheet. The medium thick- ness at the peak will reduce the thickness to about 0.100 inch. You can use tinted plastic, but the tint will lighten because blowing thins the plastic.
Recommended publications
  • Hazard Military Aircraft
    Hazard Military aircraft Developed and maintained by the NFCC Contents Hazard - Military aircraft ........................................................................................................................... 3 Control measure - Cordon controls: Military aircraft .................................................................... 7 Control measure - Specialist advice: Military aircraft .................................................................... 8 Control measure - Restrict radio transmissions .............................................................................. 9 Control measure - Access the cockpit .............................................................................................. 10 Control measure - Make ejection seats safe .................................................................................. 11 Control measure - Extricate the aircrew ......................................................................................... 12 This content is only valid at the time of download - 25-09-2021 10:14 2 of 14 Hazard - Military aircraft Hazard Knowledge Fire and rescue services may come into contact with military aircraft of varying types and roles, from a number of different nations. These aircraft operate from military aerodromes around the country, or overseas and in transit through UK air space, but may also operate from civil aerodromes for a variety of reasons. Military organisations operate many types of aircraft that can vary enormously, from small two-seat trainers, attack helicopters,
    [Show full text]
  • Technical Order 00-105E-9, 1 February 2006, Revision 11
    WELCOME TO TECHNICAL ORDER 00-105E-9, 1 FEBRUARY 2006, REVISION 11. THIS IS SEGMENT 11 COVERING CHAPTER 8 FROM THE QF-4 TO F-16. TO NAVIGATE CLICK ON THE CONTINUE BOOKMARKS AND CLICK ON THE (+) SYMBOLS, THEN NOTICE CLICK ON SUBJECT LINKS TO GO TO SPECIFIC VIEWS CONTACT IN THIS SEGMENT. TO GO DIRECTLY TO THE TECHNICAL ORDER, CLICK ON THE CONTINUE BUTTON. TO SEE THE SEGMENT INFORMATION CHANGE NOTICE, CLICK ON THE NOTICE BUTTON. TO CONTACT THE TECHNICAL CONTENT MANAGER , CLICK ON THE CONTACT BUTTON. TECHNICAL ORDER 00-105E-9 TECHNICAL CONTENT MANAGER WRITTEN CORRESPONDENCE: HQ AFCESA/CEXF ATTN: Fire and Emergency Services Egress Manager 139 Barnes Drive Suite 1 Tyndall AFB, Florida 32403-5319 E-MAIL: [email protected] INTERNET: HQ AFCESA Fire and Emergency Services PUBLIC WEB PAGE: http://www.afcesa.af.mil/CEX/cexf/index.asp Safety Supplements: http://www.afcesa.af.mil/CEX/cexf/_firemgt.asp PHONE: (850) 283-6150 DSN 523-6150 FAX: (850) 283-6383 DSN 523-6383 For technical order improvements, correcting procedures, and other inquiries, please use the above media most convenient. SEGMENT 11 INFORMATION CHANGE NOTICE This page is provided to notifiy the user of any informational changes made to Technical Order 00-105E-9 in this Segment and the current Revision. Informational changes will be referenced in the Adobe Reader’s Bookmark tool as a designator symbol illustrated as a <[C]> for quick reference to the right of the affected aircraft. The user shall insure the most current information contained in this TO is used for his operation.
    [Show full text]
  • Segment 2 Covering Chapter 4
    WELCOME TO TECHNICAL ORDER 00-105E-9, 1 FEBRUARY 2006, REVISION 11. THIS IS SEGMENT 2 COVERING CHAPTER 4. TO NAVIGATE CLICK ON THE CONTINUE BOOKMARKS AND CLICK ON THE (+) SYMBOLS, THEN NOTICE CLICK ON SUBJECT LINKS TO GO TO SPECIFIC VIEWS CONTACT IN THIS SEGMENT. TO GO DIRECTLY TO THE TECHNICAL ORDER, CLICK ON THE CONTINUE BUTTON. TO SEE THE SEGMENT INFORMATION CHANGE NOTICE, CLICK ON THE NOTICE BUTTON. TO CONTACT THE TECHNICAL CONTENT MANAGER , CLICK ON THE CONTACT BUTTON. TECHNICAL ORDER 00-105E-9 TECHNICAL CONTENT MANAGER WRITTEN CORRESPONDENCE: HQ AFCESA/CEXF ATTN: Fire and Emergency Services Egress Manager 139 Barnes Drive Suite 1 Tyndall AFB, Florida 32403-5319 E-MAIL: [email protected] INTERNET: HQ AFCESA Fire and Emergency Services PUBLIC WEB PAGE: http://www.afcesa.af.mil/CEX/cexf/index.asp Safety Supplements: http://www.afcesa.af.mil/CEX/cexf/_firemgt.asp PHONE: (850) 283-6150 DSN 523-6150 FAX: (850) 283-6383 DSN 523-6383 For technical order improvements, correcting procedures, and other inquiries, please use the above media most convenient. SEGMENT 2 INFORMATION CHANGE NOTICE This page is provided to notifiy the user of any informational changes made to Technical Order 00-105E-9 in this Segment and the current Revision. Informational changes will be referenced in the Adobe Reader’s Bookmark tool as a designator symbol illustrated as a <[C]> for quick reference to the right of the affected aircraft. The user shall insure the most current information contained in this TO is used for his operation. Retaining out of date rescue information can negatively affect the user’s operability and outcome of emergencies.
    [Show full text]
  • Human Factors Evaluation of Portable Electronic Devices in Tactical Aircraft
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2005 Human Factors Evaluation of Portable Electronic Devices in Tactical Aircraft Martin Bernard Fuerst University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aviation Commons Recommended Citation Fuerst, Martin Bernard, "Human Factors Evaluation of Portable Electronic Devices in Tactical Aircraft. " Master's Thesis, University of Tennessee, 2005. https://trace.tennessee.edu/utk_gradthes/4555 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Martin Bernard Fuerst entitled "Human Factors Evaluation of Portable Electronic Devices in Tactical Aircraft." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aviation Systems. Richard Ranaudo, Major Professor We have read this thesis and recommend its acceptance: R. B. Richards, G. W. Masters Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Martin Bernard Fuerst entitled "Human Factors Evaluation of Portable Electronic Devices in Tactical Aircraft."I have examined the finalpaper copy of this thesis forform and content and recommend that it be accepted in partial fulfillmentof the requirements forthe degree of Master of Science with a major in Aviation Systems.
    [Show full text]
  • Redalyc.Integration Analysis of Conceptual Design and Stealth
    Journal of Aerospace Technology and Management ISSN: 1984-9648 [email protected] Instituto de Aeronáutica e Espaço Brasil Liangliang, Cheng; Kuizhi, Yue; Weigang, Guo; Dazhao, Yu Integration Analysis of Conceptual Design and Stealth-Aerodynamic Characteristics of Combat Aircraft Journal of Aerospace Technology and Management, vol. 8, núm. 1, enero-marzo, 2016, pp. 40-48 Instituto de Aeronáutica e Espaço São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=309443498013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative doi: 10.5028/jatm.v8i1.514 Integration Analysis of Conceptual Design and Stealth-Aerodynamic Characteristics of Combat Aircraft Cheng Liangliang1,3, Yue Kuizhi1,2, Guo Weigang2, Yu Dazhao2 ABSTRACT: In order to study stealth strike-fighter, an analysis on stealth-aerodynamic integration and conceptual design is INTRODUCTION conducted. A conceptual 3-D digital model with internal antiship missiles and air-to-air missiles is designed in CATIA software. Stealth operational aircraft is one of the trends of the Based on the physical optics and equivalent electromagnetic current methods, using the self-programmed RCSAnsys development of modern military aircrafts. Depending on software, the Radar Cross Section (RCS) characteristics and the stealth characteristics of the aircraft, the radar detection characteristics of scattering intensity distribution of the model probability is reduced, aircraft survivability is enhanced and are numerically simulated. Based on the turbulence theory of then the operational function is improved.
    [Show full text]
  • F-16 Characteristics: 32.8 Feet Wing Area - 300 Sq.Ft W/Missiles Leading Edge Sweep 40 Degrees
    AIRCRAFT DIMENSIONS WING SPAN F-16 CHARACTERISTICS: 32.8 FEET WING AREA - 300 SQ.FT W/MISSILES LEADING EDGE SWEEP 40 DEGREES WING SPAN 31.0 FEET (W/O MISSILES) TAIL SPAN 18.3FEET WHEEL BASE 7.8 FEET HEIGHT HEIGHT 16.7FEET 16.7FEET F-16A/C SINGLE-PLACE FIGHTER LENGTH F-16B/D TWO-PLACE FIGHTER LENGTH 49.5 FEET 49.5 FEET 13.1 FEET 13.1 FEET AIRCRAFT SKIN PENETRATION POINTS F-16 AND FIRE ACCESS LOCATIONS REMOVABLE STRUCTURAL COVERS (180) PANELS=6-62 MIN EACH HINGED DOORS WITH QUICK (13) PANELS=3-6 MIN EACH ACTING STRUCTURAL FASTENERS (6) PANELS=8-10 MIN EACH QUICK-ACCESS HINGED DOORS (29) LESS THAN 1 MIN EACH AFT ENGINE UPPER LANDING GEAR DOORS FWD PORTION OF PANEL 4305 (EACH SIDE) GUN BAY, AFT 2/3 UPPER PORTION AFT ENGINE BAY PANEL NOTE: OF PANEL 3409 4411/4413 LEFT SIDE Avoid hitting frame. LEFT HAND SIDE JET FUEL STARTER AFT OF JFS EXHAUST DOOR PANEL 3303 AFT ENGINE BAY PANEL AMMUNITION BAY 4412/4414 RIGHT SIDE LOWER CENTER PANEL 3401 (EACH SIDE) RIGHT HAND SIDE FWD ENGINE BAY PANEL 3316 AND 3314 NOTE: Panels can be opened by hand. AIRCRAFT HAZARDS AND ACCESS PANELS F-16 REMOVABLE STRUCTURAL COVERS (180) PANELS=6-62 MIN EACH HINGED DOORS WITH QUICK (13) PANELS=3-6 MIN EACH ACTING STRUCTURAL FASTENERS (6) PANELS=8-10 MIN EACH QUICK-ACCESS HINGED DOORS (29) LESS THAN 1 MIN EACH LANDING GEAR DOORS HYDRAULIC SYSTEM B 3.46 GAL. ACCESS PANEL 3415 LEFT HAND SIDE GUN PORT CHAFF AND JFS INLET TAIL HOOK FLARE JFS EXHAUST DISPENSER EPU FUEL (HYDRAZINE) 6.8 GAL.
    [Show full text]
  • [email protected] C/ Fruela, 6 Fax: +34 91 463 55 35 28011 Madrid (España) Foreword
    CICIAIAIACAC COMISIÓN DE INVESTIGACIÓN DE ACCIDENTES E INCIDENTES DE AVIACIÓN CIVIL Report ULM A-013/2016 Accident involving an Evektor EV-97 Eurostar aircraft, registration EC-KTF, in San Ignacio del Viar (Seville, Spain) on 20 May 2016 Report ULM A-013/2016 Accident involving an Evektor EV-97 Eurostar aircraft, registration EC-KTF, in San Ignacio del Viar (Seville, Spain) on 20 May 2016 SUBSECRETARÍA GOBIERNO MINISTERIO DE ESPAÑA DE FOMENTO COMISIÓN DE INVESTIGACIÓN DE ACCIDENTES E INCIDENTES DE AVIACIÓN CIVIL © Ministerio de Fomento Secretaría General Técnica Centro de Publicaciones NIPO Línea: 161-18-020-0 NIPO Papel: 161-18-021-6 Deposito Legal: M-3318-2018 Maquetación: David García Arcos Impresión: Centro de Publicaciones COMISIÓN DE INVESTIGACIÓN DE ACCIDENTES E INCIDENTES DE AVIACIÓN CIVIL Tel.: +34 91 597 89 63 E-mail: [email protected] C/ Fruela, 6 Fax: +34 91 463 55 35 http://www.ciaiac.es 28011 Madrid (España) Foreword This report is a technical document that reflects the point of view of the Civil Aviation Accident and Incident Investigation Commission (CIAIAC) regarding the circumstances of the accident object of the investigation, and its probable causes and consequences. In accordance with the provisions in Article 5.4.1 of Annex 13 of the International Civil Aviation Convention; and with articles 5.5 of Regulation (UE) nº 996/2010, of the European Parliament and the Council, of 20 October 2010; Article 15 of Law 21/2003 on Air Safety and articles 1., 4. and 21.2 of Regulation 389/1998, this investigation is exclusively of a technical nature, and its objective is the prevention of future civil aviation accidents and incidents by issuing, if necessary, safety recommendations to prevent from their reoccurrence.
    [Show full text]
  • F-16C T/N 87-0306 121St Fighter Squadron 113Th Wing Joint Base Andrews, Maryland
    UNITED STATES AIR FORCE AIRCRAFT ACCIDENT INVESTIGATION BOARD REPORT F-16C T/N 87-0306 121ST FIGHTER SQUADRON 113TH WING JOINT BASE ANDREWS, MARYLAND LOCATION: CLINTON, MD DATE OF ACCIDENT: 5 APRIL 2017 BOARD PRESIDENT: COLONEL DAVID V. COCHRAN Conducted IAW Air Force Instruction 51-503 [Volume One of Two] //Signed// United States Air Force Accident Investigation Board Report F-16C Mishap, Clinton, MD EXECUTIVE SUMMARY UNITED STATES AIR FORCE AIRCRAFT ACCIDENT INVESTIGATION F-16C, T/N 87-0306 CLINTON, MD 5 APRIL 2017 On 5 April 2017, at 09:13 hours local time (L), an F-16C impacted the ground southwest of Joint Base Andrews (JBA), in Clinton, Maryland (MD). The mishap pilot (MP) safely ejected and did not sustain any injuries. The mishap aircraft (MA) tail number 87-0306 and the MP are assigned to the 113th Wing, 121st Fighter Squadron, JBA, MD. The MA, valued at $22,198,075, was destroyed. The MA’s two external fuel tanks were jettisoned prior to MP ejection and impacted private property located east of the Potomac River shoreline and approximately 1,750 feet south of National Harbor, MD. The MA impacted a wooded area 3.4 nautical miles southwest of JBA. There were no personnel injured on the ground. The area upon which the MA and external fuel tanks landed was disturbed by the respective impacts, resulting fireball (from the MA), and associated fluids and debris. The environmental clean-up cost was $856,777. The mishap occurred as part of a four aircraft F-16 formation on departure from JBA.
    [Show full text]
  • Military Aircraft: Extrication of Aircrew
    Hazard Military aircraft: Extrication of aircrew Developed and maintained by the NFCC Contents Hazard - Military aircraft: Extrication of aircrew ................................................................................ 3 Control measure - Access the cockpit ................................................................................................ 3 Control measure - Make ejection seats safe .................................................................................... 5 Control measure - Extricate the aircrew ........................................................................................... 5 This content is only valid at the time of download - 30-09-2021 22:05 2 of 6 Hazard - Military aircraft: Extrication of aircrew Hazard Knowledge In normal conditions, only trained and competent technicians from the relevant military services should attempt to gain access to military aircraft. However, personnel may have to gain access under exceptional circumstances, where there is a risk to life. Cockpit canopies A military aircraft cockpit is covered and protected by a canopy. Canopies can weigh in the region of 100kg and are constructed from a strong, heavy and usually transparent material. The emergency canopy release may be activated accidentally or by aircrew as personnel are approaching or working near the aircraft. Ejection seats When an aircraft is parked on the ground, safety devices, in the form of distinctive safety pins, are fitted to prevent the accidental actuation of the ejection seat. Following an emergency, the status of the ejection seats may be unknown. If the seat guide rails projecting out of the canopy area are visible, it can indicate that the seats have fired from the cockpit and the aircrew may be some distance from the airframe. Personnel should not assume the ejection seats have activated successfully; for example, a two-seat aircraft may have had only one occupant, or a seat may have failed to operate.
    [Show full text]
  • Commercial Air Transport Special Bulletins General Aviation Contents
    AAIB Bulletin: 2/2010 CONTENTS SPECIAL BULLETINS None COMMERCIAL AIR TRANSPORT FIXED WING Airbus A320-211 D-AIQA ∫ ∫ 05-Aug-08 1 Boeing 737-86N EI-DKD Airbus A321-231 G-MEDF 14-Oct-09 7 Avro 146-RJ100 G-BXAR 13-Feb-09 8 BAC 167 Strikemaster Mk 80 G-UPPI 26-Apr-09 16 Boeing 757-236 G-LSAA 02-Mar-09 24 Boeing 777-240(LR) AP-BGY ∫ ∫ 15-Feb-07 28 DHC-8-402 Dash 8 G-JEDR BN2A Mk III-2 Trislander G-RLON 02-Sep-09 37 Raytheon 390 Premier I G-FRYL 07-Aug-08 39 ROTORCRAFT None GENERAL AVIATION FIXED WING Aero AT-3 R100 G-SYEL 24-Sep-09 56 Auster J5F Aiglet Trainer G-AMZU 19-Sep-09 57 Bolkow BO 208A2 Junior G-CLEM 12-Sep-09 60 CAP 10B G-CPXC 28-Aug-09 62 Cessna 172S Skyhawk G-SHSP ∫ ∫ 31-Oct-09 63 Enstrom 480 G-LADZ Cirrus SR22 N192SR 28-Jul-09 65 CZAW Sportcruiser G-CZSC 17-Aug-09 67 Druine D.62B Condor G-AWST 25-Aug-09 69 Extra EA 300 G-SIII 12-Sep-08 70 Glasair RG, G-BKHW 26-Apr-09 74 Grob G115E Tutor G-BYXD 15-Sep-09 76 Grumman AA-5B Tiger G-ROWL 16-Sep-09 78 Luton LA4A Minor G-ASEB 17-Sep-09 79 Morane Saulnier MS.880B Rallye Club G-AWOA 23-Oct-09 82 Pierre Robin HR200/120B G-BYLH 13-Jun-09 83 Piper J3C-65 Cub G-NCUB 08-Oct-09 84 Piper PA-28-161 Cherokee Warrior II G-LACB 20-Nov-09 86 Piper PA-28-161 Cherokee Warrior III G-CEMD 09-Nov-09 87 Piper PA-28-180 Cherokee G-ASIJ 31-Jul-09 88 Piper PA-28-180 Cherokee G-LFSG 16-Oct-09 89 Piper PA-32R-300 Cherokee Lance G-BTCA 23-Aug-09 90 Piper PA-38-112 Tomahawk G-BOMO 24-Sep-09 92 Reims Cessna F152 G-BJKY 16-Oct-09 93 © Crown copyright 2010 i AAIB Bulletin: 2/2010 CONTENTS (Continued) GENERAL AVIATION
    [Show full text]
  • Foot Forces Exerted at Various Aircraft Brake-Pedal Angles
    HUMAN FACTORS, 1971, 13(5), 445-456 Foot Forces Exerted at Various Aircraft Brake-Pedal Angles H. T. E. HERTZBERG and FRANCIS E. BURKEl, Anthropology Branch, Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio This study reports the forces (means and standards deviations) exerted by the foot at various angles of extension about its ankle. A sample of 100 rated pilots was selected by height and weigh t. The forces were measured in a cockpif mock-up constructed around a specially instrumented F-80 rudder·pedal assembly. The right rudder pedal (hinged on the rudder bar) could be rigidly set to any desired angle between vertical and 75° forward of vertical. Foot forces were measured at 11 positions of the instrumented brake pedal in both neutral and extended positions of the right leg, and in three cockpit sizes (37 in., 3914 in., and 41 in.)-66 measures on each man. In all three conditions, maximal forces were exerted within a 20° zone between 15 and 35° forward of vertical. Subjective comfort preferences, expressed by 86 pilots, closely paralleled the force findings. It is concluded that aircraft brake-pedal systems should be designed to maximize the effectiveness of the foot in that optimal zone, and that the same zone should be considered for other foot-operated controls, like automobile accelerator pedals, INTRODUCTION can exert its maximum torque about the ankle, as well as the magnitude of the forces them- Anyone who does work with his muscles selves. The data were gathered during 1949-50, knows that effort and fatigue can be minimized but could not then be written up_ As no similar by finding and using the position of optimal leg-strength study has appeared since then (but mechanical advantage of the limbs for any given compare Hunsicker [1955] for arm strength task.
    [Show full text]
  • ACES 5® Advanced Concept Ejection Seats for the T
    ACES 5® Advanced Concept Ejection Seats ACES 5® ADVANCED CONCEPT EJECTION SEATS THOSE BORN TO FLY LIVE TO WALK AWAY KEY FEATURES The seat of choice for • Passive head and neck protection qualified to 2016 update of T-7A Red Hawk Aircraft MIL-HDBK-516C injury requirements • Passive leg and arm restraints ACES 5® is the latest addition to the Specifically designed to enhance crew • Improved drogue system provides Collins Aerospace family of Advanced safety during an ejection, ACES 5 provides unsurpassed high-speed stability Concept Ejection Seats. It incorporates head and neck protection as well as significant safety and cost saving passive arm and leg restraint protection. • Common CAD/PAD with thousands upgrades compared to the legacy ACES II®, Additionally, the design of ACES 5 of fielded ACES II® ejection seats which is credited with saving more than simplifies routine maintenance and worldwide 680 lives since its 1978 introduction. enables maintainers to quickly return • Stability package (STAPAC) active the aircraft back into service. pitch stabilization system While retaining the proven performance of the ACES II, Collins Aerospace engineers Improved pilot safety. Improved ease of • Large, contiguous survival kit incorporated technology improvements maintenance. Decreased life-cycle costs. volume (1,200 cubic inches) to create the next generation ACES 5 All backed by program execution and • CKU-12 rocket catapult reliably ejection seat. The seat is rigorously teamwork resulting in ACES 5 selection achieves industry-leading lowest tested to validate performance, reliability, for the Boeing T-7A Red Hawk aircraft. spinal injury rates of <1% and compliance with the latest safety requirements.
    [Show full text]