Structural Insights Into the Substrate Specificity of Acyltransferases From
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics
toxins Article Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics Bryan John J. Subong 1,2,* , Arturo O. Lluisma 1, Rhodora V. Azanza 1 and Lilibeth A. Salvador-Reyes 1,* 1 Marine Science Institute, University of the Philippines- Diliman, Velasquez Street, Quezon City 1101, Philippines; [email protected] (A.O.L.); [email protected] (R.V.A.) 2 Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo 113-8654, Japan * Correspondence: [email protected] (B.J.J.S.); [email protected] (L.A.S.-R.) Abstract: Alexandrium minutum and Alexandrium tamutum are two closely related harmful algal bloom (HAB)-causing species with different toxicity. Using isobaric tags for relative and absolute quantita- tion (iTRAQ)-based quantitative proteomics and two-dimensional differential gel electrophoresis (2D-DIGE), a comprehensive characterization of the proteomes of A. minutum and A. tamutum was performed to identify the cellular and molecular underpinnings for the dissimilarity between these two species. A total of 1436 proteins and 420 protein spots were identified using iTRAQ-based proteomics and 2D-DIGE, respectively. Both methods revealed little difference (10–12%) between the proteomes of A. minutum and A. tamutum, highlighting that these organisms follow similar cellular and biological processes at the exponential stage. Toxin biosynthetic enzymes were present in both organisms. However, the gonyautoxin-producing A. minutum showed higher levels of osmotic growth proteins, Zn-dependent alcohol dehydrogenase and type-I polyketide synthase compared to the non-toxic A. tamutum. Further, A. tamutum had increased S-adenosylmethionine transferase that may potentially have a negative feedback mechanism to toxin biosynthesis. -
The Biosynthetic Gene Cluster for the Anticancer Drug Bleomycin From
Journal of Industrial Microbiology & Biotechnology (2001) 27, 378–385 D 2001 Nature Publishing Group 1367-5435/01 $17.00 www.nature.com/jim The biosynthetic gene cluster for the anticancer drug bleomycin from Streptomyces verticillus ATCC15003 as a model for hybrid peptide–polyketide natural product biosynthesis B Shen, L Du, C Sanchez, DJ Edwards, M Chen and JM Murrell Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA The hybrid peptide–polyketide backbone of bleomycin (BLM) is assembled by the BLM megasynthetase that consists of both nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) modules. BlmIX/BlmVIII/BlmVII constitute a natural hybrid NRPS/PKS/NRPS system, serving as a model for both hybrid NRPS/PKS and PKS/NRPS systems. Sequence analysis and functional comparison of domains and modules of BlmIX/BlmVIII/BlmVII with those of nonhybrid NRPS and PKS systems suggest that (1) the same catalytic sites appear to be conserved in both hybrid NRPS–PKS and nonhybrid NRPS or PKS systems, with the exception of the KS domains in the hybrid NRPS/PKS systems that are unique; (2) specific interpolypeptide linkers may play a critical role in intermodular communication to facilitate transfer of the growing intermediates between the interacting NRPS and/or PKS modules; and (3) posttranslational modification of the BLM megasynthetase has been accomplished by a single PPTase with a broad substrate specificity toward the apo forms of both acyl carrier proteins (ACPs) and peptidyl carrier -
N-Carbamoylation of 2,4-Diaminobutyrate Reroutes the Outcome in Padanamide Biosynthesis
Chemistry & Biology Article N-Carbamoylation of 2,4-Diaminobutyrate Reroutes the Outcome in Padanamide Biosynthesis Yi-Ling Du,1 Doralyn S. Dalisay,1 Raymond J. Andersen,1,2 and Katherine S. Ryan1,* 1Department of Chemistry 2Department of Earth, Ocean and Atmospheric Sciences University of British Columbia, Vancouver, BC V6T 1Z1, Canada *Correspondence: [email protected] http://dx.doi.org/10.1016/j.chembiol.2013.06.013 SUMMARY literature. It is interesting that a compound identical to padana- mide A, named actinoramide A (Nam et al., 2011), was indepen- Padanamides are linear tetrapeptides notable for the dently reported from Streptomyces sp. CNQ-027. This actinomy- absence of proteinogenic amino acids in their struc- cete strain was isolated from sediment on the opposite side of the tures. In particular, two unusual heterocycles, (S)- Pacific Ocean, near San Diego, CA, suggesting a potentially wide 3-amino-2-oxopyrrolidine-1-carboxamide (S-Aopc) distribution of the padanamides/actinoramides. It is intriguing and (S)-3-aminopiperidine-2,6-dione (S-Apd), are that, whereas padanamide A and actinoramide A are identical, found at the C-termini of padanamides A and B, the minor compounds (actinoramides B and C) co-isolated from Streptomyces sp. CNQ-027 are unique (Figure 1A). Total respectively. Here we identify the padanamide synthesis of padanamides A and B was recently reported (Long biosynthetic gene cluster and carry out systematic et al., 2013), confirming the previous structural elucidations. gene inactivation studies. Our results show that The padanamides attracted our attention for their many padanamides are synthesized by highly dissociated unusual chemical features. -
Polyketide Biosynthesis Beyond the Type I, II and III Polyketide Synthase Paradigms Ben Shen
285 Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms Ben Shen Recent literature on polyketide biosynthesis suggests that Three types of bacterial PKSs are known to date. First, polyketide synthases have much greater diversity in both type I PKSs are multifunctional enzymes that are orga- mechanism and structure than the current type I, II and III nized into modules, each of which harbors a set of distinct, paradigms. These examples serve as an inspiration for searching non-iteratively acting activities responsible for the cata- novel polyketide synthases to give new insights into polyketide lysis of one cycle of polyketide chain elongation, as biosynthesis and to provide new opportunities for combinatorial exemplified by the 6-deoxyerythromycin B synthase biosynthesis. (DEBS) for the biosynthesis of reduced polyketides (i.e. macrolides, polyethers and polyene) such as erythro- Addresses mycin A (1)(Figure 1a) [1]. Second, type II PKSs are Division of Pharmaceutical Sciences and Department of Chemistry, multienzyme complexes that carry a single set of iteratively University of Wisconsin, Madison, WI 53705, USA acting activities, as exemplified by the tetracenomycin e-mail: [email protected] PKS for the biosynthesis of aromatic polyketides (often polycyclic) such as tetracenomycin C (2)(Figure 1b) [2]. Current Opinion in Chemical Biology 2003, 7:285–295 Third, type III PKSs, also known as chalcone synthase- like PKSs, are homodimeric enzymes that essentially are This review comes from a themed section on iteratively acting condensing enzymes, as exemplified by Biocatalysis and biotransformation Edited by Tadhg Begley and Ming-Daw Tsai the RppA synthase for the biosynthesis of aromatic poly- ketides (often monocyclic or bicyclic), such as flavolin (3) 1367-5931/03/$ – see front matter (Figure 1c) [3]. -
Letters to Nature
letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997). -
Investigation and Engineering of Polyketide Biosynthetic Pathways
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2017 Investigation and Engineering of Polyketide Biosynthetic Pathways Lei Sun Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biological Engineering Commons Recommended Citation Sun, Lei, "Investigation and Engineering of Polyketide Biosynthetic Pathways" (2017). All Graduate Theses and Dissertations. 6903. https://digitalcommons.usu.edu/etd/6903 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INVESTIGATION AND ENGINEERING OF POLYKETIDE BIOSYNTHETIC PATHWAYS by Lei Sun A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPHY in Biological Engineering Approved: ______________________ ____________________ Jixun Zhan, Ph.D. David W. Britt, Ph.D. Major Professor Committee Member ______________________ ____________________ Dong Chen, Ph.D. Jon Takemoto, Ph.D. Committee Member Committee Member ______________________ ____________________ Elizabeth Vargis, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2017 ii Copyright© Lei Sun 2017 All Rights Reserved iii ABSTRACT Investigation and engineering of polyketide biosynthetic pathways by Lei Sun, Doctor of Philosophy Utah State University, 2017 Major Professor: Jixun Zhan Department: Biological Engineering Polyketides are a large family of natural products widely found in bacteria, fungi and plants, which include many clinically important drugs such as tetracycline, chromomycin, spirolaxine, endocrocin and emodin. -
Rewiring Yarrowia Lipolytica Toward Triacetic Acid Lactone for Materials Generation
Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation Kelly A. Markhama,1, Claire M. Palmerb,1, Malgorzata Chwatkoa, James M. Wagnera, Clare Murraya, Sofia Vazqueza, Arvind Swaminathana, Ishani Chakravartya, Nathaniel A. Lynda, and Hal S. Alpera,b,2 aMcKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712; and bInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 Edited by Sang Yup Lee, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea, and approved January 22, 2018 (received for review December 6, 2017) Polyketides represent an extremely diverse class of secondary me- or challenging syntheses, this is not an option for any larger-scale tabolites often explored for their bioactive traits. These molecules are chemistry application. also attractive building blocks for chemical catalysis and polymeriza- Here, we focus on the interesting, yet simple, polyketide, tri- tion. However, the use of polyketides in larger scale chemistry acetic acid lactone (TAL) as it is derived from two common applications is stymied by limited titers and yields from both microbial polyketide precursors, acetyl–CoA and malonyl–CoA. TAL has and chemical production. Here, we demonstrate that an oleaginous been demonstrated as a platform chemical that can be converted organism (specifically, Yarrowia lipolytica) can overcome such produc- into a variety of valuable products traditionally derived from tion limitations owing to a natural propensity for high flux through fossil fuels including sorbic acid, a common food preservative acetyl–CoA. By exploring three distinct metabolic engineering strate- with a global demand of 100,000 t (1, 15–18). -
Cheminformatics for Genome-Scale Metabolic Reconstructions
CHEMINFORMATICS FOR GENOME-SCALE METABOLIC RECONSTRUCTIONS John W. May European Molecular Biology Laboratory European Bioinformatics Institute University of Cambridge Homerton College A thesis submitted for the degree of Doctor of Philosophy June 2014 Declaration This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation is not substantially the same as any I have submitted for a degree, diploma or other qualification at any other university, and no part has already been, or is currently being submitted for any degree, diploma or other qualification. This dissertation does not exceed the specified length limit of 60,000 words as defined by the Biology Degree Committee. This dissertation has been typeset using LATEX in 11 pt Palatino, one and half spaced, according to the specifications defined by the Board of Graduate Studies and the Biology Degree Committee. June 2014 John W. May to Róisín Acknowledgements This work was carried out in the Cheminformatics and Metabolism Group at the European Bioinformatics Institute (EMBL-EBI). The project was fund- ed by Unilever, the Biotechnology and Biological Sciences Research Coun- cil [BB/I532153/1], and the European Molecular Biology Laboratory. I would like to thank my supervisor, Christoph Steinbeck for his guidance and providing intellectual freedom. I am also thankful to each member of my thesis advisory committee: Gordon James, Julio Saez-Rodriguez, Kiran Patil, and Gos Micklem who gave their time, advice, and guidance. I am thankful to all members of the Cheminformatics and Metabolism Group. -
Substrate Channeling in Proline Metabolism Benjamin W
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biochemistry -- Faculty Publications Biochemistry, Department of 2012 Substrate channeling in proline metabolism Benjamin W. Arentson University of Nebraska-Lincoln, [email protected] Nikhilesh Sanyal University of Nebraska-Lincoln, [email protected] Donald F. Becker University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biochemfacpub Part of the Biochemistry Commons, Biotechnology Commons, and the Other Biochemistry, Biophysics, and Structural Biology Commons Arentson, Benjamin W.; Sanyal, Nikhilesh; and Becker, Donald F., "Substrate channeling in proline metabolism" (2012). Biochemistry -- Faculty Publications. 303. http://digitalcommons.unl.edu/biochemfacpub/303 This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. NIH Public Access Author Manuscript Front Biosci. Author manuscript; available in PMC 2013 January 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Front Biosci. ; 17: 375–388. Substrate channeling in proline metabolism Benjamin W. Arentson1, Nikhilesh Sanyal1, and Donald F. Becker1 1Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA Abstract Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. -
Annual Report 2014
ANNUAL REPORT 2014 Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, Kerala Phone: +91 471 2341716, 2347975 Fax: +91 471 2348096, 2346333 E-mail: [email protected] Website: www.rgcb.res.in CONTENTS Director’s Report 05 Cancer Biology Cancer Research Program Laboratory - 1 10 Cancer Research Program Laboratory - 2 22 Cancer Research Program Laboratory - 3 30 Cancer Research Program Laboratory - 4 40 Cancer Research Program Laboratory - 5 51 Cancer Research Program Laboratory - 6 62 Cancer Research Program Laboratory - 7 68 Cancer Research Program Laboratory - 8 71 Cancer Research Program Laboratory - 9 77 Cancer Research Program Laboratory - 10 109 Cardiovascular & Diabetes Disease Biology Programme Cardiovascular Disease Biology Laboratory 117 Diabetes Disease Biology Laboratory 133 Chemical Biology Program Chemical Biology Laboratory - 1 136 Chemical Biology Laboratory - 2 148 Molecular Ecology Laboratory 154 Environmental Biology Laboratory 163 Neurobiology Program Molecular Neurobiology Laboratory 175 Neuro-Stem Cell Biology Laboratory 181 Neuro-Bio-Physics Laboratory 188 Human Molecular Genetics Laboratory 192 Plant Disease Biology & Biotechnology PDBB Laboratory - 1 202 PDBB Laboratory - 2 215 PDBB Laboratory - 3 221 PDBB Laboratory - 4 225 Molecular Reproduction Laboratory - 1 234 Laboratory - 2 250 Tropical Disease Biology Mycobacterium Research Group - 1 259 Mycobacterium Research Group - 2 262 Molecular Virology Laboratory 270 Viral Disease Biology Laboratory -1 276 Viral Disease Biology Laboratory - 2 285 Leptospira -
The Role of the Iterative Modules in Polyketide Synthase Evolution
COMMENTARY COMMENTARY The role of the iterative modules in polyketide synthase evolution Martin Griningera,1 Polyketide synthases (PKSs) assemble activated car- the compound is reached (Fig. 1B). Probably, the best- boxylic acids to elaborate chemical compounds (1). studied representatives are PksA from the fungal genus The key synthetic step is the C-C bond-forming con- Aspergillus, initiating biosynthesis of the environmental densation of an acyl moiety (e.g., acetyl-coenzyme A carcinogen aflatoxin B1 (5), and the 6-methylsalicylic [CoA]) with an α-carboxyacyl moiety (e.g., malonyl- acid synthase (MSAS) from the fungus Penicillium pat- CoA) on release of CO2. The emerging β-ketoacyl ulum (6) (Fig. 1B). compound can optionally be further modified by three Since the synthesis is performed within single multi- accessory catalytic functions. Since this reaction se- domain proteins in recursive manner, the chemical quence can be repeated, with each elongation varying complexity of compounds derived from the iterative in accessory catalytic functions, polyketides can be rich systems is usually less sophisticated compared to in chemistry (Fig. 1A). Many polyketides are of pharma- compounds from the more versatile modular systems. ceutical relevance, among them several top-selling small This is the reason why iterative PKSs usually receive far molecule drugs (2): for example, antibiotics (e.g., eryth- less comment than the modular ones. In their PNAS romycin and tetracycline), antineoplastics (e.g., daunoru- article, Wang et al. (7) extend the relevance of iterative bicin), and immunosuppressants (e.g., rapamycin) (3). PKSs in several aspects: as efficient producers of nat- PKSs are subdivided into three categories: type I ural compounds, as targets for protein engineering, PKSs are large multifunctional proteins composed of and as an inherent part in the evolution of the PKS several catalytic and functional domains, type II PKSs protein family. -
Structural and Functional Analysis of Two Di-Domain Aromatase/Cyclases from Type II Polyketide Synthases
Structural and functional analysis of two di-domain aromatase/cyclases from type II polyketide synthases Grace Caldara-Festina,b,c,1, David R. Jacksona,b,c,1,2, Jesus F. Barajasa,b,c, Timothy R. Valentica,b,c, Avinash B. Patela,b,c, Stephanie Aguilara,b,c, MyChi Nguyena,b,c, Michael Voa,b,c, Avinash Khannaa,b,c, Eita Sasakid,e, Hung-wen Liud,e, and Shiou-Chuan Tsaia,b,c,2 aDepartment of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697; bDepartment of Chemistry, University of California, Irvine, CA 92697; cDepartment of Pharmaceutical Sciences, University of California, Irvine, CA 92697; dDivision of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712; and eDepartment of Chemistry, University of Texas, Austin, TX 78712 Edited by Janet L. Smith, University of Michigan, Ann Arbor, MI, and accepted by the Editorial Board November 4, 2015 (received for review July 2, 2015) Aromatic polyketides make up a large class of natural products The di-domain ARO/CYCs are found in both nonreducing with diverse bioactivity. During biosynthesis, linear poly-β-ketone and reducing PKSs (18, 24). In nonreducing systems, the di- intermediates are regiospecifically cyclized, yielding molecules domain ARO/CYCs regiospecifically cyclize a polyketide be- with defined cyclization patterns that are crucial for polyketide tween C7 and C12, followed by aromatization (18). In reducing bioactivity. The aromatase/cyclases (ARO/CYCs) are responsible systems, a ketoreductase (KR) first regiospecifically cyclizes the for regiospecific cyclization of bacterial polyketides. The two most linear poly-β-ketone from C12 to C7, followed by a highly specific common cyclization patterns are C7–C12 and C9–C14 cyclizations.