United States Patent 19 11, 3,965,152 Smith Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent 19 11, 3,965,152 Smith Et Al United States Patent 19 11, 3,965,152 Smith et al. (45)*June 22, 1976 (54) PROCESS FOR PREPARING ALLYLC 3,346,624 10/1967 Schaeffer et al.,............... 260/497 A ESTERS OF CARBOXYLIC ACDS 3,444, 189 5/1969 Olivier............................ 260/497 A 3,668,257 6/1972 Schaeffer........................ 260/497 A (75) Inventors: William E. Smith, Schenectady; R. John Gerhart, Averill Park, both of FOREIGN PATENTS OR APPLICATIONS N.Y. 1,443,882 10/1968 Germany........................ 260/497 A 1901,289 9/1970 Germany ........................ 260/497 A 73 Assignee: General Electric Company, Pittsfield, Mass. OTHER PUBLICATIONS * Notice: The portion of the term of this Boutry et al., Jour, of Catalysis, 23, pp. 19-30, patent subsequent to June 22, 1993, (1971). has been disclaimed. Primary Examiner-Lorraine A. Weinberger (22) Filed: Feb. 4, 1974 Assistant Examiner-Michael Shippen Attorney, Agent, or Firm-Donald M. Papuga; William 21 Appl. No.: 439,275 F. Mufatti (52) U.S. Cl.......................... 260/491; 260/410.9 N; (57) ABSTRACT i 260/635 R 51 Int. C.’.......................................... C07C 67/00 A process for preparing allylic esters of carboxylic acids which comprises reacting a mixture of a lower 58) Field of Search................. 260/497 A, 410.9 N, alkyl carboxylate ester, water, and the corresponding 260/491, 632 C carboxylic acid and alcohol with an olefin having an 56) References Cited allylic carbon-hydrogen bond and oxygen in the pres UNITED STATES PATENTS ence of an oxidation catalyst. 3,306,930 2/1967 Copelin et al.................. 260/497 A 4 Claims, No Drawings 3,965, 152 1 2 If the allylic ester so produced is to be used in a subse PROCESS FOR PREPARING ALLYLIC ESTERS OF quent process that involves liberation of the carboxyl CARBOXYLIC ACIDS ate moiety as part of another ester, then said ester can be hydrolyzed (equation 2) by methods known in the This invention relates to a process for preparing al 5 art to make available the carboxylic acid for recycle to lylic esters of carboxylic acids which comprises react the original oxidation. ing a mixture of a lower alkyl carboxylate ester, water, and the corresponding carboxylic acid and alcohol with a olefin having an allylic carbon-hydrogen bond and O O oxygen in the presence of a catalyst comprising a 10 s=S RcoH + ROH Group VIII noble metal, or its salts, or its oxides, or RCOR + HO S- (2) mixtures thereof. This invention additionally relates to As indicated in equation 2, however, the hydrolysis is an improved process for preparing butanediol. an equilibrium process; isolation of the carboxylic acid BACKGROUND OF THE INVENTION 15 requires repeated equilibrations and distillations and is Allylic esters of carboxylic acids have been prepared thus inconvenient. by a number of different methods. A useful method of It has been discovered that the recycle can be per preparing allyl acetate, for example, is by contacting formed with much greater efficiency by subjecting the propylene with a palladium catalyst in the presence of alkyl carboxylate to hydrolysis and using the hydrolysis oxygen and acetic acid. This is illustrated by U.S. Pat. 20 mixture itself (containing the carboxylic acid, alcohol, Nos. 3, 190,912, 3,275,608 and 3,670,014 and South water and unconverted ester, preferably at equilib African Pat. No. 701,077, for example. Allyl acetate is rium) directly in the oxidation step. The alcohol and useful as an intermediate for the manufacture of poly ester present cause essentially no deleterious effects in mers, plasticizers and other valuable materials. the operation; they pass through unchanged and suit Butanediol has been prepared by a number of differ 25 able for use in recycle or in a subsequent step. ent methods as summarized in copending applications A The lower alkyl carboxylate esters may be employed and B, Ser. Nos. 365,228 and 365,231, both of William in the instant invention are illustrated by the following E. Smith and both filed May 30, 1973 both now aban Structure: doned. Applications A and B are assigned to the same assignee as the present invention and are incorporated 30 herein by reference. O DESCRIPTION OF THE INVENTION RCOR It has been discovered that allylic esters of carboxylic wherein R1 and R can contain from one to about eight acids may be prepared in a novel way, using a mixture 35 carbon atoms. The preferred lower alkyl carboxylate of a lower alkyl carboxylate ester, water, and the corre ester is methyl acetate. sponding carboxylic acid and alcohol with an olefin The olefins which may be employed in the instant having an allylic carbon-hydrogen bond and oxygen invention are those having an allylic carbon-hydrogen under oxidation conditions. An important object of this invention is to make 40 bond, as illustrated by the following structure: possible an improved process for preparing butanediol from inexpensive starting materials as compared with R R the prior art, i.e., propylene, carbon monoxide, hydro / gen and oxygen, by way of several intermediate steps, CRC mediated by a lower alkyl carboxylate ester (methyl 45 R CHRR acetate in this process) which is not consumed in the Overall reaction. wherein R1,R2 and R3 are independently selected from A primary object of the present invention concerns a the group consisting of hydrogen, alkyl of 1-8 carbon process for preparing allylic esters of carboxylic acids atoms, aryl of 6-10 carbon atoms, aralkyl of 7 to 10 which comprises reacting a mixture of a lower alkyl 50 carbon atoms and the radical -CHRRs, and wherein carboxylate ester, water and the corresponding carbox R4 and Rs are hydrogen, alkyl of 1-8 carbon atoms, aryl ylic acid and alcohol with an olefin having an allylic of 6-10 carbon atoms, and aralkyl of 7 to 10 carbon carbon-hydrogen bond and oxygen in the presence of a atoms. Preferred olefins are propylene and isobutylene. catalyst comprising a Group VIII noble metal, or its The oxidation catalyst comprises a Group VIII noble salts, or its oxides, or mixtures thereof. Preferably, the 55 metal, or its salts, or its oxides, or mixtures thereof. lower alkyl carboxylate ester is methyl acetate. Specific examples of such catalysts include metals such As described, supra, a useful method of preparing as palladium, ruthenium, rhodium, platinum, osmium, allylic esters of carboxylic acids is by reaction of the and iridium as well as oxides and salts such as palladous appropriate olefin and carboxylic acid under oxidation propionate, palladous benzoate, palladous chloride, conditions as illustrated, for the case of allyl acetate, in 60 palladous bromide, palladous oxide, etc., ruthenium Equation 1. acetate, etc., rhodium acetate, etc., platinous benzoate, O O I CH, FCHCH + CHCOH + 4 O, -G CH,FCHCHOCCH + Ho 3,965, 152 3 4 platinum dichloride, platinum oxide, etc., iridium phase mixture of allyl acetate and water. The allyl ace chloride, etc., and the like and mixtures thereof. tate phase is decanted in a form suitable for further use. The preferred catalyst is a mixture of the Group VIII The alkyl carboxylate ester hydrolysis mixture (de noble metal and its salt. A more preferred catalyst is a rived from methyl acetate, for example) may be supple mixture of palladium and palladous acetate. 5 mented with more of the carboxylic acid (for example, A promoter may be added to the catalyst which influ- acetic acid) with equally satisfactory results. ences activity and selectivity. Among the preferred The present invention is also concerned with an im promoters are the alkali metal and alkaline earth metal proved overall process for the production of butanediol carboxylates, the transition metals, their salts, gold or from propylene, which is based on the hydrolysis-oxi copper. 10 dation sequence described above and is represented in The catalyst may be prepared in a number of differ- equations 3-5: O O CHFCHCH + CHCOCHI + 4 O, HOA-S CH,FCHCHOCCH + CH-OH (3) (hydrolysate) O O CHFCHCHOCCH + CO + 2H - G. HO(CH)OCCH (+ isomers) (4) O O HO(CH)OCCH + CH-OH - Ge HO(CH),OH + CHCOCH (5) (-- isomers) (-- isomers) ent ways. For example, a neutral support such as car The methyl acetate formed in the methanolysis reac bon is impregnated with a palladium acetyl acetonate tion (equation 5) can be recycled to the hydrolysis-oxi solution in benzene and dried. The resulting material is dation step (equation 3). Preferably, the methyl ace then impregnated with a solution of potassium acetate tate is isolated and recycled as its azeotrope with meth in water and dried. The catalyst is then treated with anol. propylene, which reduces the palladium to the metallic 35 Specifically, the improved process for the production state. The catalyst thus obtained contains palladium of butanediol comprises: (a) reacting propylene and a metal and potassium acetate in about 1: 10 parts. mixture of methyl acetate, water, acetic acid and meth Varying amounts of the catalyst can be used within anol with oxygen in the presence of a catalyst compris the scope of this invention. Amounts as low as about ing a Group VIII noble metal, or its salts, or its oxides, 0.1% based on weight of support have been found to be 40 or mixtures thereof to form allyl acetate; (b) convert effective. ing the allyl acetate under hydroformylation The working temperature is in the range of from hydrogenation conditions to a mixture comprising the about 100°C. to about 200°C. For optimum production monoacetate esters of 1,4-butanediol, 2-methyl-1,3- of the allylic carboxylate, the temperature is in the propanediol and 1,2-butanediol and their respective range from about 125°C. to about 160°C.
Recommended publications
  • TOX-48: Allyl Acetate (CASRN 591-87-7), Allyl Alcohol (CASRN
    National Toxicology Program Toxicity Report Series Number 48 NTP Technical Report on the Comparative Toxicity Studies of Allyl Acetate, Allyl Alcohol, and Acrolein (CAS Nos. 591-87-7, 107-18-6, and 107-02-8) Administered by Gavage to F344/N Rats and B6C3F1 Mice July 2006 National Institutes of Health Public Health Service U.S. Department of Health and Human Services FOREWORD The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, the NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Toxicity Study Report series began in 1991. The studies described in the Toxicity Study Report series are designed and conducted to characterize and evaluate the toxicologic potential of selected substances in laboratory animals (usually two species, rats and mice). Substances selected for NTP toxicity studies are chosen primarily on the basis of human exposure, level of production, and chemical structure. The interpretive conclusions presented in the Toxicity Study Reports are based only on the results of these NTP studies.
    [Show full text]
  • Acetoxylation of Olefins Over Supported Palladium Metal and Salts Catalysts*
    Acetoxylation of Olefins over Supported Palladium Metal and Salts Catalysts* by Taiseki Kunugi**, HiromichiArai** and Kaoru Fujimoto** Summary: The acetoxylationof olefinsin thegaseous phase overpalladium metal and salts-active charcoalcatalysts was studiedusing a fixed bed reactor. Palladium salts adsorbedon activecharcoal are excellentcatalysts for this reactioneven in the absenceof any usual redoxreagents such as CuCl2. It was concludedthat the reoxidationof reducedpalladium is catalyzedby active charcoalin thepre- senceof oxygen. In the caseof acetoxylationof ethylenethe mainproduct was vinyl acetatefor both catalysts, but in the caseof propylene, allyl acetate,isopropenyl acetate and acetonewere mainlyproduced over palla- dium salts-activecharcoal catalysts, whereasallyl acetatewas the only principal product overpalla- dium metal-activecharcoal catalyst. The differencein theproduct distributionbetween these catalysts supposedly indicates that propylene forms a π-complex with palladium salts to give allyl acetate and isopropenylacetate whichwas hydrolyzedto form acetoneand, on the other hand, that propylene forms π-allyl complex with palladium metal to give allyl acetate. The kineticsof acetoxylationof ethylenewas studiedwith a differentialreactor for both catalysts and the reactionscheme was proposed for eachreaction system. 1 Introduction proceed by a similar mechanism2). The present authors have shown that palladium The oxidation of olefins to vinyl and allylic salts adsorbed on active charcoal are very effici- acetates has been reported recently. In the case ent catalysts for the Wacker reaction and for the of ethylene, as first reported by Moiseev et al.1) acetoxylation of olefins as well despite of the ab- the reaction is described by the following equation: sence of redox reagents such as CuCl27)~9). Ethyl- C2H4+Pd2++2OAc- ene reacts with acetic acid on palladium salts or →C2H3OAc+HOAc+Pd2 (1) palladium metal to produce vinyl acetate.
    [Show full text]
  • Ep 2531496 B1
    (19) TZZ ¥__T (11) EP 2 531 496 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 301/12 (2006.01) C07D 303/16 (2006.01) 15.03.2017 Bulletin 2017/11 (86) International application number: (21) Application number: 11701942.2 PCT/EP2011/000322 (22) Date of filing: 26.01.2011 (87) International publication number: WO 2011/095294 (11.08.2011 Gazette 2011/32) (54) MANUFACTURE OF AN EPOXYETHYL CARBOXYLATE OR GLYCIDYL CARBOXYLATE HERSTELLUNG VON EPOXYDETHYLCARBOXYLAT ODER GLYCIDYLCARBOXYLAT FABRICATION DE CARBOXYLATE ÉPOXYÉHTYL OU CARBOXYLATE GLYCIDYLIQUE (84) Designated Contracting States: (56) References cited: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB EP-A1- 0 618 202 EP-A1- 2 149 569 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO WO-A1-2005/089549 US-A- 4 423 071 PL PT RO RS SE SI SK SM TR US-A- 6 136 991 US-A1- 2003 069 439 US-A1- 2006 100 348 (30) Priority: 02.02.2010 EP 10001034 • DE VOS D E ET AL: "Epoxidation of Terminal or (43) Date of publication of application: Electron-deficient Olefins with H2O2, catalysed 12.12.2012 Bulletin 2012/50 by Mn-trimethyltriazacyclonane Complexes in the Presence of an Oxalate Buffer", (73) Proprietor: Hexion Research Belgium SA TETRAHEDRON LETTERS, ELSEVIER, 1348 Ottignies Louvain-la-Neuve (BE) AMSTERDAM, NL LNKD- DOI:10.1016/S0040-4039(98)00205-6, vol. 39, no. (72) Inventors: 20, 14 May 1998 (1998-05-14), pages 3221-3224, • MUPPA, Prasad XP004116236, ISSN: 0040-4039 NL-3196 KK Vondelingenplaat Rt (NL) • BRACE N.
    [Show full text]
  • Carbo-Deoxygenation of Biomass: the Carbonylation of Glycerol and Higher Poly-Ols to Mono-Carboxylic Acids
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Spiral - Imperial College Digital Repository Proofs to: Dr. George Britovsek Department of Chemistry Imperial College London Exhibition Road South Kensington London SW7 2AZ UK Tel. +44-(0)20-75945863 Fax. +44-(0)20-75945804 e-mail: [email protected] Carbo-deoxygenation of Biomass: The Carbonylation of Glycerol and Higher Poly-ols to Mono-carboxylic Acids Timur Coskun, Christopher M. Conifer, Laura C. Stevenson and George J.P. Britovsek* Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AY, UK. Abstract Glycerol is converted to a mixture of butyric and iso-butyric acid via the rhodium or iridium catalysed carbonylation using HI as the co-catalyst. The initial reaction of glycerol with HI results in several intermediates that lead to isopropyl iodide, which upon carbonylation forms butyric and isobutyric acid. At low HI concentration, the intermediate allyl iodide undergoes carbonylation to give vinyl acetic acid and crotonic acid. Higher poly-ols CnHn+2(OH)n are carbonylated to the corresponding Cn+1 mono-carboxylic acids. Introduction The development of new catalytic processes for the conversion of biomass into biofuels and biochemicals is currently of great interest.1-3 Biodiesel is the second most produced biofuel after bioethanol and accounts for 27.5% of the global biofuels output in 2011.4 A major drawback of biodiesel is the production of ca. 1 kg of glycerol as a by-product for every
    [Show full text]
  • Revisiting the Deoxydehydration of Glycerol Towards Allyl Alcohol Under Continuous-Flow Conditions
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017 Supporting Information for: Revisiting the deoxydehydration of glycerol towards allyl alcohol under continuous-flow conditions Nelly Ntumba Tshibalonza and Jean-Christophe M. Monbaliu* Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, B-4000 Liège (Sart Tilman), Belgium Table of Contents 1. Continuous-flow setups .................................................................................................................3 1.1 Generalities..............................................................................................................................3 1.1.1 Pumps ..............................................................................................................................3 1.1.2 Microfluidic reactor elements..........................................................................................3 1.1.3 Thermoregulated oven.....................................................................................................5 1.1.4 In-line IR spectrometer....................................................................................................5 1.2 Detailed microfluidic setup .....................................................................................................6 1.3 Operation to steady state..........................................................................................................6 1.4.1 Starting up procedure.......................................................................................................6
    [Show full text]
  • Provisional Peer-Reviewed Toxicity Values for Allyl Alcohol (Casrn 107-18-6)
    EPA/690/R-09/001F l Final 09-29-2009 Provisional Peer-Reviewed Toxicity Values for Allyl alcohol (CASRN 107-18-6) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 Commonly Used Abbreviations BMD Benchmark Dose IRIS Integrated Risk Information System IUR inhalation unit risk LOAEL lowest-observed-adverse-effect level LOAELADJ LOAEL adjusted to continuous exposure duration LOAELHEC LOAEL adjusted for dosimetric differences across species to a human NOAEL no-observed-adverse-effect level NOAELADJ NOAEL adjusted to continuous exposure duration NOAELHEC NOAEL adjusted for dosimetric differences across species to a human NOEL no-observed-effect level OSF oral slope factor p-IUR provisional inhalation unit risk p-OSF provisional oral slope factor p-RfC provisional inhalation reference concentration p-RfD provisional oral reference dose RfC inhalation reference concentration RfD oral reference dose UF uncertainty factor UFA animal to human uncertainty factor UFC composite uncertainty factor UFD incomplete to complete database uncertainty factor UFH interhuman uncertainty factor UFL LOAEL to NOAEL uncertainty factor UFS subchronic to chronic uncertainty factor i FINAL 9-29-2009 PROVISIONAL PEER-REVIEWED TOXICITY VALUES FOR ALLYL ALCOHOL (CASRN 107-18-6) Background On December 5, 2003, the U.S. Environmental Protection Agency's (U.S. EPA) Office of Superfund Remediation and Technology Innovation (OSRTI) revised its hierarchy of human health toxicity values for Superfund risk assessments, establishing the following three tiers as the new hierarchy: 1) U.S. EPA's Integrated Risk Information System (IRIS). 2) Provisional Peer-Reviewed Toxicity Values (PPRTVs) used in U.S.
    [Show full text]
  • United States Patent Office Patented June 23, 1970 2 (3) the First Gaseous Mixture Consists Essentially of 3,517,054 PROCESS for PREPARNG
    3,517,054 United States Patent Office Patented June 23, 1970 2 (3) The first gaseous mixture consists essentially of 3,517,054 PROCESS FOR PREPARNG. MONOACETN about 40-60 parts by volume of propylene, 40-60 parts FROM PROPYLENE by volume of acetic acid vapor, and 5-15 parts by volume Arthur D. Ketley, Silver Spring, Md., assignor to W. R. of oxygen; Grace & Co., New York, N.Y., a corporation of (4) The catalyst is maintained at about 100-150° C.; Connecticut (5) The allyl acetate is added to an acid selected No Drawing. Filed Dec. 5, 1967, Ser. No. 688,012 from the group consisting of formic acid and acetic int. C. C07 c 67/00, 67/04 acid at a rate of about 0.5-2 moles per liter of said U.S. C. 260-491 8 Claims acid; 10 (6) The hydrogen peroxide is added to the third mix ture at a rate to provide about 100-150 grams of H2O2 ABSTRACT OF THE DISCLOSURE per mole of allyl acetate present in the third mixture; In abstract, this invention is directed to a process for and preparing monoacetin from propylene, said process com (7) The fourth mixture is maintained at about 20 prising forming allyl acetate from propylene by catalyti 5 40°C. for about 0.25-24 hours. cally reacting gaseous propylene with acetic acid vapor U.S. Pat. 3,275,680 discloses the preparation of allyl in the presence of a catalyst and gaseous oxygen, separat alcohol from propylene by a process comprising the ing the allyl acetate, and forming monoacetin by dis catalytic reaction of propylene oxygen (air), and po solving the allyl acetate in an acid selected from the tassium acetate in the presence of water.
    [Show full text]
  • Polymers of Allyl Esters with Allylic Alcohols Or Propoxylated Allylic
    Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 703 250 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) intci.e: C08F 218/12, C08F 216/08 of the grant of the patent: 07.01.1999 Bulletin 1999/01 (21) Application number: 95306572.9 (22) Date of filing: 18.09.1995 (54) Polymers of ally I esters with ally lie alcohols or propoxylated ally lie alcohols Polymere aus Allylestern mit Allylalkohol oder Allyl-Alkohol-Propoxylate Polymeres d'esters allyliques et d'alcool allylique ou d'alcool allylique propoxyle (84) Designated Contracting States: (74) Representative: Cropp, John Anthony David et al BE DE ES FR GB IT NL MATHYS& SQUIRE 100 Grays Inn Road (30) Priority: 21.09.1994 US 309699 London, WC1X8AL (GB) 15.05.1995 US 440865 (56) References cited: (43) Date of publication of application: DE-A- 4 135 399 FR-A-2 018 263 27.03.1996 Bulletin 1996/13 US-A- 2 995 535 US-A- 3 876 588 (73) Proprietor: ARCO Chemical Technology, L.P. Remarks: Greenville, Delaware 19807 (US) The file contains technical information submitted after the application was filed and not included in this (72) Inventor: Guo, Shao-Hua specification West Goshen, PA 19380 (US) DO o CM CO o Is- Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice the Patent Office of the Notice of shall be filed in o to European opposition to European patent granted. opposition a written reasoned statement.
    [Show full text]
  • Allyl Acetate CAS # 591-87-7
    SUMMARY OF DATA FOR CHEMICAL SELECTION Allyl Acetate CAS # 591-87-7 and Allyl Alcohol CAS # 107-18-6 (Prepared for NCI by Technical Resources, Inc. under contract - (8/91: revised 2/93)) NTP NOMINATION HISTORY AND REVIEW Nomination History • Nomination Source: National Cancer Institute Recommendations: • Metabolism • Carcinogenicity Rationale/Remarks: • Allyl acetate and allyl alcohol were nominated as a pair of chemicals • High production • Potential for high occupational and consumer exposure based on its extensive use in organic synthesis, agriculture and flavoring agents • Mutagenic in Salmonella and mouse lymphoma assays • Available carcinogenicity studies in rats and hamsters were negative but these studies were inadequate (insufficient number of doses, and animals in rat and hamster studies; only one sex used in hamster study) • Higher priority for carcinogenicity testing should be assigned to allyl acetate; if allyl acetate proves to be carcinogenic, priority for carcinogenicity testing of allyl alcohol should be increased Priority: High • Date of Nomination: 4/1993 Table of Contents 1. Chemical Identification a. Basis of Nomination to the CSWG b. Input from Government Agencies/Industry c. Selection Status 2. Exposure Information 3. Evidence for Possible Carcinogenic Activity 4. References CHEMICAL IDENTIFICATION Allyl Acetate CAS Registry Number: 591-87-7 Chem. Abstracts Name: Acetic acid, 2-propenyl ester (9CI); Acetic acid, allyl ester (8CI) Synonyms and Trade Names: Allyl alcohol, acetate; 3-acetoxy-1-propene; 3-acetoxy- propene Allyl Alcohol CAS Registry Name: 107-18-6 Chemical Abstracts Name: 2-Propen-1-o1 (9CI) Synonyms and Trade Names: Allylic alcohol; 3-hydroxypropene; 1-propenol-3; 2-propenol; 2-propenyl alcohol; Shell unkrautted A; Weed Drench; vinyl carbinol Structure, Molecular Formula and Molecular Weight: Allyl Acetate C5H8O2 Mol.
    [Show full text]
  • The Role of Oxides in Oxidation of Allyl Alcohol and Its Esters
    CHEMISTRY & CHEMICAL TECHNOLOGY Chem. Chem. Technol., 2019, Chemistry Vol. 13, No. 1, pp. 46–51 THE ROLE OF OXIDES IN OXIDATION OF ALLYL ALCOHOL AND ITS ESTERS Eugeniy Fedevych1, Oleh Datsko2, Oleh Fedevych3, * https://doi.org/10.23939/chcht13.01.046 Abstract.1The assumption that oxides (glycidol, glycidol viscosity of biodiesel. It is a component of propellant [8] acetate, glycidol formate) are the intermediate molecular and possible power source during space flights [9]. products of the oxidation reaction of allyl alcohol and its Triacetin is used for the production of food plastics as esters in the medium of acetic acid has been grounded. To well as acrylic fabric filters for cigarettes due to its ability optimize the process of obtaining glycerin esters the to absorb carcinogenic substances. Since triacetin is kinetics of these oxides reaction with acetic and formic fermentation-resistant, it extends the shelf life of the acids has been investigated. Glycidol formate was found products and may be a component of confectioneries, to be the most stable compound and glycidol – the least including chocolate. Glycerin mono- and diacetin have stable one. The rate of oxides reaction with formic acid is similar properties [8]. by order higher than that with acetic acid. It is reasonable Taking into account the intense interest to the to use allyl formate as the starting material to achieve the above-mentioned compounds, we studied previously the maximum yields of glycerin esters. oxidative acylation of allyl acetate (AAc), allyl alcohol (AAl) and allyl formate (AF) and determined the Keywords: glycerin, allyl acetate, allyl formate, allyl composition of the resulting products [11].
    [Show full text]
  • (Cyclohexyloxy)Acetate, CAS Registry Number 68901-15-5 A.M
    Food and Chemical Toxicology 82 (2015) S59–S65 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox RIFM fragrance ingredient safety assessment, allyl (cyclohexyloxy)acetate, CAS registry number 68901-15-5 A.M. Api a, D. Belsito b, S. Bhatia a, M. Bruze c, P. Calow d, M.L. Dagli e, W. Dekant f, A.D. Fryer g, L. Kromidas a,*, S. La Cava a, J.F. Lalko a, A. Lapczynski a, D.C. Liebler h, Y. Miyachi i, V.T. Politano a, G. Ritacco a, D. Salvito a, J. Shen a, T.W. Schultz j, I.G. Sipes k, B. Wall a, D.K. Wilcox a a Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA b Member RIFM Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY 10032, USA c Member RIFM Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo SE-20502, Sweden d Member RIFM Expert Panel, University of Nebraska Lincoln, 230 Whittier Research Center, Lincoln, NE 68583-0857, USA e Member RIFM Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo CEP 05508-900, Brazil f Member RIFM Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany g Member RIFM Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA h
    [Show full text]
  • Acrolein CAS #: 107-02-8 Revised By: RRD Toxicology Unit Revision Date: August 12 , 2015
    CHEMICAL UPDATE WORKSHEET Chemical Name: Acrolein CAS #: 107-02-8 Revised By: RRD Toxicology Unit Revision Date: August 12 , 2015 (A) Chemical-Physical Properties Part 201 Value Updated Value Reference Source Comments Molecular Weight (g/mol) 56.06 56.06 EPI EXP Physical State at ambient temp Liquid Liquid MDEQ Melting Point (˚C) 185 -87.70 EPI EXP Boiling Point (˚C) 52.6 52.60 EPI EXP Solubility (ug/L) 2.10E+8 2.12E+08 EPI EXP Vapor Pressure (mmHg at 25˚C) 266 2.74E+02 EPI EXP HLC (atm-m³/mol at 25˚C) 9.40E-5 1.22E-04 EPI EXP Log Kow (log P; octanol-water) -0.01 -0.01 EPI EXP Koc (organic carbon; L/Kg) 1.18 1 EPI EST Ionizing Koc (L/kg) NR NA NA Diffusivity in Air (Di; cm2/s) 0.11 1.12E-01 W9 EST Diffusivity in Water (Dw; cm2/s) 1.2E-5 1.2208E-05 W9 EST Soil Water Partition Coefficient NR NR NA NA (Kd; inorganics) CHEMICAL UPDATE WORKSHEET Acrolein (107-02-8) Part 201 Value Updated Value Reference Source Comments Flash Point (˚C) -15 F -26 CRC EXP Lower Explosivity Level (LEL; 0.028 0.028 CRC EXP unit less) Critical Temperature (K) 506.00 EPA2004 EXP Enthalpy of Vaporization 6.73E+03 EPA2004 EXP (cal/mol) Density (g/mL, g/cm3) 0.84 CRC EXP EMSOFT Flux Residential 2 m 2.43E-05 2.66E-05 EMSOFT EST (mg/day/cm2) EMSOFT Flux Residential 5 m 4.96E-05 5.98E-05 EMSOFT EST (mg/day/cm2) EMSOFT Flux Nonresidential 2 m 3.38E-05 4.18E-05 EMSOFT EST (mg/day/cm2) EMSOFT Flux Nonresidential 5 m 6.63E-05 9.12E-05 EMSOFT EST (mg/day/cm2) 2 CHEMICAL UPDATE WORKSHEET Acrolein (107-02-8) (B) Toxicity Values/Benchmarks Source/Reference/ Comments/Notes Part 201 Value Updated Value Date /Issues Reference Dose 1.6E-2 4.0E-3 ATSDR, 2007 (RfD) (mg/kg/day) Tier 2 Source: Basis: ATSDR intermediate oral MRL = 0.004 or 4.0E-3 mg/kg/day.
    [Show full text]