Expressing Water Vapor Content (1)

Total Page:16

File Type:pdf, Size:1020Kb

Expressing Water Vapor Content (1) Expressing Water Vapor Content (1) • Relative Humidity (RH) is ratio of actual vapor pressure e to saturation vapor pressure eS – 100 * e/eS – Range: 0-100% (+) – Air with RH > 100% is supersaturated • RH can be changed by – Changes in water vapor content. – Changes in temperature, which alter the saturation vapor pressure. 1 The Sling Psychrometer Measures water vapor content of air • Web bulb temp < dry bulb temp for RH < 100% • The drier the environ, the larger the difference. Wet bulb Dry bulb Expressing Water Vapor Content (2) • Mixing ratio: ratio of the weight of water vapor to the weight of the air in the parcel (unit: g/kg). • Dew point temperature: temperature to which air must to be cooled (without changes in moisture content) for saturation to occur. 2 Find Dew point temperature (Td, temperature condensation occurs) x X 20oC (RH=25/42) x X 10oC (RH=13/42) • Temperature drops upward at 6.5 oC/km Æ Humidity decreases rapidly with height. • At ocean surface, RH~80% Æ Moisture content increases with temperature. Which environment has higher water vapor content? 3 Subtropical storm Cold front Water vapor channel (dark dry)Water VaporVisible (dark dry) 1510 15 μm http://cimss.ssec.wisc.edu/tropic/real-time/mosaic/images/images.html 4 Relative humidity (that affects evaporation rate) and human discomfort (summer) The Earth’s Hydrologic Cycle 15% 85% 70% in surface area. On global average, 1 m water per m2 is evaporated and fall as precipitation each year. 5 Earth’s Water Distribution Condensation (RH > 100%) Æ fog, cloud, precipitation 6 Dew (Td > 0oC) Radiation cooling on ground at night T < Td Frost (Td < 0oC) A decrease in temperature may cause condensation and cloud droplet formation, with the help of condensation nuclei (dust, smoke, sea salt, SO2 …) 7 Cloud Condensation Nuclei • If the air temperature cools below the dew point (RH > 100%), water vapor will tend to condense and form cloud/fog drops. • Drop formation occurs on particles known as cloud condensation nuclei (CCN). • The most effective CCN are water soluble. • Without CCN clouds would not form in the atmosphere, because a RH of several hundred percent is required for pure water drop formation. Why? Very Small Drops Tend to Evaporate! • Small drops have large curvature • Large curvature gives a high saturation vapor pressure because of effect of surface tension. • Very high RH required for equilibrium with very small drops: Supersaturation (RH > 100%) – ~300% RH for a 0.1 µm pure water drop Typical cloud droplets: 20 μm 8 Wilson’s cloud chamber a sealed environment containing a supercooled, supersaturated water vapour. When an alpha particle or beta particle interacts with the mixture, it ionises it. The resulting ions act as condensation nuclei, around which a mist forms. Brocken Spectre (Glory) Charles Thomson Rees Wilson (1869-1959), a Scottish physicist, is credited with inventing the cloud chamber. Inspired by sightings of the Brocken spectre while working on the summit of Ben Nevis in 1894, he began to develop expansion chambers for studying cloud formation and optical phenomena in moist air. Very rapidly he discovered that ions could act as centres for water droplet formation in such chambers. He pursued the application of this discovery and perfected the first cloud chamber in 1911. CCN that Dissolve in Water Water molecule Salt molecule Hygroscopic aerosols readily absorb water from the surroundings. In the presence hygroscopic aerosols, condensation may occur at RH < 100%. 9 • Small droplets that may form at RH < 100% Haze (hygroscopic nuclei: salt, sulfuric and nitric acid). • Becomes visible by scattering light. Fog: droplets larger than haze and visibility < 1 km. Radiation fog • Forms at night due to longwave radiation cooling (often observed in valleys); • Dissipates under sunlight as ground warms up by absorbing solar radiation. 10 Advection fog Warm & Humid Fog Drip Evaporation/mixing fog WWaarrmm && HHuummiidd RH > 100% CCoolldd 11 Mixing fog • Your breath does not fog in summer because of small temperature difference. • It fogs in winter Å because of mixing with cold air. Annual days of heavy fog 12 Key words Evaporation, condensation, precipitation Saturated air, condensation nuclei, supersaturated air Humidity, actual vapor pressure Saturation vapor pressure, relative humidity, dew point Dew, frost, fog Radiation fog, advection fog, evaporation/mixing fog 16 Quiz #1 14 12 10 2. The wavelengths of maximum radiant energy 8 emitted by the sun are in the visible/shortwave 6 range of the electromagnetic spectrum. 4 11. Temperature in the troposphere (increases, 2 decreases) with height and the moisture content 0 (increases, decreases) with height. 27-3024-27 21-24 <21 18.The term used for a line of constant pressure is Isobar. 26. The sling psychrometer is used to measure air humidity. The wet bulb temperature is always (smaller than, greater than, equal to) the dry bulb temperature in an unsaturated atmosphere. Of the four most abundant gases in our atmosphere, which one shows the greatest variations from place to place on the earth’s surface? (Nitrogen, oxygen, water vapor & Argon) 13.
Recommended publications
  • Chapter 5 Measures of Humidity Phases of Water
    Chapter 5 Atmospheric Moisture Measures of Humidity 1. Absolute humidity 2. Specific humidity 3. Actual vapor pressure 4. Saturation vapor pressure 5. Relative humidity 6. Dew point Phases of Water Water Vapor n o su ti b ra li o n m p io d a a at ep t v s o io e en s n d it n io o n c freezing Liquid Water Ice melting 1 Coexistence of Water & Vapor • Even below the boiling point, some water molecules leave the liquid (evaporation). • Similarly, some water molecules from the air enter the liquid (condense). • The behavior happens over ice too (sublimation and condensation). Saturation • If we cap the air over the water, then more and more water molecules will enter the air until saturation is reached. • At saturation there is a balance between the number of water molecules leaving the liquid and entering it. • Saturation can occur over ice too. Hydrologic Cycle 2 Air Parcel • Enclose a volume of air in an imaginary thin elastic container, which we will call an air parcel. • It contains oxygen, nitrogen, water vapor, and other molecules in the air. 1. Absolute Humidity Mass of water vapor Absolute humidity = Volume of air The absolute humidity changes with the volume of the parcel, which can change with temperature or pressure. 2. Specific Humidity Mass of water vapor Specific humidity = Total mass of air The specific humidity does not change with parcel volume. 3 Specific Humidity vs. Latitude • The highest specific humidities are observed in the tropics and the lowest values in the polar regions.
    [Show full text]
  • Insar Water Vapor Data Assimilation Into Mesoscale Model
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1 InSAR Water Vapor Data Assimilation into Mesoscale Model MM5: Technique and Pilot Study Emanuela Pichelli, Rossella Ferretti, Domenico Cimini, Giulia Panegrossi, Daniele Perissin, Nazzareno Pierdicca, Senior Member, IEEE, Fabio Rocca, and Bjorn Rommen Abstract—In this study, a technique developed to retrieve inte- an extremely important element of the atmosphere because its grated water vapor from interferometric synthetic aperture radar distribution is related to clouds, precipitation formation, and it (InSAR) data is described, and a three-dimensional variational represents a large proportion of the energy budget in the atmo- assimilation experiment of the retrieved precipitable water vapor into the mesoscale weather prediction model MM5 is carried out. sphere. Its representation inside numerical weather prediction The InSAR measurements were available in the framework of the (NWP) models is critical to improve the weather forecast. It is European Space Agency (ESA) project for the “Mitigation of elec- also very challenging because water vapor is involved in pro- tromagnetic transmission errors induced by atmospheric water cesses over a wide range of spatial and temporal scales. An vapor effects” (METAWAVE), whose goal was to analyze and pos- improvement in atmospheric water vapor monitoring that can sibly predict the phase delay induced by atmospheric water vapor on the spaceborne radar signal. The impact of the assimilation on be assimilated in NWP models would improve the forecast the model forecast is investigated in terms of temperature, water accuracy of precipitation and severe weather [1], [3].
    [Show full text]
  • Performance Evaluation of Misting Fans in Hot and Humid Climate
    Building and Environment 45 (2010) 2666e2678 Contents lists available at ScienceDirect Building and Environment journal homepage: www.elsevier.com/locate/buildenv Performance evaluation of misting fans in hot and humid climate N.H. Wong*, Adrian Z.M. Chong Department of Building, School of Design and Environment, National University of Singapore, 117566 Republic of Singapore article info abstract Article history: Singapore experiences a hot and humid climate throughout the year. This in turn results in heavy reli- Received 3 March 2010 ance on mechanical systems especially air-conditioning to achieve thermal comfort. An alternative would Received in revised form be the use of evaporative cooling which is less energy intensive. Objective and subjective measurements 14 May 2010 were conducted at an experimental setup at the National University of Singapore (NUS) to evaluate the Accepted 27 May 2010 thermal conditions and thermal sensations brought about by misting fans. Field measurements were also conducted at food centres in Singapore to determine if they are coherent with the objective and Keywords: subjective measurements conducted. Analysis of objective and subjective data showed that the misting Misting fan fi Evaporative cooling fan was able to signi cantly reduce the dry-bulb temperature and thermal sensation votes. This is fi Singapore consistent with eld measurements taken, where regression analysis showed that with the misting fan, Hot thermal neutrality can be obtained at a higher outdoor effective temperature (ET*). However, the Humid reduction in temperature comes at the expense of higher relative humidity which results in consistently greater biological (bacterial and fungal) pollutants being enumerated from samples collected under the misting fan system.
    [Show full text]
  • Aerodrome Actual Weather – METAR Decode
    Aerodrome Actual Weather – METAR decode Code element Example Decode Notes 1 Identification METAR — Meteorological Airfield Report, SPECI — selected special (not from UK civil METAR or SPECI METAR METAR aerodromes) Location indicator EGLL London Heathrow Station four-letter indicator 'ten twenty Zulu on the Date/Time 291020Z 29th' AUTO Metars will only be disseminated when an aerodrome is closed or at H24 aerodromes, A fully automated where the accredited met. observer is on duty break overnight. Users are reminded that reports AUTO report with no human of visibility, present weather and cloud from automated systems should be treated with caution intervention due to the limitations of the sensors themselves and the spatial area sampled by the sensors. 2 Wind 'three one zero Wind degrees, fifteen knots, Max only given if >= 10KT greater than the mean. VRB = variable. 00000KT = calm. 31015G27KT direction/speed max twenty seven Wind direction is given in degrees true. knots' 'varying between two Extreme direction 280V350 eight zero and three Variation given in clockwise direction, but only when mean speed is greater than 3 KT. variance five zero degrees' 3 Visibility 'three thousand two Prevailing visibility 3200 0000 = 'less than 50 metres' 9999 = 'ten kilometres or more'. No direction is required. hundred metres' Minimum visibility 'Twelve hundred The minimum visibility is also included alongside the prevailing visibility when the visibility in one (in addition to the 1200SW metres to the south- direction, which is not the prevailing visibility, is less than 1500 metres or less than 50% of the prevailing visibility west' prevailing visibility. A direction is also added as one of the eight points of the compass.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Indoor Air Quality in Commercial and Institutional Buildings
    Indoor Air Quality in Commercial and Institutional Buildings OSHA 3430-04 2011 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards-related topic. This publication does not alter or determine compliance responsibili- ties which are set forth in OSHA standards, and the Occupational Safety and Health Act of 1970. More- over, because interpretations and enforcement poli- cy may change over time, for additional guidance on OSHA compliance requirements, the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory- impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877- 889-5627. Indoor Air Quality in Commercial and Institutional Buildings Occupational Safety and Health Administration U.S. Department of Labor OSHA 3430-04 2011 The guidance is advisory in nature and informational in content. It is not a standard or regulation, and it neither creates new legal obligations nor alters existing obligations created by OSHA standards or the Occupational Safety and Health Act.
    [Show full text]
  • Protecting Against Vapor Explosions with Water Mist
    PROTECTING AGAINST VAPOR EXPLOSIONS WITH WATER MIST J. R. Mawhinney and R. Darwin Hughes Associates, Inc. INTRODUCTION This paper examines a number of practical questions about the possibility of using water mist to mitigate explosion hazards in some industrial applications. Water mist systems have been installed to replace Halon 1301 in gas compressor modules on Alaska’s North Slope oil fields. The hazard in the compressor modules includes fire in lubrication oil lines for the gas turbines that drive the compressors. The hazard also involves the potential for a methane gas leak, ignition, and explosion, although the probabilities of occurrence for the explosion hazard are not the same as the lube oil fire. The performance objective for the original halon systems was to inert the compartment, thus addressing both fire and explosion concerns. The design concentra- tions for the compressor modules were closer to 1.5% than to S%, indicating they were intended to provide an inerting effect. As part of the global move to eliminate ozone-depleting fire sup- pression agents, companies are replacing Halon 1301 systems with water mist systems. The water mist systems were developed and tested for control of liquid fuel or lubricating oil spray or pool fires associated with the turbines that drive the gas compressors. The water mist systems address the most likely hazard, the lube oil fire, hut the inerting benefit provided by Halon I301 has been lost. This has left the question of what to do if there is a methane gas leak unanswered. The question has been asked by the operators of these modules as to whether water mist can provide any benefit for mitigating the gas-air explosion hazard.
    [Show full text]
  • TABLE A-2 Properties of Saturated Water (Liquid–Vapor): Temperature Table Specific Volume Internal Energy Enthalpy Entropy # M3/Kg Kj/Kg Kj/Kg Kj/Kg K Sat
    720 Tables in SI Units TABLE A-2 Properties of Saturated Water (Liquid–Vapor): Temperature Table Specific Volume Internal Energy Enthalpy Entropy # m3/kg kJ/kg kJ/kg kJ/kg K Sat. Sat. Sat. Sat. Sat. Sat. Sat. Sat. Temp. Press. Liquid Vapor Liquid Vapor Liquid Evap. Vapor Liquid Vapor Temp. Њ v ϫ 3 v Њ C bar f 10 g uf ug hf hfg hg sf sg C O 2 .01 0.00611 1.0002 206.136 0.00 2375.3 0.01 2501.3 2501.4 0.0000 9.1562 .01 H 4 0.00813 1.0001 157.232 16.77 2380.9 16.78 2491.9 2508.7 0.0610 9.0514 4 5 0.00872 1.0001 147.120 20.97 2382.3 20.98 2489.6 2510.6 0.0761 9.0257 5 6 0.00935 1.0001 137.734 25.19 2383.6 25.20 2487.2 2512.4 0.0912 9.0003 6 8 0.01072 1.0002 120.917 33.59 2386.4 33.60 2482.5 2516.1 0.1212 8.9501 8 10 0.01228 1.0004 106.379 42.00 2389.2 42.01 2477.7 2519.8 0.1510 8.9008 10 11 0.01312 1.0004 99.857 46.20 2390.5 46.20 2475.4 2521.6 0.1658 8.8765 11 12 0.01402 1.0005 93.784 50.41 2391.9 50.41 2473.0 2523.4 0.1806 8.8524 12 13 0.01497 1.0007 88.124 54.60 2393.3 54.60 2470.7 2525.3 0.1953 8.8285 13 14 0.01598 1.0008 82.848 58.79 2394.7 58.80 2468.3 2527.1 0.2099 8.8048 14 15 0.01705 1.0009 77.926 62.99 2396.1 62.99 2465.9 2528.9 0.2245 8.7814 15 16 0.01818 1.0011 73.333 67.18 2397.4 67.19 2463.6 2530.8 0.2390 8.7582 16 17 0.01938 1.0012 69.044 71.38 2398.8 71.38 2461.2 2532.6 0.2535 8.7351 17 18 0.02064 1.0014 65.038 75.57 2400.2 75.58 2458.8 2534.4 0.2679 8.7123 18 19 0.02198 1.0016 61.293 79.76 2401.6 79.77 2456.5 2536.2 0.2823 8.6897 19 20 0.02339 1.0018 57.791 83.95 2402.9 83.96 2454.1 2538.1 0.2966 8.6672 20 21 0.02487 1.0020
    [Show full text]
  • Information Contained in a METAR Example METAR Codes
    METAR METAR is a format for reporting weather information. A METAR weather report is predominantly used by pilots in fulfillment of a part of a pre-flight weather briefing, and by meteorologists, who use aggregated METAR information to assist in weather forecasting. Raw METAR is the most common format in the world for the transmission of observational weather data. [citation needed] It is highly standardized through the International Civil Aviation Organization (ICAO), which allows it to be understood throughout most of the world. Information contained in a METAR A typical METAR contains data for the temperature, dew point, wind speed and direction, precipitation, cloud cover and heights, visibility, and barometric pressure. A METAR may also contain information on precipitation amounts, lightning, and other information that would be of interest to pilots or meteorologists such as a pilot report or PIREP, colour states and runway visual range (RVR). In addition, a short period forecast called a TRED may be added at the end of the METAR covering likely changes in weather conditions in the two hours following the observation. These are in the same format as a Terminal Aerodrome Forecast (TAF). The complement to METARs, reporting forecast weather rather than current weather, are TAFs. METARs and TAFs are used in VOLMET broadcasts. Example METAR codes International METAR codes The following is an example METAR from Burgas Airport in Burgas, Bulgaria. It was taken on 4 February 2005 at 16:00 Coordinated Universal Time (UTC). METAR LBBG 041600Z 12003MPS 310V290 1400 R04/P1500 R22/P1500U +S BK022 OVC050 M04/M07 Q1020 OSIG 9949//91= • METAR indicates that the following is a standard hourly observation.
    [Show full text]
  • Key to Aerodrome Forecast (TAF) and Aviation Routine Weather Report (METAR) (Front)
    Key to Aerodrome Forecast (TAF) and Aviation Routine Weather Report (METAR) (Front) KEY to AERODROME FORECAST (TAF) and U.S. Department of Transportation AVIATION ROUTINE WEATHER REPORT Federal Aviation (METAR) (FRONT) Administration TAF KPIT 091730Z 091818 15005KT 5SM HZ FEW020 WS010/31022KT FM 1930 30015G25KT 3SM SHRA OVC015 TEMPO 2022 1/2SM +TSRA OVC008CB FM0100 27008KT 5SM SHRA BKN020 OVC040 PROB40 0407 1SM -RA BR FM1015 18005KT 6SM -SHRA OVC020 BECMG 1315 P6SM NSW SKC METAR KPIT 091955Z COR 22015G25KT 3/4SM R28L/2600FT TSRA OVC010CB 18/16 A2992 RMK SLP045 T01820159 FORECAST EXPLANATION REPORT TAF Message type : TAF-routine or TAF AMD-amended forecast, METAR METAR-hourly, SPECI-special or TESTM-non-commissioned ASOS report KPIT ICAO location indicator KPIT 091730Z Issuance time: ALL times in UTC “Z”, 2-digit date, 4-digit time 091955Z 091818 Valid period: 2-digit date, 2-digit beginning, 2-digit ending times In U.S. METAR: CORrected of; or AUTOmated ob for automated COR report with no human intervention; omitted when observer logs on 15005KT Wind: 3 digit true-north direction , nearest 10 degrees (or VaRiaBle); 22015G25KT next 2-3 digits for speed and unit, KT (KMH or MPS); as needed, Gust and maximum speed; 00000KT for calm; for METAR, if direction varies 60 degrees or more, Variability appended, e.g., 180V260 5SM Prevailing visibility; in U.S., Statute Miles & fractions; above 6 miles in 3/4SM TAF Plus6SM. (Or, 4-digit minimum visibility in meters and as required, lowest value with direction) Runway Visual Range: R; 2-digit runway designator Left, Center, or R28L/2600FT Right as needed; “/”, Minus or Plus in U.S., 4-digit value, FeeT in U.S., (usually meters elsewhere); 4-digit value Variability 4-digit value (and tendency Down, Up or No change) HZ Significant present, forecast and recent weather: see table (on back) TSRA FEW020 Cloud amount, height and type: SKy Clear 0/8, FEW >0/8-2/8, OVC 010CB SCaTtered 3/8-4/8, BroKeN 5/8-7/8, OVerCast 8/8; 3-digit height in hundreds of ft; Towering CUmulus or CumulonimBus in METAR; in TAF, only CB.
    [Show full text]
  • Humidity, Condensation, and Clouds-I
    Humidity, Condensation, and Clouds-I GEOL 1350: Introduction To Meteorology 1 Overview • Water Circulation in the Atmosphere • Properties of Water • Measures of Water Vapor in the Atmosphere (Vapor Pressure, Absolute Humidity, Specific Humidity, Mixing Ratio, Relative Humidity, Dew Point) 2 Where does the moisture in the atmosphere come from ? Major Source Major sink Evaporation from ocean Precipitation 3 Earth’s Water Distribution 4 Fresh vs. salt water • Most of the earth’s water is found in the oceans • Only 3% is fresh water and 3/4 of that is ice • The atmosphere contains only ~ 1 week supply of precipitation! 5 Properties of Water • Physical States only substance that are present naturally in three states • Density liquid : ~ 1.0 g / cm3 , solid: ~ 0.9 g / cm3 , vapor: ~10-5 g / cm3 6 Properties of Water (cont’) • Radiative Properties – transparent to visible wavelengths – virtually opaque to many infrared wavelengths – large range of albedo possible • water 10 % (daily average) • Ice 30 to 40% • Snow 20 to 95% • Cloud 30 to 90% 7 Three phases of water • Evaporation liquid to vapor • Condensation vapor to liquid • Sublimation solid to vapor • Deposition vapor to solid • Melting solid to liquid • Freezing liquid to solid 8 Heat exchange with environment during phase change As water moves toward vapor it absorbs latent heat to keep the molecules in rapid mo9ti on Energy associated with phase change Sublimation Deposition 10 Sublimation – evaporate ice directly to water vapor Take one gram of ice at zero degrees centigrade Energy required
    [Show full text]
  • Metar Abbreviations Metar/Taf List of Abbreviations and Acronyms
    METAR ABBREVIATIONS http://www.alaska.faa.gov/fai/afss/metar%20taf/metcont.htm METAR/TAF LIST OF ABBREVIATIONS AND ACRONYMS $ maintenance check indicator - light intensity indicator that visual range data follows; separator between + heavy intensity / temperature and dew point data. ACFT ACC altocumulus castellanus aircraft mishap MSHP ACSL altocumulus standing lenticular cloud AO1 automated station without precipitation discriminator AO2 automated station with precipitation discriminator ALP airport location point APCH approach APRNT apparent APRX approximately ATCT airport traffic control tower AUTO fully automated report B began BC patches BKN broken BL blowing BR mist C center (with reference to runway designation) CA cloud-air lightning CB cumulonimbus cloud CBMAM cumulonimbus mammatus cloud CC cloud-cloud lightning CCSL cirrocumulus standing lenticular cloud cd candela CG cloud-ground lightning CHI cloud-height indicator CHINO sky condition at secondary location not available CIG ceiling CLR clear CONS continuous COR correction to a previously disseminated observation DOC Department of Commerce DOD Department of Defense DOT Department of Transportation DR low drifting DS duststorm DSIPTG dissipating DSNT distant DU widespread dust DVR dispatch visual range DZ drizzle E east, ended, estimated ceiling (SAO) FAA Federal Aviation Administration FC funnel cloud FEW few clouds FG fog FIBI filed but impracticable to transmit FIRST first observation after a break in coverage at manual station Federal Meteorological Handbook No.1, Surface
    [Show full text]