The Modern Synthesis in the Light of Microbial Genomics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
James A. Mccloskey, Jr
CHEMICAL HERITAGE FOUNDATION JAMES A. MCCLOSKEY, JR. Transcript of Interviews Conducted by Michael A. Grayson at the McCloskeys’ Home Helotes, Texas on 19 and 20 March 2012 (With Subsequent Corrections and Additions) James A. McCloskey, Jr. ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancement of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry. This oral history is designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation (CHF) Center for Oral History to credit CHF using the format below: James A. McCloskey, Jr., interview by Michael A. Grayson at the McCloskeys’ home, Helotes, Texas, 19-20 March 2012 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0702). Chemical Heritage Foundation Center for Oral History 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society. -
The Great-Grandmother of LUCA (Last Universal Common Ancestor)
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2018 doi:10.20944/preprints201806.0035.v1 Be introduced to the First Universal Common Ancestor (FUCA): the great-grandmother of LUCA (Last Universal Common Ancestor) Francisco Prosdocimi1*, Marco V José2 and Sávio Torres de Farias3* 1 Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil. 2 Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 CDMX, Mexico. 3 Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brasil. * Correspondence: [email protected]; [email protected] Abstract The existence of a common ancestor to all living organisms in Earth is a necessary corollary of Darwin idea of common ancestry. The Last Universal Common Ancestor (LUCA) has been normally considered as the ancestor of cellular organisms that originated the three domains of life: Bacteria, Archaea and Eukarya. Recent studies about the nature of LUCA indicate that this first organism should present hundreds of genes and a complex metabolism. Trying to bring another of Darwin ideas into the origins of life discussion, we went back into the prebiotic chemistry trying to understand how LUCA could be originated 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2018 doi:10.20944/preprints201806.0035.v1 under gradualist assumptions. Along this line of reasoning, it became clear to us that the definition of another ancestral should be of particular relevance to the understanding about the emergence of biological systems. -
Beyond the Big Bang • the Amazon's Lost Civilizations • the Truth
SFI Bulletin winter 2006, vol. 21 #1 Beyond the Big Bang • The Amazon’s Lost Civilizations • The Truth Behind Lying The Bulletin of the Santa Fe Institute is published by SFI to keep its friends and supporters informed about its work. The Santa Fe Institute is a private, independent, multidiscipli- nary research and education center founded in 1984. Since its founding, SFI has devoted itself to creating a new kind of sci- entific research community, pursuing emerging synthesis in science. Operating as a visiting institution, SFI seeks to cat- alyze new collaborative, multidisciplinary research; to break down the barriers between the traditional disciplines; to spread its ideas and methodologies to other institutions; and to encourage the practical application of its results. Published by the Santa Fe Institute 1399 Hyde Park Road Santa Fe, New Mexico 87501, USA phone (505) 984-8800 fax (505) 982-0565 home page: http://www.santafe.edu Note: The SFI Bulletin may be read at the website: www.santafe.edu/sfi/publications/Bulletin/. If you would prefer to read the Bulletin on your computer rather than receive a printed version, contact Patrisia Brunello at 505/984-8800, Ext. 2700 or [email protected]. EDITORIAL STAFF: Ginger Richardson Lesley S. King Andi Sutherland CONTRIBUTORS: Brooke Harrington Janet Yagoda Shagam Julian Smith Janet Stites James Trefil DESIGN & PRODUCTION: Paula Eastwood PHOTO: ROBERT BUELTEMAN ©2004 BUELTEMAN PHOTO: ROBERT SFI Bulletin Winter 2006 TOCtable of contents 3 A Deceptively Simple Formula 2 How Life Began 3 From -
The Evolution of Universal Adaptations of Life Is Driven by Universal Properties of Matter: Energy, Entropy, and Interaction [Version 2; Peer Review: 3 Approved]
F1000Research 2020, 9:626 Last updated: 23 SEP 2021 OPINION ARTICLE The evolution of universal adaptations of life is driven by universal properties of matter: energy, entropy, and interaction [version 2; peer review: 3 approved] Irun R. Cohen 1, Assaf Marron 2 1Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel 2Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 76100, Israel v2 First published: 18 Jun 2020, 9:626 Open Peer Review https://doi.org/10.12688/f1000research.24447.1 Second version: 30 Jul 2020, 9:626 https://doi.org/10.12688/f1000research.24447.2 Reviewer Status Latest published: 02 Sep 2020, 9:626 https://doi.org/10.12688/f1000research.24447.3 Invited Reviewers 1 2 3 Abstract The evolution of multicellular eukaryotes expresses two sorts of version 3 adaptations: local adaptations like fur or feathers, which characterize (revision) species in particular environments, and universal adaptations like 02 Sep 2020 microbiomes or sexual reproduction, which characterize most multicellulars in any environment. We reason that the mechanisms version 2 driving the universal adaptations of multicellulars should themselves (revision) report report be universal, and propose a mechanism based on properties of matter 30 Jul 2020 and systems: energy, entropy, and interaction. Energy from the sun, earth and beyond creates new arrangements and interactions. version 1 Metabolic networks channel some of this energy to form cooperating, 18 Jun 2020 report report interactive arrangements. Entropy, used here as a term for all forces that dismantle ordered structures (rather than as a physical quantity), acts as a selective force. Entropy selects for arrangements that resist it 1. -
Snakemake As a Workflow Engine for Reciprocal BLAST Analyses
Snakemake as a workflow engine for reciprocal BLAST analyses Lukas Becker A thesis presented for the degree of Bachelor of Science Supervisor: Prof. Dr. Gunnar Klau Second Assessor: Dr. Nicolas Schmelling Algorithmic Bioinformatics Heinrich Heine University Düsseldorf Germany 25th February, 2021 Acknowledgments I would like to express my gratitude for Prof. Gunnar Klau whose encouragement and guidance throughout this study has been a great support. Furthermore, I owe special thanks to Dr. Nicolas Schmelling for his invaluable support, constructive feedback and continued assistance in my various questions. Thanks for the opportunity to work on this thesis and the experience to work on this cooperative topic. In addition, I would like to thank Philipp Spohr for his patience with my many questions and his advice and valuable guidance. Thanks. ii Abstract In modern genomic analysis, homology describes the evolutionary relationship between two sequences. In addition to a diverse classification of homology, the key concept for evolutionary and comparative genomics is the dichotomous differentiation of homology into orthologous and paralogous sequences. Sets of orthologous genes are used to obtain information regarding gene functions and phylogenetic relationships because orthologs tend to retain their biolog- ical function. Various methods have been developed in order to identify orthologous genes. Typically, orthologous and paralogous gene relationships are disentangled by measuring and comparing sequence similarities within sequences of interest. More precisely, when search- ing orthologous sequences in different genomes, those sequences will most likely match each other as best hits when performing sequence similarity searches. The resulting sequences are called reciprocal best hits (RBHs). The identification of RBHs is the most common method to infer putative orthologs in comparative genomic studies. -
Signature of Controversy
I n “In this volume Granville Sewell provides “As the debate over intelligent design grows T delightful and wide-ranging commentary on increasingly heated... it is refreshing to find a HE the origins debate and intelligent design... discussion of the topic that is calm, thoughtful, Sewell provides much needed clarity on topics and far-ranging, with no sense of having to B e ignature f that are too often misunderstood. His discussion advance an agenda or decimate the opposition. G I S o of the commonly confused problem of entropy In this regard, Granville Sewell’s In the NNI is a must read.” Beginning succeeds brilliantly.” Cornelius G. Hunter, Ph.D. William A. Dembski, Ph.D. N author of The Design Inference author of Science’s Blind Spot G ontroversy A N c In this wide-ranging collection of essays on origins, mathematician Granville Sewell looks at the D big bang, the fine-tuning of the laws of physics, and the evolution of life. He concludes that while O there is much in the history of life that seems to suggest natural causes, there is nothing to support THER Responses to critics of signature in the cEll Charles Darwin’s idea that natural selection of random variations can explain major evolutionary E S advances (“easily the dumbest idea ever taken seriously by science,” he calls it). Sewell explains S A Y why evolution is a fundamentally different and much more difficult problem than others solved s ON by science, and why increasing numbers of scientists are now recognizing what has long been I obvious to the layman, that there is no explanation possible without design. -
Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280 -
History of the Department of Microbiology 1868 – 2009
June 2015 HISTORY OF THE DEPARTMENT OF MICROBIOLOGY 1868 – 2009 University of Illinois at Urbana-Champaign 1 A HISTORY OF THE DEPARTMENT OF MICROBIOLOGY 1868 – 2009 This 141 year history of the Department of Microbiology includes an article (Chapter 1), written and published in 1959 by the Department, which covers the period 1868 to 1959. I joined the Department in 1953, and my recounting of the Department’s history includes personal observations as well as anecdotes told to me by H. O. Halvorson and others. Later I realized what a unique experience it had been to join a first-class department, and I resolved to play a role in maintaining its research stature. Ralph Wolfe 2 Department of Microbiology History of the Headship: 1950 – 1959 Halvor Halvorson 1960 – 1963 Kim Atwood 1963 – 1972 Leon Campbell 1972 – 1982 Ralph DeMoss 1982 – 1987 Samuel Kaplan 1987 – 1990 Jordan Konisky 1990 – 1991 Ralph Wolfe (Acting Head) 1991 – 1997 Charles Miller 1997 – 2002 John Cronan 2003 – 2004 Jeffrey Gardner (Acting Head) 2005 – Present John Cronan 3 Organization of the History of the Department In Chapters 2 to 6 the data are divided into Academic Decades, each containing the following sections: Section I, an overview of the decade; Section II, some events for each year of the decade; Section III, a summary of the research interests, honors received, publications, and invited off-campus lectures or seminars for each faculty member. These data have been obtained from the annual reports of the faculty submitted to the departmental secretary. 4 CHAPTER 1 1868 – 1959 During this time period the name of the Department was Department of Bacteriology (Anecdotes by Ralph Wolfe) A SHORT HISTORY OF THE DEPARTMENT OF BACTERIOLOGY H. -
The Archaeal Concept and the World It Lives In: a Retrospective
Carl R. Woese (center) with His Majesty Carl XVI Gustaf of Sweden and Queen Silvia on the occassion of his receiving the 2003 Crafoord Prize, given by the Royal Swedish Academy of Sciences. Photo credit: Royal Swedish Academy of Sciences. Photosynthesis Research 80: 361–372, 2004. 363 © 2004 Kluwer Academic Publishers. Printed in the Netherlands. Personal perspective The archaeal concept and the world it lives in: a retrospective Carl R. Woese Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemical and Life Sciences Laboratory, 601 South Goodwin Ave, Urbana, IL 61801-3709, USA (e-mail: [email protected]; fax: +1-217-244-6697) Received 9 July 2003; accepted in revised form 30 August 2003 Key words: archaea, evolution, genomics, molecular phylogeny, phylogenetic reconstruction, ribosomal RNA Abstract The present retrospective concerns the discovery and development of the archaea, the so-called ‘third form of life’ that no one anticipated and many did not, and still do not want. In its birth pangs, which the archaea had a plenty, the concept encountered biology unmasked; for it ran up against some of the key struts in the 20th century biological edifice. Consequently, the history of the development of the archaeal concept provides an excellent window on certain of the weaknesses in the 20th century biology paradigm, weaknesses that have now led that paradigm to a conceptual dead end. On the other hand, the archaeal concept has also provided us one of the pillars on which a new holistic paradigm for biology can be built. So, it would seem of value to retrace some of the twists and turns in the history of the development of the archaeal concept. -
Origin of the Cell Nucleus, Mitosis and Sex: Roles of Intracellular Coevolution Thomas Cavalier-Smith*
Cavalier-Smith Biology Direct 2010, 5:7 http://www.biology-direct.com/content/5/1/7 RESEARCH Open Access Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution Thomas Cavalier-Smith* Abstract Background: The transition from prokaryotes to eukaryotes was the most radical change in cell organisation since life began, with the largest ever burst of gene duplication and novelty. According to the coevolutionary theory of eukaryote origins, the fundamental innovations were the concerted origins of the endomembrane system and cytoskeleton, subsequently recruited to form the cell nucleus and coevolving mitotic apparatus, with numerous genetic eukaryotic novelties inevitable consequences of this compartmentation and novel DNA segregation mechanism. Physical and mutational mechanisms of origin of the nucleus are seldom considered beyond the long- standing assumption that it involved wrapping pre-existing endomembranes around chromatin. Discussions on the origin of sex typically overlook its association with protozoan entry into dormant walled cysts and the likely simultaneous coevolutionary, not sequential, origin of mitosis and meiosis. Results: I elucidate nuclear and mitotic coevolution, explaining the origins of dicer and small centromeric RNAs for positionally controlling centromeric heterochromatin, and how 27 major features of the cell nucleus evolved in four logical stages, making both mechanisms and selective advantages explicit: two initial stages (origin of 30 nm chromatin fibres, enabling DNA compaction; and firmer attachment of endomembranes to heterochromatin) protected DNA and nascent RNA from shearing by novel molecular motors mediating vesicle transport, division, and cytoplasmic motility. Then octagonal nuclear pore complexes (NPCs) arguably evolved from COPII coated vesicle proteins trapped in clumps by Ran GTPase-mediated cisternal fusion that generated the fenestrated nuclear envelope, preventing lethal complete cisternal fusion, and allowing passive protein and RNA exchange. -
New Ideas in Evolutionary Biology: from NDMS to EES Sy Garte Sy Garte
Article New Ideas in Evolutionary Biology: From NDMS to EES Sy Garte Sy Garte The neo-Darwinian modern synthesis (NDMS) has been the bedrock of evolution- ary theory for many decades. But the NDMS has proven limited and out of date with respect to several areas of biological research. A new extended evolutionary synthesis (EES), which takes into account more complex interactions between genomes, the cell and the environment, allows for a reexamination of many of the assumptions of the NDMS. To the standard paradigm of slow accumulation of random point mutations as the major mechanism of biological variation must now be added new data and concepts of symbiosis, gene duplication, horizontal gene transfer, retrotransposition, epigenetic control networks, niche construction, stress-directed mutations, and large-scale reengi- neering of the genome in response to environmental stimuli. There may be implications for Christian faith in this opening of evolutionary theory to a broader and more exciting view of Darwin’s great theory. heoretical evolutionary biology The Neo-Darwinian has been undergoing a crescendo Synthesis of transformations in recent years. T In the middle of the twentieth century, After a long period of general acceptance even before the chemical nature of the of the traditional paradigm for how evo- gene was known, biologists were exam- lution works, new data and concepts from ining mutations in experimental systems many fi elds of biological science have of bacteria in order to answer questions begun to challenge the status quo of evo- about purpose and chance in mutation lutionary theory. There is no question that production. -
A Fundamentally New Perspective on the Origin and Evolution of Life Shi
A Fundamentally New Perspective on the Origin and Evolution of Life Shi V. Liu Eagle Institute of Molecular Biology Apex, NC 27502 USA [email protected] Motto Criticism and attempted “falsification” are essential parts of science. - Philip J. Darlington, Jr. (1904-1983) Abstract Darwin’s hypothesis that all extant life forms are descendants of a last common ancestor cell and diversification of life forms results from gradual mutation plus natural selection represents a mainstream view that has influenced biology and even society for over a century. However, this Darwinian view on life is contradicted by many observations and lacks a plausible physico-chemical explanation. Strong evidence suggests that the common ancestor cell hypothesis is the most fundamental flaw of Darwinism. By contrast, a totally different perspective on origin and evolution of life claims that cellular life forms were descendants of already diversified acellular life forms. Independently originated life forms evolve largely in some parallel ways even though they also interact with each other. Some evolutionary “gaps” naturally exist among evolutionary lines. Similarity may not be the only result of phylogenetic inheritance but may be a result of a convergent mechanism of origin and evolution. Evolution is not a random process but follows some basic physico-chemical principles as a result of the interplay of both energy and entropy on matter. Next year will be the 150th anniversary of the publication of Darwin’s famous book “On the Origin of Species by Means of natural Selection or the Preservation of Favored Races in the Struggle for Life” (1) and a celebration for the 200th birthday of a most influential biological scientist of all time (2, 3).