Attachment Points of Parachute Risers to Combined Harness Over Shoulder (Subject Two) 60

Total Page:16

File Type:pdf, Size:1020Kb

Attachment Points of Parachute Risers to Combined Harness Over Shoulder (Subject Two) 60 QinetiQ MK 10A Ejection Seat Modifications (2197 & 2198) for Tornado GR4/4A and F3 Aircraft Phase Two QINETIQ/AT&E/CR00782/1 Cover + x + 70 pages December 2002 41.1111110k This document is subject to the release conditions printed on the reverse of this page This document is issued for the information of such persons only as need to know its contents in the course of their official duties. Any person finding this document should hand it to a British Forces unit or to a police station for safe return to the Chief Security Officer, QINETIQ Ltd, Cody Technology Park, Farnborough, Hampshire GU14 OLX, with particulars of how and where found. THE UNAUTHORISED RETENTION OR DESTRUCTION OF THE DOCUMENT IS AN OFFENCE UNDER THE OFFICIAL SECRETS ACT OF 1911 - 1989. (When released to persons outside Government service, this document is issued on a personal basis and the recipient to whom it is entrusted in confidence within the provisions of the Official Secrets Acts 1911 - 1989, is personally responsible for its safe custody and for seeing that its contents are disclosed only to authorised persons.) Customer Information Customer Reference Number TOR3/09/97BD Task Title MAR Recom. for Ejection Seat Upgrade Customer Contact Name Tor9c,1111111111111 Staff Requirement/Target Project Number C8FFT/014 Milestone Number Date Due (dd/mm/yyyy) 26/11/1999 This document contains commercially valuable information controlled by QinetiQ. Intellectual Property Department must by consulted before it is released outside QinetiQ. © Copyright of QinetiQ ltd 2002 This document is intended for internal use only ii QINETIQ/AT&E/CR00782/1 Authorisation Prepared by 111111111111110°—' Title Trials Officer Signature Date Location BCE Authorised by 411.11111111.11 Title Technical Manager Air Launched Munitions Signature Date Principal authors Name 111111111111111111111 Appointment Tornado Project Manager Location BCE QINETIQ/AT&E/CR00782/1 iii RESTRICTE11' Record of changes Issue Date Detail of Changes 1 December 02 Initial Issue 111011*A• iv QINETIQ/AT&E/CR00782/1 RESTRICTED Executive summary Phase Two modifications to the Mk10A ejection seat fitted to the Tornado GR4/4A and F3 aircraft were incorporated to address the extended aircrew mass range that was apparent in the RAF. The original specification range for nude mass of aircrew in 1975 was 56.56kg to 97.34kg. The new specification for nude mass is 50.98kg (female aircrew) to 107.86kg. This equates to boarding masses of 67.5kg to 135kg wearing full AEA. The weight of Aircrew Equipment Assemblies (AEA) and the mass of the seat itself have all increased since the introduction of the Tornado aircraft and Mk10A ejection seat. Modification 02198 involved the replacement of the GQ1000 Mk2 parachute assembly (incorporated during the Phase One modifications) with the GQ5000 parachute and it's associated deployment system. The GQ5000 properties include a drive capability and a reduced rate of descent, as well as a reduced lines taught snatch load. It also incorporates a selectable steering capability, which offers the aircrew improved manoeuvrability and a reduced forward speed on landing if utilised correctly. Modification 02197 involved the replacement of the original primary and secondary ejection gun cartridges with revised cartridges offering a reduced Dynamic Response Index (DRI) value (resulting in a reduced risk of injury, especially to the minimum weight ejectee), whilst maintaining an acceptable velocity (of the seat) on separation from the ejection gun (especially for the maximum weight ejectee). The revised cartridges offer a reduced DRI on the primary cartridge phase of operation, but increase the force during the secondary phase of operation to ensure sufficient velocity on seat/ejection gun separation. The assessment of the GQ5000 and its deployment system (Mod 02198) concluded that it was acceptable with regard to zero/zero ejection situations (in conjunction with the revised ejection gun cartridges) with the revised heavy weight seat occupant. It also performed satisfactorily (in conjunction with the revised ejection seat gun cartridges) in the high-speed sled test (initiation at 608kts). The system successfully passed all environmental trials, but had to have the low temperature specification altered, with the system being cleared for -50°C rather than the original -60°C. This occurred due to the two ply butyl rubber of the deployment inflation bladder failing after a soak at -60°C. The new higher temperature of -50°C was considered acceptable (system tested satisfactorily at -54°C). Resurgence of the packed parachute was found after further environmental trials and amounted to 4mm. This amount of resurgence was considered acceptable. The clearance between the upper surface of the headbox and the lower surface of the aircraft canopy, specifically the Linear Cutting Cord (LCC) was found to be acceptable. Modifications to the top flap of the headbox, which consisted of the introduction of a kevlar insert, and cross-stitching, ensured that little or no damage would occur to the fabric top flap should the LCC detonate within either a very close proximity, or in physical contact. Reconfiguration of the Drogue Withdrawal Line (DWL), with regard to reduction in the armoured sleeve and alterations to the stitching pattern resulted in a significant reduction in packed headbox height. The assessment of the revised primary and secondary ejection gun cartridges (Mod 02197) concluded that the performance of the system was much improved over that achieved in the original Mk10A ejection seat qualification programme in regards to the DRI. The worst case scenario for the value of the DRI (high temperature (+70°C) cartridges, minimum weight seat occupant) produced a value of 20.44 (17% chance of injury), which compares favourably with the maximum allowable DRI in this situation of 22.2 (40% chance of injury). The worst case scenario for velocity at seat/ejection gun separation (-40°C cartridges, maximum weight seat occupant) was marginally reduced, but was still considered acceptable. However, the values for the maximum QINETIQ/AT&E/CR00782/1 speed at which a heavy weight seat occupant can eject from the rear seat position and avoid a `hard' contact with the Tornado tail fin have been reduced (from the original specification of 625 Knots Calibrated Air Speed (KCAS)). The values now stand at 617 KCAS or below for the Interdictor Strike (IDS) aircraft and 622 KCAS or below for the Air Defence Variant (ADV) aircraft. The lower of the maximum airspeeds (617 KCAS) should be used for both aircraft types resulting in a single ejection envelope graph being produced for all Tornado documentation. The revised simplified combined harness (introduced during Phase One modifications) was shown to be able to withstand the dynamic parachute inflation forces produced by a maximum weight ejectee and also the Tornado specification 40g impact forces produced by a maximum weight seat occupant in the event of an aircraft crash. However, the ejection seat mounting points which attach the seat/occupant to the structure of the aircraft were not able to withstand the increased forces generated by a maximum weight seat occupant in a 40g crash scenario (original Tornado specification). The mounting points and the aircraft bulkhead were theoretically calculated to be able to withstand an impact force of 34g with a maximum weight seat occupant. Due to this, the specification for impact survivability has been reduced to a value of 34g. Assessment of the GQ5000 parachute steering facility in a suspension trial highlighted difficulties in use due to the location of the steering handles on the parachute risers and the size of the handles themselves. This was compounded by the fact that location of the handles could only be achieved via feeling up the parachute risers. Bulky AEA (especially with an inflated life preserver) and an ejectee with a short functional reach added to the difficulties. However, the system was able to be used and was considered to improve the chances of survival of an ejectee by allowing a steering facility for avoidance of hazards when landing. Many other minor alterations were necessary due to the embodiment of the Phase Two modifications, such as the replacement of the drogue release 'scissors' shackle with a Gas Shackle (GS), replacement of the Barostatic Time Release Unit/Manual Override (BTRU/MOR) cartridges with improved items and replacement of the Breech Type Time Delay Firing Unit (BTTDFU) with the Gas Fired Time Delay Unit (GFTDU). QinetiQ is able to support the implementation of the Phase Two modifications 02197 and 02198 with regard to the Mk10A ejection seats fitted to the Tornado GR4/4A and F3 aircraft. However, some limitations exist with regard to the maximum ejection speed, the revised -50°C low temperature limit and 34g-impact value. Consideration should also be given to the training of aircrew on the use of the GQ5000 parachute. The escape system envelope for the fully modified Mk10A ejection seat fitted to the Tornado ADV and IDS type aircraft would be 0-617kts, 0-50,000ft for all aircrew. vi QINETIQ/AT&E/CR00782/1 List of contents Authorisation iii Record of changes iv Executive summary List of contents vii List of Figures ix 1 Introduction. 1 1.1 Task Number. 1 1.2 Originator. 1 1.3 Background. 1 1.4 Phased Introduction of Modifications. 2 1.5 Assessment Philosophy. 2 2 Description of Equipment. 4 2.1 GQ 5000 Parachute Assembly (Mod 02198). 4 2.2 Simplified Combined Harness Assembly. 5 2.3 BTRU/MOR Cartridges. 5 2.4 Primary and Secondary Gun Cartridges (Mod 02197). 6 2.5 Aircraft Canopy and Associated Jettison System. 6 3 Assessment of Evidence. 8 3.1 GQ 5000 Parachute and Bladder Inflation System Zero/Zero. 8 3.2 GQ 5000 Parachute and Bladder Inflation System 625Kts. 9 3.3 GQ 5000 Parachute and Bladder Inflation System Environmental Qualification.
Recommended publications
  • Hazard Military Aircraft
    Hazard Military aircraft Developed and maintained by the NFCC Contents Hazard - Military aircraft ........................................................................................................................... 3 Control measure - Cordon controls: Military aircraft .................................................................... 7 Control measure - Specialist advice: Military aircraft .................................................................... 8 Control measure - Restrict radio transmissions .............................................................................. 9 Control measure - Access the cockpit .............................................................................................. 10 Control measure - Make ejection seats safe .................................................................................. 11 Control measure - Extricate the aircrew ......................................................................................... 12 This content is only valid at the time of download - 25-09-2021 10:14 2 of 14 Hazard - Military aircraft Hazard Knowledge Fire and rescue services may come into contact with military aircraft of varying types and roles, from a number of different nations. These aircraft operate from military aerodromes around the country, or overseas and in transit through UK air space, but may also operate from civil aerodromes for a variety of reasons. Military organisations operate many types of aircraft that can vary enormously, from small two-seat trainers, attack helicopters,
    [Show full text]
  • Technical Order 00-105E-9, 1 February 2006, Revision 11
    WELCOME TO TECHNICAL ORDER 00-105E-9, 1 FEBRUARY 2006, REVISION 11. THIS IS SEGMENT 11 COVERING CHAPTER 8 FROM THE QF-4 TO F-16. TO NAVIGATE CLICK ON THE CONTINUE BOOKMARKS AND CLICK ON THE (+) SYMBOLS, THEN NOTICE CLICK ON SUBJECT LINKS TO GO TO SPECIFIC VIEWS CONTACT IN THIS SEGMENT. TO GO DIRECTLY TO THE TECHNICAL ORDER, CLICK ON THE CONTINUE BUTTON. TO SEE THE SEGMENT INFORMATION CHANGE NOTICE, CLICK ON THE NOTICE BUTTON. TO CONTACT THE TECHNICAL CONTENT MANAGER , CLICK ON THE CONTACT BUTTON. TECHNICAL ORDER 00-105E-9 TECHNICAL CONTENT MANAGER WRITTEN CORRESPONDENCE: HQ AFCESA/CEXF ATTN: Fire and Emergency Services Egress Manager 139 Barnes Drive Suite 1 Tyndall AFB, Florida 32403-5319 E-MAIL: [email protected] INTERNET: HQ AFCESA Fire and Emergency Services PUBLIC WEB PAGE: http://www.afcesa.af.mil/CEX/cexf/index.asp Safety Supplements: http://www.afcesa.af.mil/CEX/cexf/_firemgt.asp PHONE: (850) 283-6150 DSN 523-6150 FAX: (850) 283-6383 DSN 523-6383 For technical order improvements, correcting procedures, and other inquiries, please use the above media most convenient. SEGMENT 11 INFORMATION CHANGE NOTICE This page is provided to notifiy the user of any informational changes made to Technical Order 00-105E-9 in this Segment and the current Revision. Informational changes will be referenced in the Adobe Reader’s Bookmark tool as a designator symbol illustrated as a <[C]> for quick reference to the right of the affected aircraft. The user shall insure the most current information contained in this TO is used for his operation.
    [Show full text]
  • Segment 2 Covering Chapter 4
    WELCOME TO TECHNICAL ORDER 00-105E-9, 1 FEBRUARY 2006, REVISION 11. THIS IS SEGMENT 2 COVERING CHAPTER 4. TO NAVIGATE CLICK ON THE CONTINUE BOOKMARKS AND CLICK ON THE (+) SYMBOLS, THEN NOTICE CLICK ON SUBJECT LINKS TO GO TO SPECIFIC VIEWS CONTACT IN THIS SEGMENT. TO GO DIRECTLY TO THE TECHNICAL ORDER, CLICK ON THE CONTINUE BUTTON. TO SEE THE SEGMENT INFORMATION CHANGE NOTICE, CLICK ON THE NOTICE BUTTON. TO CONTACT THE TECHNICAL CONTENT MANAGER , CLICK ON THE CONTACT BUTTON. TECHNICAL ORDER 00-105E-9 TECHNICAL CONTENT MANAGER WRITTEN CORRESPONDENCE: HQ AFCESA/CEXF ATTN: Fire and Emergency Services Egress Manager 139 Barnes Drive Suite 1 Tyndall AFB, Florida 32403-5319 E-MAIL: [email protected] INTERNET: HQ AFCESA Fire and Emergency Services PUBLIC WEB PAGE: http://www.afcesa.af.mil/CEX/cexf/index.asp Safety Supplements: http://www.afcesa.af.mil/CEX/cexf/_firemgt.asp PHONE: (850) 283-6150 DSN 523-6150 FAX: (850) 283-6383 DSN 523-6383 For technical order improvements, correcting procedures, and other inquiries, please use the above media most convenient. SEGMENT 2 INFORMATION CHANGE NOTICE This page is provided to notifiy the user of any informational changes made to Technical Order 00-105E-9 in this Segment and the current Revision. Informational changes will be referenced in the Adobe Reader’s Bookmark tool as a designator symbol illustrated as a <[C]> for quick reference to the right of the affected aircraft. The user shall insure the most current information contained in this TO is used for his operation. Retaining out of date rescue information can negatively affect the user’s operability and outcome of emergencies.
    [Show full text]
  • Human Factors Evaluation of Portable Electronic Devices in Tactical Aircraft
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2005 Human Factors Evaluation of Portable Electronic Devices in Tactical Aircraft Martin Bernard Fuerst University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aviation Commons Recommended Citation Fuerst, Martin Bernard, "Human Factors Evaluation of Portable Electronic Devices in Tactical Aircraft. " Master's Thesis, University of Tennessee, 2005. https://trace.tennessee.edu/utk_gradthes/4555 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Martin Bernard Fuerst entitled "Human Factors Evaluation of Portable Electronic Devices in Tactical Aircraft." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aviation Systems. Richard Ranaudo, Major Professor We have read this thesis and recommend its acceptance: R. B. Richards, G. W. Masters Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Martin Bernard Fuerst entitled "Human Factors Evaluation of Portable Electronic Devices in Tactical Aircraft."I have examined the finalpaper copy of this thesis forform and content and recommend that it be accepted in partial fulfillmentof the requirements forthe degree of Master of Science with a major in Aviation Systems.
    [Show full text]
  • Redalyc.Integration Analysis of Conceptual Design and Stealth
    Journal of Aerospace Technology and Management ISSN: 1984-9648 [email protected] Instituto de Aeronáutica e Espaço Brasil Liangliang, Cheng; Kuizhi, Yue; Weigang, Guo; Dazhao, Yu Integration Analysis of Conceptual Design and Stealth-Aerodynamic Characteristics of Combat Aircraft Journal of Aerospace Technology and Management, vol. 8, núm. 1, enero-marzo, 2016, pp. 40-48 Instituto de Aeronáutica e Espaço São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=309443498013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative doi: 10.5028/jatm.v8i1.514 Integration Analysis of Conceptual Design and Stealth-Aerodynamic Characteristics of Combat Aircraft Cheng Liangliang1,3, Yue Kuizhi1,2, Guo Weigang2, Yu Dazhao2 ABSTRACT: In order to study stealth strike-fighter, an analysis on stealth-aerodynamic integration and conceptual design is INTRODUCTION conducted. A conceptual 3-D digital model with internal antiship missiles and air-to-air missiles is designed in CATIA software. Stealth operational aircraft is one of the trends of the Based on the physical optics and equivalent electromagnetic current methods, using the self-programmed RCSAnsys development of modern military aircrafts. Depending on software, the Radar Cross Section (RCS) characteristics and the stealth characteristics of the aircraft, the radar detection characteristics of scattering intensity distribution of the model probability is reduced, aircraft survivability is enhanced and are numerically simulated. Based on the turbulence theory of then the operational function is improved.
    [Show full text]
  • F-16 Characteristics: 32.8 Feet Wing Area - 300 Sq.Ft W/Missiles Leading Edge Sweep 40 Degrees
    AIRCRAFT DIMENSIONS WING SPAN F-16 CHARACTERISTICS: 32.8 FEET WING AREA - 300 SQ.FT W/MISSILES LEADING EDGE SWEEP 40 DEGREES WING SPAN 31.0 FEET (W/O MISSILES) TAIL SPAN 18.3FEET WHEEL BASE 7.8 FEET HEIGHT HEIGHT 16.7FEET 16.7FEET F-16A/C SINGLE-PLACE FIGHTER LENGTH F-16B/D TWO-PLACE FIGHTER LENGTH 49.5 FEET 49.5 FEET 13.1 FEET 13.1 FEET AIRCRAFT SKIN PENETRATION POINTS F-16 AND FIRE ACCESS LOCATIONS REMOVABLE STRUCTURAL COVERS (180) PANELS=6-62 MIN EACH HINGED DOORS WITH QUICK (13) PANELS=3-6 MIN EACH ACTING STRUCTURAL FASTENERS (6) PANELS=8-10 MIN EACH QUICK-ACCESS HINGED DOORS (29) LESS THAN 1 MIN EACH AFT ENGINE UPPER LANDING GEAR DOORS FWD PORTION OF PANEL 4305 (EACH SIDE) GUN BAY, AFT 2/3 UPPER PORTION AFT ENGINE BAY PANEL NOTE: OF PANEL 3409 4411/4413 LEFT SIDE Avoid hitting frame. LEFT HAND SIDE JET FUEL STARTER AFT OF JFS EXHAUST DOOR PANEL 3303 AFT ENGINE BAY PANEL AMMUNITION BAY 4412/4414 RIGHT SIDE LOWER CENTER PANEL 3401 (EACH SIDE) RIGHT HAND SIDE FWD ENGINE BAY PANEL 3316 AND 3314 NOTE: Panels can be opened by hand. AIRCRAFT HAZARDS AND ACCESS PANELS F-16 REMOVABLE STRUCTURAL COVERS (180) PANELS=6-62 MIN EACH HINGED DOORS WITH QUICK (13) PANELS=3-6 MIN EACH ACTING STRUCTURAL FASTENERS (6) PANELS=8-10 MIN EACH QUICK-ACCESS HINGED DOORS (29) LESS THAN 1 MIN EACH LANDING GEAR DOORS HYDRAULIC SYSTEM B 3.46 GAL. ACCESS PANEL 3415 LEFT HAND SIDE GUN PORT CHAFF AND JFS INLET TAIL HOOK FLARE JFS EXHAUST DISPENSER EPU FUEL (HYDRAZINE) 6.8 GAL.
    [Show full text]
  • [email protected] C/ Fruela, 6 Fax: +34 91 463 55 35 28011 Madrid (España) Foreword
    CICIAIAIACAC COMISIÓN DE INVESTIGACIÓN DE ACCIDENTES E INCIDENTES DE AVIACIÓN CIVIL Report ULM A-013/2016 Accident involving an Evektor EV-97 Eurostar aircraft, registration EC-KTF, in San Ignacio del Viar (Seville, Spain) on 20 May 2016 Report ULM A-013/2016 Accident involving an Evektor EV-97 Eurostar aircraft, registration EC-KTF, in San Ignacio del Viar (Seville, Spain) on 20 May 2016 SUBSECRETARÍA GOBIERNO MINISTERIO DE ESPAÑA DE FOMENTO COMISIÓN DE INVESTIGACIÓN DE ACCIDENTES E INCIDENTES DE AVIACIÓN CIVIL © Ministerio de Fomento Secretaría General Técnica Centro de Publicaciones NIPO Línea: 161-18-020-0 NIPO Papel: 161-18-021-6 Deposito Legal: M-3318-2018 Maquetación: David García Arcos Impresión: Centro de Publicaciones COMISIÓN DE INVESTIGACIÓN DE ACCIDENTES E INCIDENTES DE AVIACIÓN CIVIL Tel.: +34 91 597 89 63 E-mail: [email protected] C/ Fruela, 6 Fax: +34 91 463 55 35 http://www.ciaiac.es 28011 Madrid (España) Foreword This report is a technical document that reflects the point of view of the Civil Aviation Accident and Incident Investigation Commission (CIAIAC) regarding the circumstances of the accident object of the investigation, and its probable causes and consequences. In accordance with the provisions in Article 5.4.1 of Annex 13 of the International Civil Aviation Convention; and with articles 5.5 of Regulation (UE) nº 996/2010, of the European Parliament and the Council, of 20 October 2010; Article 15 of Law 21/2003 on Air Safety and articles 1., 4. and 21.2 of Regulation 389/1998, this investigation is exclusively of a technical nature, and its objective is the prevention of future civil aviation accidents and incidents by issuing, if necessary, safety recommendations to prevent from their reoccurrence.
    [Show full text]
  • F-16C T/N 87-0306 121St Fighter Squadron 113Th Wing Joint Base Andrews, Maryland
    UNITED STATES AIR FORCE AIRCRAFT ACCIDENT INVESTIGATION BOARD REPORT F-16C T/N 87-0306 121ST FIGHTER SQUADRON 113TH WING JOINT BASE ANDREWS, MARYLAND LOCATION: CLINTON, MD DATE OF ACCIDENT: 5 APRIL 2017 BOARD PRESIDENT: COLONEL DAVID V. COCHRAN Conducted IAW Air Force Instruction 51-503 [Volume One of Two] //Signed// United States Air Force Accident Investigation Board Report F-16C Mishap, Clinton, MD EXECUTIVE SUMMARY UNITED STATES AIR FORCE AIRCRAFT ACCIDENT INVESTIGATION F-16C, T/N 87-0306 CLINTON, MD 5 APRIL 2017 On 5 April 2017, at 09:13 hours local time (L), an F-16C impacted the ground southwest of Joint Base Andrews (JBA), in Clinton, Maryland (MD). The mishap pilot (MP) safely ejected and did not sustain any injuries. The mishap aircraft (MA) tail number 87-0306 and the MP are assigned to the 113th Wing, 121st Fighter Squadron, JBA, MD. The MA, valued at $22,198,075, was destroyed. The MA’s two external fuel tanks were jettisoned prior to MP ejection and impacted private property located east of the Potomac River shoreline and approximately 1,750 feet south of National Harbor, MD. The MA impacted a wooded area 3.4 nautical miles southwest of JBA. There were no personnel injured on the ground. The area upon which the MA and external fuel tanks landed was disturbed by the respective impacts, resulting fireball (from the MA), and associated fluids and debris. The environmental clean-up cost was $856,777. The mishap occurred as part of a four aircraft F-16 formation on departure from JBA.
    [Show full text]
  • Military Aircraft: Extrication of Aircrew
    Hazard Military aircraft: Extrication of aircrew Developed and maintained by the NFCC Contents Hazard - Military aircraft: Extrication of aircrew ................................................................................ 3 Control measure - Access the cockpit ................................................................................................ 3 Control measure - Make ejection seats safe .................................................................................... 5 Control measure - Extricate the aircrew ........................................................................................... 5 This content is only valid at the time of download - 30-09-2021 22:05 2 of 6 Hazard - Military aircraft: Extrication of aircrew Hazard Knowledge In normal conditions, only trained and competent technicians from the relevant military services should attempt to gain access to military aircraft. However, personnel may have to gain access under exceptional circumstances, where there is a risk to life. Cockpit canopies A military aircraft cockpit is covered and protected by a canopy. Canopies can weigh in the region of 100kg and are constructed from a strong, heavy and usually transparent material. The emergency canopy release may be activated accidentally or by aircrew as personnel are approaching or working near the aircraft. Ejection seats When an aircraft is parked on the ground, safety devices, in the form of distinctive safety pins, are fitted to prevent the accidental actuation of the ejection seat. Following an emergency, the status of the ejection seats may be unknown. If the seat guide rails projecting out of the canopy area are visible, it can indicate that the seats have fired from the cockpit and the aircrew may be some distance from the airframe. Personnel should not assume the ejection seats have activated successfully; for example, a two-seat aircraft may have had only one occupant, or a seat may have failed to operate.
    [Show full text]
  • Commercial Air Transport Special Bulletins General Aviation Contents
    AAIB Bulletin: 2/2010 CONTENTS SPECIAL BULLETINS None COMMERCIAL AIR TRANSPORT FIXED WING Airbus A320-211 D-AIQA ∫ ∫ 05-Aug-08 1 Boeing 737-86N EI-DKD Airbus A321-231 G-MEDF 14-Oct-09 7 Avro 146-RJ100 G-BXAR 13-Feb-09 8 BAC 167 Strikemaster Mk 80 G-UPPI 26-Apr-09 16 Boeing 757-236 G-LSAA 02-Mar-09 24 Boeing 777-240(LR) AP-BGY ∫ ∫ 15-Feb-07 28 DHC-8-402 Dash 8 G-JEDR BN2A Mk III-2 Trislander G-RLON 02-Sep-09 37 Raytheon 390 Premier I G-FRYL 07-Aug-08 39 ROTORCRAFT None GENERAL AVIATION FIXED WING Aero AT-3 R100 G-SYEL 24-Sep-09 56 Auster J5F Aiglet Trainer G-AMZU 19-Sep-09 57 Bolkow BO 208A2 Junior G-CLEM 12-Sep-09 60 CAP 10B G-CPXC 28-Aug-09 62 Cessna 172S Skyhawk G-SHSP ∫ ∫ 31-Oct-09 63 Enstrom 480 G-LADZ Cirrus SR22 N192SR 28-Jul-09 65 CZAW Sportcruiser G-CZSC 17-Aug-09 67 Druine D.62B Condor G-AWST 25-Aug-09 69 Extra EA 300 G-SIII 12-Sep-08 70 Glasair RG, G-BKHW 26-Apr-09 74 Grob G115E Tutor G-BYXD 15-Sep-09 76 Grumman AA-5B Tiger G-ROWL 16-Sep-09 78 Luton LA4A Minor G-ASEB 17-Sep-09 79 Morane Saulnier MS.880B Rallye Club G-AWOA 23-Oct-09 82 Pierre Robin HR200/120B G-BYLH 13-Jun-09 83 Piper J3C-65 Cub G-NCUB 08-Oct-09 84 Piper PA-28-161 Cherokee Warrior II G-LACB 20-Nov-09 86 Piper PA-28-161 Cherokee Warrior III G-CEMD 09-Nov-09 87 Piper PA-28-180 Cherokee G-ASIJ 31-Jul-09 88 Piper PA-28-180 Cherokee G-LFSG 16-Oct-09 89 Piper PA-32R-300 Cherokee Lance G-BTCA 23-Aug-09 90 Piper PA-38-112 Tomahawk G-BOMO 24-Sep-09 92 Reims Cessna F152 G-BJKY 16-Oct-09 93 © Crown copyright 2010 i AAIB Bulletin: 2/2010 CONTENTS (Continued) GENERAL AVIATION
    [Show full text]
  • Foot Forces Exerted at Various Aircraft Brake-Pedal Angles
    HUMAN FACTORS, 1971, 13(5), 445-456 Foot Forces Exerted at Various Aircraft Brake-Pedal Angles H. T. E. HERTZBERG and FRANCIS E. BURKEl, Anthropology Branch, Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio This study reports the forces (means and standards deviations) exerted by the foot at various angles of extension about its ankle. A sample of 100 rated pilots was selected by height and weigh t. The forces were measured in a cockpif mock-up constructed around a specially instrumented F-80 rudder·pedal assembly. The right rudder pedal (hinged on the rudder bar) could be rigidly set to any desired angle between vertical and 75° forward of vertical. Foot forces were measured at 11 positions of the instrumented brake pedal in both neutral and extended positions of the right leg, and in three cockpit sizes (37 in., 3914 in., and 41 in.)-66 measures on each man. In all three conditions, maximal forces were exerted within a 20° zone between 15 and 35° forward of vertical. Subjective comfort preferences, expressed by 86 pilots, closely paralleled the force findings. It is concluded that aircraft brake-pedal systems should be designed to maximize the effectiveness of the foot in that optimal zone, and that the same zone should be considered for other foot-operated controls, like automobile accelerator pedals, INTRODUCTION can exert its maximum torque about the ankle, as well as the magnitude of the forces them- Anyone who does work with his muscles selves. The data were gathered during 1949-50, knows that effort and fatigue can be minimized but could not then be written up_ As no similar by finding and using the position of optimal leg-strength study has appeared since then (but mechanical advantage of the limbs for any given compare Hunsicker [1955] for arm strength task.
    [Show full text]
  • ACES 5® Advanced Concept Ejection Seats for the T
    ACES 5® Advanced Concept Ejection Seats ACES 5® ADVANCED CONCEPT EJECTION SEATS THOSE BORN TO FLY LIVE TO WALK AWAY KEY FEATURES The seat of choice for • Passive head and neck protection qualified to 2016 update of T-7A Red Hawk Aircraft MIL-HDBK-516C injury requirements • Passive leg and arm restraints ACES 5® is the latest addition to the Specifically designed to enhance crew • Improved drogue system provides Collins Aerospace family of Advanced safety during an ejection, ACES 5 provides unsurpassed high-speed stability Concept Ejection Seats. It incorporates head and neck protection as well as significant safety and cost saving passive arm and leg restraint protection. • Common CAD/PAD with thousands upgrades compared to the legacy ACES II®, Additionally, the design of ACES 5 of fielded ACES II® ejection seats which is credited with saving more than simplifies routine maintenance and worldwide 680 lives since its 1978 introduction. enables maintainers to quickly return • Stability package (STAPAC) active the aircraft back into service. pitch stabilization system While retaining the proven performance of the ACES II, Collins Aerospace engineers Improved pilot safety. Improved ease of • Large, contiguous survival kit incorporated technology improvements maintenance. Decreased life-cycle costs. volume (1,200 cubic inches) to create the next generation ACES 5 All backed by program execution and • CKU-12 rocket catapult reliably ejection seat. The seat is rigorously teamwork resulting in ACES 5 selection achieves industry-leading lowest tested to validate performance, reliability, for the Boeing T-7A Red Hawk aircraft. spinal injury rates of <1% and compliance with the latest safety requirements.
    [Show full text]