Advanced Genome Engineering Using CRISPR/Cas9 and Transposases

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Genome Engineering Using CRISPR/Cas9 and Transposases Advanced Genome Engineering Using CRISPR/Cas9 and Transposases Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich 14 der Johann Wolfgang Goethe-Universität in Frankfurt am Main von Adrian Kovač aus Frankfurt am Main Frankfurt, 2020 Vom Fachbereich 14 der Johann Wolfgang Goethe – Universität als Dissertation angenommen. Dekan: Prof. Dr. Clemens Glaubitz Gutachter: Prof. Dr. Rolf Marschalek Datum der Disputation: 22.10.2020 Table of Contents 1 Introduction ......................................................................................................................... 1 1.1 Overview over gene therapy history and technology .................................................. 1 1.2 Integrating vectors ....................................................................................................... 2 1.2.1 Viral vectors ......................................................................................................... 2 1.2.2 Transposable elements ......................................................................................... 3 1.2.3 Transposon vectors ............................................................................................... 7 1.3 The SB transposon ..................................................................................................... 10 1.3.1 Sleeping Beauty transposon and transposase structure ...................................... 10 1.3.2 Sleeping Beauty transposition mechanism and target selection ......................... 12 1.3.3 Sleeping Beauty optimization and variants ........................................................ 15 1.3.4 Applications of the Sleeping Beauty system ...................................................... 17 1.4 Site-specific genome engineering .............................................................................. 19 1.4.1 Nuclease-based genome engineering ................................................................. 19 1.4.2 The CRISPR/Cas9 system .................................................................................. 21 1.4.3 Nuclease-free editing and other site-specific methods ....................................... 24 1.5 Natural and artificial targeted insertion systems ....................................................... 25 1.5.1 Natural targeted insertion systems ..................................................................... 27 1.5.2 Artificial retargeting of integrating vectors ........................................................ 30 1.5.3 Sleeping Beauty retargeting ................................................................................ 33 1.5.4 Targeting of ribosomal DNA ............................................................................. 35 2 Material and methods ........................................................................................................ 38 2.1 Material ...................................................................................................................... 38 2.1.1 Chemicals ........................................................................................................... 38 2.1.2 Media, buffers and solutions .............................................................................. 38 2.1.3 Kits ..................................................................................................................... 39 2.1.4 Other consumables ............................................................................................. 40 2.1.5 Equipment .......................................................................................................... 40 2.1.6 Antibodies and enzymes ..................................................................................... 40 2.1.7 Bacterial strains and eukaryotic cell lines .......................................................... 42 2.1.8 Plasmids ............................................................................................................. 42 2.1.9 Primers ............................................................................................................... 44 2.1.10 Other oligonucleotides ....................................................................................... 49 2.1.11 Software ............................................................................................................. 50 2.1.12 Services .............................................................................................................. 51 2.2 Methods ..................................................................................................................... 51 2.2.1 Plasmid construction .......................................................................................... 51 2.2.2 Cell culture and transfection .............................................................................. 54 2.2.3 Selection-based transposition assays .................................................................. 54 2.2.4 Western Blot ....................................................................................................... 54 2.2.5 Electrophoretic mobility shift assay (EMSA) .................................................... 55 2.2.6 Generation of integration libraries ..................................................................... 56 2.2.7 Integration site sequencing and analysis ............................................................ 57 2.2.8 PCR-based insertion site analysis ...................................................................... 57 2.2.9 In vitro digestion with Cas9 ............................................................................... 58 2.2.10 T7 Endonuclease assay ....................................................................................... 58 2.2.11 TIDE assay ......................................................................................................... 59 2.2.12 Sleeping Beauty mutagenesis ............................................................................. 59 2.2.13 Assembly of the SB mutant library .................................................................... 59 2.2.14 Screening of the SB mutant library .................................................................... 60 2.2.15 High-throughput FACS analysis ........................................................................ 61 2.2.16 Immunofluorescence microscopy ...................................................................... 61 3 Results ............................................................................................................................... 62 3.1 Retargeting of SB with dCas9 ................................................................................... 62 3.1.1 Generation of fusions between dCas9 and transposase components ................. 62 3.1.2 Transpositional activity of dCas9-SB100X ........................................................ 63 3.1.3 DNA-binding activities of dCas9 fusions .......................................................... 64 3.1.4 Integration library generation ............................................................................. 66 3.1.5 Validation of L1-directed sgRNAs .................................................................... 68 3.1.6 Validation of AluY-directed sgRNAs ................................................................ 69 3.1.7 AluY- and L1-targeted integration libraries ....................................................... 70 3.1.8 Validation of HPRT-directed sgRNAs ............................................................... 75 3.1.9 HPRT-targeted integration libraries ................................................................... 76 3.1.10 Design and validation of GSH-targeted sgRNAs ............................................... 77 3.1.11 GSH-targeted integration libraries ..................................................................... 78 3.1.12 Design and validation of TAn-targeted sgRNAs ................................................ 79 3.1.13 TAn -targeted integration libraries ...................................................................... 80 3.1.14 Generation of reduced-affinity SB mutants ....................................................... 82 3.1.15 Generation of a random SB mutant library ........................................................ 84 3.1.16 Screening of the mutant libraries ....................................................................... 85 3.1.17 Transposition with dCas9-SB(C42) ................................................................... 86 3.1.18 Targeting of single-copy loci with dCas9-SB(C42) ........................................... 87 3.1.19 Staged targeting with dCas9-SB100X and dCas9-SB(C42) .............................. 87 3.2 Retargeting of SB by ribosomal localization ............................................................. 88 3.2.1 Characterization of NoLS-SB100X fusions ....................................................... 88 3.2.2 Characterization of B23-SB100X ...................................................................... 89 3.2.3 B23-SB100X insertion libraries ......................................................................... 90 3.3 HDR enhancement with Cas9 fusions ....................................................................... 92 3.3.1 Characterization of Cas9-N57 and Cas9-N123 fusions ..................................... 92 3.3.2 Test of HDR enhancement using the TLR system ............................................
Recommended publications
  • Multiple Origins of Viral Capsid Proteins from Cellular Ancestors
    Multiple origins of viral capsid proteins from PNAS PLUS cellular ancestors Mart Krupovica,1 and Eugene V. Kooninb,1 aInstitut Pasteur, Department of Microbiology, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris, France; and bNational Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894 Contributed by Eugene V. Koonin, February 3, 2017 (sent for review December 21, 2016; reviewed by C. Martin Lawrence and Kenneth Stedman) Viruses are the most abundant biological entities on earth and show genome replication. Understanding the origin of any virus group is remarkable diversity of genome sequences, replication and expres- possible only if the provenances of both components are elucidated sion strategies, and virion structures. Evolutionary genomics of (11). Given that viral replication proteins often have no closely viruses revealed many unexpected connections but the general related homologs in known cellular organisms (6, 12), it has been scenario(s) for the evolution of the virosphere remains a matter of suggested that many of these proteins evolved in the precellular intense debate among proponents of the cellular regression, escaped world (4, 6) or in primordial, now extinct, cellular lineages (5, 10, genes, and primordial virus world hypotheses. A comprehensive 13). The ability to transfer the genetic information encased within sequence and structure analysis of major virion proteins indicates capsids—the protective proteinaceous shells that comprise the that they evolved on about 20 independent occasions, and in some of cores of virus particles (virions)—is unique to bona fide viruses and these cases likely ancestors are identifiable among the proteins of distinguishes them from other types of selfish genetic elements cellular organisms.
    [Show full text]
  • Table 1. Unclassified Proteins Encoded by Polintons Polintons
    Table 1. Unclassified proteins encoded by Polintons Protein Polintons Length, Similar Description aa GenBank Family Species proteins* Polinton-1_DR Fish 280 Polinton-2_DR Fish 282 Polinton-1_XT Frog 248 Polinton-2_XT Frog 247 Polinton-1_SPU Lizard - Polinton-1_CI Sea squirt 249 A profile derived from the PX multiple alignment PX Polinton-2_CI Sea squirt 248 — does not match (based on PSI-BLAST) any proteins Polinton-1_SP Sea urchin 252 that are not encoded by Polintons. Polinton-2_SP Sea urchin 255 Polinton-3_SP Sea urchin 253 Polinton-5_SP Sea urchin 255 Polinton-1_TC Beatle 291 Polinton-1_DY Fruit fly 182 Polinton-1_DR Fish 435 Polinton-2_DR Fish 435 Polinton-1_XT Frog 436 Polinton-2_XT Frog 435 Polinton-1_SPU Lizard 435 This protein is the most conserved one among the Polinton-1_CI Sea squirt 431 Polinton-encoded unclassified proteins. Its Polinton-2_CI Sea squirt 428 conservation is comparable to that of POLB and PY Polinton-1_SP Sea urchin 442 — INT. Polinton-2_SP Sea urchin 442 A profile derived from the PX multiple alignment Polinton-3_SP Sea urchin 444 does not match any proteins that are not encoded by Polinton-4_SP Sea urchin 444 Polintons. Polinton-5_SP Sea urchin 444 Polinton-1_TC Beatle 437 Polinton-1_DY Fruit fly 430 Polinton-1_CB Nematode 287 Polinton-1_DR Fish 151 Polinton-2_DR Fish 156 Polinton-1_XT Frog 146 Polinton-2_XT Frog 147 Polinton-1_CI Sea squirt 141 Polinton-2_CI Sea squirt 140 A profile derived from the PX multiple alignment PW Polinton-1_SP Sea urchin 121 — does not match any proteins that are not encoded by Polinton-2_SP Sea urchin 120 Polintons.
    [Show full text]
  • Gene Therapy Glossary of Terms
    GENE THERAPY GLOSSARY OF TERMS A • Phase 3: A phase of research to describe clinical trials • Allele: one of two or more alternative forms of a gene that that gather more information about a drug’s safety and arise by mutation and are found at the same place on a effectiveness by studying different populations and chromosome. different dosages and by using the drug in combination • Adeno-Associated Virus: A single stranded DNA virus that has with other drugs. These studies typically involve more not been found to cause disease in humans. This type of virus participants.7 is the most frequently used in gene therapy.1 • Phase 4: A phase of research to describe clinical trials • Adenovirus: A member of a family of viruses that can cause occurring after FDA has approved a drug for marketing. infections in the respiratory tract, eye, and gastrointestinal They include post market requirement and commitment tract. studies that are required of or agreed to by the study • Adeno-Associated Virus Vector: Adeno viruses used as sponsor. These trials gather additional information about a vehicles for genes, whose core genetic material has been drug’s safety, efficacy, or optimal use.8 removed and replaced by the FVIII- or FIX-gene • Codon: a sequence of three nucleotides in DNA or RNA • Amino Acids: building block of a protein that gives instructions to add a specific amino acid to an • Antibody: a protein produced by immune cells called B-cells elongating protein in response to a foreign molecule; acts by binding to the • CRISPR: a family of DNA sequences that can be cleaved by molecule and often making it inactive or targeting it for specific enzymes, and therefore serve as a guide to cut out destruction and insert genes.
    [Show full text]
  • CRISPR RNA-Guided Integrases for High-Efficiency and Multiplexed
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.17.209452; this version posted July 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. CRISPR RNA-guided integrases for high-efficiency and multiplexed bacterial genome engineering Phuc Leo H. Vo1, Carlotta Ronda2, Sanne E. Klompe3, Ethan E. Chen4, Christopher Acree3, Harris H. Wang2,5, Samuel H. Sternberg3 1Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, USA. 2Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA. 3Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. 4Department of Biological Sciences, Columbia University, New York, NY, USA. 5Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.17.209452; this version posted July 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Tn7-like transposons are pervasive mobile genetic elements in bacteria that mobilize using heteromeric transposase complexes comprising distinct targeting modules. We recently described a Tn7-like transposon from Vibrio cholerae that employs a Type I-F CRISPR–Cas system for RNA-guided transposition, in which Cascade directly recruits transposition proteins to integrate donor DNA downstream of genomic target sites complementary to CRISPR RNA.
    [Show full text]
  • Long-Read Cdna Sequencing Identifies Functional Pseudogenes in the Human Transcriptome Robin-Lee Troskie1, Yohaann Jafrani1, Tim R
    Troskie et al. Genome Biology (2021) 22:146 https://doi.org/10.1186/s13059-021-02369-0 SHORT REPORT Open Access Long-read cDNA sequencing identifies functional pseudogenes in the human transcriptome Robin-Lee Troskie1, Yohaann Jafrani1, Tim R. Mercer2, Adam D. Ewing1*, Geoffrey J. Faulkner1,3* and Seth W. Cheetham1* * Correspondence: adam.ewing@ mater.uq.edu.au; faulknergj@gmail. Abstract com; [email protected]. au Pseudogenes are gene copies presumed to mainly be functionless relics of evolution 1Mater Research Institute-University due to acquired deleterious mutations or transcriptional silencing. Using deep full- of Queensland, TRI Building, QLD length PacBio cDNA sequencing of normal human tissues and cancer cell lines, we 4102 Woolloongabba, Australia Full list of author information is identify here hundreds of novel transcribed pseudogenes expressed in tissue-specific available at the end of the article patterns. Some pseudogene transcripts have intact open reading frames and are translated in cultured cells, representing unannotated protein-coding genes. To assess the biological impact of noncoding pseudogenes, we CRISPR-Cas9 delete the nucleus-enriched pseudogene PDCL3P4 and observe hundreds of perturbed genes. This study highlights pseudogenes as a complex and dynamic component of the human transcriptional landscape. Keywords: Pseudogene, PacBio, Long-read, lncRNA, CRISPR Background Pseudogenes are gene copies which are thought to be defective due to frame- disrupting mutations or transcriptional silencing [1, 2]. Most human pseudogenes (72%) are derived from retrotransposition of processed mRNAs, mediated by proteins encoded by the LINE-1 retrotransposon [3, 4]. Due to the loss of parental cis-regula- tory elements, processed pseudogenes were initially presumed to be transcriptionally silent [1] and were excluded from genome-wide functional screens and most transcrip- tome analyses [2].
    [Show full text]
  • A Field Guide to Eukaryotic Transposable Elements
    GE54CH23_Feschotte ARjats.cls September 12, 2020 7:34 Annual Review of Genetics A Field Guide to Eukaryotic Transposable Elements Jonathan N. Wells and Cédric Feschotte Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; email: [email protected], [email protected] Annu. Rev. Genet. 2020. 54:23.1–23.23 Keywords The Annual Review of Genetics is online at transposons, retrotransposons, transposition mechanisms, transposable genet.annualreviews.org element origins, genome evolution https://doi.org/10.1146/annurev-genet-040620- 022145 Abstract Annu. Rev. Genet. 2020.54. Downloaded from www.annualreviews.org Access provided by Cornell University on 09/26/20. For personal use only. Copyright © 2020 by Annual Reviews. Transposable elements (TEs) are mobile DNA sequences that propagate All rights reserved within genomes. Through diverse invasion strategies, TEs have come to oc- cupy a substantial fraction of nearly all eukaryotic genomes, and they rep- resent a major source of genetic variation and novelty. Here we review the defining features of each major group of eukaryotic TEs and explore their evolutionary origins and relationships. We discuss how the unique biology of different TEs influences their propagation and distribution within and across genomes. Environmental and genetic factors acting at the level of the host species further modulate the activity, diversification, and fate of TEs, producing the dramatic variation in TE content observed across eukaryotes. We argue that cataloging TE diversity and dissecting the idiosyncratic be- havior of individual elements are crucial to expanding our comprehension of their impact on the biology of genomes and the evolution of species. 23.1 Review in Advance first posted on , September 21, 2020.
    [Show full text]
  • Improving Treatment of Genetic Diseases with Crispr-Cas9 Rna-Guided Genome Editing
    Sanchez 3:00 Team R06 Disclaimer: This paper partially fulfills a writing requirement for first-year (freshmen) engineering students at the University of Pittsburgh Swanson School of Engineering. This paper is a student paper, not a professional paper. This paper is not intended for publication or public circulation. This paper is based on publicly available information, and while this paper might contain the names of actual companies, products, and people, it cannot and does not contain all relevant information/data or analyses related to companies, products, and people named. All conclusions drawn by the authors are the opinions of the authors, first- year (freshmen) students completing this paper to fulfill a university writing requirement. If this paper or the information therein is used for any purpose other than the authors' partial fulfillment of a writing requirement for first-year (freshmen) engineering students at the University of Pittsburgh Swanson School of Engineering, the users are doing so at their own--not at the students', at the Swanson School's, or at the University of Pittsburgh's--risk. IMPROVING TREATMENT OF GENETIC DISEASES WITH CRISPR-CAS9 RNA-GUIDED GENOME EDITING Arijit Dutta [email protected] , Benjamin Ahlmark [email protected], Nate Majer [email protected] Abstract—Genetic illnesses are among the most difficult to treat as it is challenging to safely and effectively alter DNA. INTRODUCTION: THE WHAT, WHY, AND DNA is the basic code for all hereditary traits, so any HOW OF CRISPR-CAS9 alteration to DNA risks fundamentally altering the way someone’s genes are expressed. This change could lead to What Is CRISPR-Cas9? unintended consequences for both the individual whose DNA was altered and any offspring they may have in the future, CRISPR-Cas9 is an acronym that stands for “Clustered compounding the risk.
    [Show full text]
  • Evaluation of the Effects of Sequence Length and Microsatellite Instability
    Int. J. Biol. Sci. 2019, Vol. 15 2641 Ivyspring International Publisher International Journal of Biological Sciences 2019; 15(12): 2641-2653. doi: 10.7150/ijbs.37152 Research Paper Evaluation of the effects of sequence length and microsatellite instability on single-guide RNA activity and specificity Changzhi Zhao1*, Yunlong Wang2*, Xiongwei Nie1, Xiaosong Han1, Hailong Liu1, Guanglei Li1, Gaojuan Yang1, Jinxue Ruan1, Yunlong Ma1, Xinyun Li1, 3, Huijun Cheng1, Shuhong Zhao1, 3, Yaping Fang2, Shengsong Xie1, 3 1. Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China; 2. Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China; 3. The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, P. R. China. *The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors. Corresponding authors: Shengsong Xie, Tel: 086-027-87387480; Fax: 086-027-87280408; Email: [email protected]; Yaping Fang, Tel: 86-28-87285078; Fax: 86-28-87284285; Email: [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.07.21; Accepted: 2019.09.02; Published: 2019.10.03 Abstract Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology is effective for genome editing and now widely used in life science research.
    [Show full text]
  • Helitronscanner Uncovers a Large Overlooked Cache of Helitron Transposons in Many Plant Genomes
    HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes Wenwei Xionga, Limei Heb, Jinsheng Laic, Hugo K. Doonerb,d,1, and Chunguang Dua,1 aDepartment of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043; bWaksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ 08854; cNational Maize Improvement Center, China Agricultural University, Beijing 100083, China; and dDepartment of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08801 Contributed by Hugo K. Dooner, June 6, 2014 (sent for review January 28, 2014) Transposons make up the bulk of eukaryotic genomes, but are content of maize (14). This tool was based on conserved sequences difficult to annotate because they evolve rapidly. Most of the at the termini of most Helitrons (5′-TC and CTAG-3′)andacon- unannotated portion of sequenced genomes is probably made up served 16- to 20-bp palindromic structure located 10–15 bp up- of various divergent transposons that have yet to be categorized. stream of the 3′ terminus. Using HelitronFinder, we identified Helitrons are unusual rolling circle eukaryotic transposons that almost 3,000 new Helitrons intheB73maizegenome(12). often capture gene sequences, making them of considerable evo- HelSearch (15), another computational tool, is very similar lutionary importance. Unlike other DNA transposons, Helitrons do to HelitronFinder in terms of identifying the 3′ end of Helitrons. not end in inverted repeats or create target site duplications, so Both programs look for the hairpin structure and the CTRR 3′ they are particularly challenging to identify. Here we present terminus. The difference is that users of HelSearch have to ′ HelitronScanner, a two-layered local combinational variable (LCV) manually search for the 5 end of Helitrons, whereas HelitronFinder ′ tool for generalized Helitron identification that represents a major can identify the 5 end automatically.
    [Show full text]
  • The Genome of Schmidtea Mediterranea and the Evolution Of
    OPEN ArtICLE doi:10.1038/nature25473 The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms Markus Alexander Grohme1*, Siegfried Schloissnig2*, Andrei Rozanski1, Martin Pippel2, George Robert Young3, Sylke Winkler1, Holger Brandl1, Ian Henry1, Andreas Dahl4, Sean Powell2, Michael Hiller1,5, Eugene Myers1 & Jochen Christian Rink1 The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms. Rapid regeneration from tiny pieces of tissue makes planarians a prime De novo long read assembly of the planarian genome model system for regeneration. Abundant adult pluripotent stem cells, In preparation for genome sequencing, we inbred the sexual strain termed neoblasts, power regeneration and the continuous turnover of S. mediterranea (Fig. 1a) for more than 17 successive sib- mating of all cell types1–3, and transplantation of a single neoblast can rescue generations in the hope of decreasing heterozygosity. We also developed a lethally irradiated animal4. Planarians therefore also constitute a a new DNA isolation protocol that meets the purity and high molecular prime model system for stem cell pluripotency and its evolutionary weight requirements of PacBio long-read sequencing12 (Extended Data underpinnings5.
    [Show full text]
  • Repeat-Induced Point Mutation and the Population Structure of Transposable Elements in Microbotryum Violaceum
    Copyright © 2005 by the Genetics Society of America DOI: 10.1534/genetics.105.042564 Repeat-Induced Point Mutation and the Population Structure of Transposable Elements in Microbotryum violaceum Michael E. Hood,*,1 Melanie Katawczik† and Tatiana Giraud‡ *Department of Biology, University of Virginia, Charlottesville, Virginia 22903, †Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 and ‡Ecologie, Syste´matique et Evolution, Universite´ Paris-Sud, F-91405 Orsay Cedex, France Manuscript received February 25, 2005 Accepted for publication April 12, 2005 ABSTRACT Repeat-induced point mutation (RIP) is a genome defense in fungi that hypermutates repetitive DNA and is suggested to limit the accumulation of transposable elements. The genome of Microbotryum violaceum has a high density of transposable elements compared to other fungi, but there is also evidence of RIP activity. This is the first report of RIP in a basidiomycete and was obtained by sequencing multiple copies of the integrase gene of a copia-type transposable element and the helicase gene of a Helitron-type element. In M. violaceum, the targets for RIP mutations are the cytosine residues of TCG trinucleotide combinations. Although RIP is a linkage-dependent process that tends to increase the variation among repetitive se- quences, a chromosome-specific substructuring was observed in the transposable element population. The observed chromosome-specific patterns are not consistent with RIP, but rather suggest an effect of gene conversion, which is also a linkage-dependent process but results in a homogenization of repeated se- quences. Particular sequences were found more widely distributed within the genome than expected by chance and may reflect the recently active variants.
    [Show full text]
  • Repbase Update, a Database of Repetitive Elements in Eukaryotic Genomes Weidong Bao1*, Kenji K
    Bao et al. Mobile DNA (2015) 6:11 DOI 10.1186/s13100-015-0041-9 SOFTWARE Open Access Repbase Update, a database of repetitive elements in eukaryotic genomes Weidong Bao1*, Kenji K. Kojima1,2,3* and Oleksiy Kohany1 Abstract Repbase Update (RU) is a database of representative repeat sequences in eukaryotic genomes. Since its first development as a database of human repetitive sequences in 1992, RU has been serving as a well-curated reference database fundamental for almost all eukaryotic genome sequence analyses. Here, we introduce recent updates of RU, focusing on technical issues concerning the submission and updating of Repbase entries and will give short examples of using RU data. RU sincerely invites a broader submission of repeat sequences from the research community. Keywords: Repbase Update, Repbase Reports, Transposable element, RepbaseSubmitter, Database Background submission and updating of Repbase entries, and will Repbase Update (RU), or simply “Repbase” for short, is a give short examples of using RU data. database of transposable elements (TEs) and other types of repeats in eukaryotic genomes [1]. Being a well- curated reference database, RU has been commonly used RU and TE identification for eukaryotic genome sequence analyses and in studies In eukaryotic genomes, most TEs exist in families of vari- concerning the evolution of TEs and their impact on ge- able sizes, i.e., TEs of one specific family are derived from nomes [2–6]. RU was initiated by the late Dr. Jerzy Jurka a common ancestor through its major burst of multiplica- in the early 1990s and had been developed under his dir- tion in the evolutionary history.
    [Show full text]