Seismic Hazard Analysis Probabilistic Quetta City

Total Page:16

File Type:pdf, Size:1020Kb

Seismic Hazard Analysis Probabilistic Quetta City Probabilistic Seismic Hazard Analysis For Quetta City, Pakistan by Shafiq Ur Rehman, Najeeb Ahmed Amir,Conrad Lindholm and Zahid Rafi Pakistan Meteorological Department and , Norway EARTHQUAKE HAZARD, QUETTA, PAKISTAN Technical Report No. PMD-16/2012 January, 2012 Page 2 of 49 EARTHQUAKE HAZARD, QUETTA, PAKISTAN Table of Contents Preface ………………………………………………………………………………..5 Summary ....................................................................................................................... 6 1 Introduction ...................................................................................................... 7 2 Technical approach .......................................................................................... 9 2.1 Design codes and construction details ............................................................... 9 2.2 Methodology of probabilistic seismic hazard analysis .................................... 11 2.3 Probabilistic seismic hazard analysis ............................................................... 13 2.3.1 Theoretical framework ................................................................................... 13 2.3.2 The earthquake recurrence model ................................................................... 14 3 Geologic and seismotectonic setting ............................................................. 15 3.1 Mode of faulting around Quetta ....................................................................... 16 4 Earlier seismic hazard and zoning results ................................................... 17 5 Assessment of earthquake potentials ........................................................... 18 5.1 The largest earthquakes within the greater area ............................................... 18 5.2 Earthquake catalogues ..................................................................................... 19 5.2.1 Historical earthquakes .................................................................................... 19 5.3 Geographical distribution of earthquake databases ......................................... 21 6 Seismotectonic zonation and quantification ................................................ 22 6.1 Magnitude conversions .................................................................................... 22 6.1.1 Some manual magnitude assessments ............................................................ 24 6.2 Completeness, aftershocks and magnitude-frequency relation ........................ 24 6.2.1 Aftershocks ..................................................................................................... 24 6.2.2 Completeness .................................................................................................. 24 6.3 Seismic zonation .............................................................................................. 27 6.3.1 The local faults included in the hazard model ................................................ 28 6.4 Model parameters............................................................................................. 30 6.4.1 Zonation and distribution of activity .............................................................. 33 6.5 Fault modeling ................................................................................................. 33 7 Ground-motion models .................................................................................. 34 7.1 General review of models ................................................................................ 35 7.2 Considered models ........................................................................................... 35 7.2.1 Sigma (σ) values ............................................................................................. 37 8 The computational model .............................................................................. 37 9 Seismic hazard and loading results .............................................................. 39 10 References ....................................................................................................... 41 11 Glossary .......................................................................................................... 44 Page 3 of 49 EARTHQUAKE HAZARD, QUETTA, PAKISTAN Illustration on front cover: Quetta at night seen from south Page 4 of 49 EARTHQUAKE HAZARD, QUETTA, PAKISTAN Preface Page 5 of 49 EARTHQUAKE HAZARD, QUETTA, PAKISTAN Summary Quetta city is located in the most active seismic zones of Pakistan with shallow focus earthquakes, recorded very close to the city. Over the past century Quetta has been jolted by several large events. One earthquake in 1935 destroyed almost entire city and causing casualties of around 35,000 people. Over the historical time span at least nine earthquakes with intensities between VII and X have been reported around Quetta. This stipulates the need for seismic hazard analysis of Quetta city, based on probabilistic state-of-the-art methodology. The present research comprises of the study of active tectonics of the region, with focus on updating the existing fault systems of the study area for preparation of a seismotectonic map. The data was collected from various contributing agencies to form a composite earthquake data catalogue. The seismotectonic map and catalogue was used as the basis for the Probabilistic Seismic Hazard Analysis (PSHA) relying on area and line source modeling techniques, applying the CRISIS software (Ordaz et al., 2003). No well documented ground motion prediction equations exist for the Pakistan territory. Therefore we applied a relation developed from data of similar tectonic regimes (active compression). This technique was found suitable for shallow focus seismicity for different return periods and spectral ordinates. The results of the probabilistic seismic hazard analysis of Quetta for the return period of 500 years indicate a PGA ground motion of 4.8 m/s2. Spectral accelerations were calculated for four different sites (Quetta North, Quetta South, Quetta East and Quetta West) of Quetta city with period between 0.003s to 2.5s. The highest spectral acceleration of 11.6 m/s2 was observed at 0.20 s for Central Quetta. Page 6 of 49 EARTHQUAKE HAZARD, QUETTA, PAKISTAN 1 Introduction Quetta is the capital of Balochistan, and at the same time it is a trade center and commercial hub for a main trade route between Pakistan and Afghanistan (Fig.1.1). Quetta and its surroundings are among the most earthquake active areas in Pakistan. In 1935, the city was devastated by a major earthquake event documented as a magnitude M=8.1 event. Figure 1.1. The location of Quetta in western Pakistan bordering Afghanistan. In the early morning on 31 May 1935 a violent earthquake took place, which lasted for three minutes and followed by continuous aftershocks. Although there were not good enough instruments to precisely measure the magnitude of earthquake. However, estimates cite the magnitude as being a minimum of Mw 7.7 and possibly as high as Mw 8.1. The epicentre of the quake was established at 4-kilometres south-west of the town of Ali Jaan in Balochistan, that is 153-kilometres away from Quetta. The earthquake caused destruction in Quetta and almost all the towns around the city. Its tremors were felt as far as Agra in India. The largest aftershock of 5.8 Mw was measured three days after the main earthquake. It did not cause any damage in Quetta but the towns of Mastung, Maguchar and Kalat were seriously affected by this aftershock. According to some authors as many as 35,000 were killed by the Quetta, 1935 earthquake (Din Muhammad 2008). In 1931 this region already experienced two major earthquakes. The first of these near Sharigh, of Mw 6.8 on 24th August 1931 followed by the Mach earthquake of Mw 7.3 on 27th August 1931. Both these earthquakes caused huge damages to the property and loss of lives, though not comparable in devastation with the 1935 earthquake. Page 7 of 49 EARTHQUAKE HAZARD, QUETTA, PAKISTAN Figure 1.2. Location of Ali Jaan, assumed to be the epicenter position of the 1935 earthquake (red marker) as well as the city of Quetta (black marker) is shown. Figure 1.3. Location of Bolan Pass is assumed to be close to one of the 1931 epicenters (Szeliga et al, 2009). Page 8 of 49 EARTHQUAKE HAZARD, QUETTA, PAKISTAN 2 Technical approach 2.1 Design codes and construction details The U.S. Army Corps of Engineers have issued a manual for Engineering and Design (U.S. Army Corps of Engineers, 1999) in which several general guidelines are included. Te technical approach in that manual is generally deterministic but it contains key concepts that are applicable to the present study. The seismic assessment follows the key steps as below: Establishment of earthquake design criteria. In the present case this means that the definitions of Maximum Design Earthquake (MDE) and Operating Basis Earthquake (OBE) are commonly understood. Development of ground motion, corresponding to the MDE and OBE levels. Establishment of analysis procedures, i.e. procedures applied to reveal how the structure responds to the specified ground motions. Development of structural models. Prediction of earthquake response of the structure. Interpretation and evaluation of the results. In the present study we will exclusively focus on the second point as above, except that we refrain from using the terms MDE or OBE. Because these terms are relevant for sensitive structures in particular, definitions of MDE and OBE as produced below gives the
Recommended publications
  • Earthquake Triggered Landslide in Indian Scenario – Causes and Measures
    Earthquake Triggered Landslide in Indian Scenario – Causes and Measures Harbans Singh and S. K. Som Geological Survey of India North-Eastern Region Abstract Landslides occurring due to earthquake is one of the most prevalent seismic hazard, which claims hundreds of lives in the Himalayan mountainous terrain of India. This region has been rocked by a number of major earthquakes. Available oldest record of 8.1 M, 1897 Assam earthquake shows at least 27 numbers of earthquake triggered landslides upto a distance of 450 km from the epicentre. Most of the slides occurred in the Shillong plateau with a number of casualties. The great Assam earthquake of 1950 (8.6 M) has triggered over 100,000 landslides, dislodging 47 billion m3 disaggregated sediments from steep slopes. The 7.1 M, Uttarkashi earthquake of 1991 has shown localised 23 numbers of earthquake triggered landslides within areas between Bhagirathi and Alakananda valleys. The Chamoli earthquake of 6.6 M, 1999 triggered about 56 number of landslides and dislodged about 0.02 million m3 of debris materials. More recent, 2005 Kashmir earthquake of 7.6 M has triggered several thousand landslides including one struzstorm (deris avalanche) which has buried four villages and created two lakes. The 2011, 6.8 M Sikkim earthquake created 196 new slides and reactivated several older slides. Causative factors used to define relative levels of shaking that trigger landslides in susceptible materials due to earthquake are increase in shear stress by horizontal ground acceleration, decrease in soil strength, earthquake magnitude, distance from epicentre, topographic effects and shaking intensity. To assess the landslide damage due to earthquake triggering and its subsequent management, the first step is to prepare landslide inventory map.
    [Show full text]
  • Pakistan 2005 Earthquake Preliminary Damage and Needs Assessment
    Pakistan 2005 Earthquake Preliminary Damage and Needs Assessment Prepared By Asian Development Bank and World Bank Islamabad, Pakistan November 12, 2005 CURRENCY AND EQUIVALENTS Currency Unit = Pakistan Rupee US$1 = PKR 59.4 FISCAL YEAR July 1 - June 30 ABBREVIATIONS AND ACRONYMS ADB Asian Development Bank LPG Liquefied Petroleum Gas ADP Annual Development Plans MOH Ministry of Health AIDS Acquired Immune Deficiency Syndrome MOWP Ministry of Water and Power AEZs Agro-Ecological Zones MPNR Ministry of Petroleum and Natural Resources AJK Azad Jammu Kashmir MSW Municipal Solid Waste AJKED Electricity Department of Azad J. Kashmir NCHD National Commission for Human Development ARI Acute Respiratory Infection NGOs Non-Governmental Organizations CAA Civil Aviation Authority NHA National Highway Authority CAS Country Assistance Strategy NWFP North West Frontier Province CFAA Country Financial Accountability Assessment OMC Oil Marketing Companies CISP Community Infrastructure and Services Project P&DD Planning and Development Department CMU Concrete Masonry Unit PESCO Peshawar Electricity Supply Company DAC Disaster Assessment and Coordination PHC Primary Health Care DECC District Emergency Coordination Committee PHED Public Health Engineering Department DFID Department for International Development PIFRA Project to Improve Financial Reporting and DPL Development Policy Loan Auditing ECLAC Economic Commission for Latin America and PIHS Pakistan Integrated Household Survey the Caribbean PPAF Pakistan Poverty Alleviation Fund EMG Emergency Management
    [Show full text]
  • Earthquake 2005: Some Implications for Environment and Human Capital
    Munich Personal RePEc Archive Earthquake 2005: Some Implications for Environment and Human Capital Hamdani, Nisar Hussain and Shah, Syed Akhter Hussain Pakistan Institute of DEvelopment EConomics Islamabad Pakistan 2005 Online at https://mpra.ub.uni-muenchen.de/9519/ MPRA Paper No. 9519, posted 11 Jul 2008 04:58 UTC FJW University Rawalpindi , AJ&K Muzaffarabad and Higher Education Commission Islamabad-Pakistan Earthquake 2005: Some Implications for Environment and Human Capital Dr. Syed Nisar Hussain Hamdani* ` & Syed Akhter Hussain Shah** Loss of human capital in the form of skills and experiences is one of the outcomes of any natural hazard such as earthquake, drought, famine, and floods. Generally such losses have many implications for further growth of individuals, communities and nations. Disaster management and risk assessment has established a new need to constitute a paradigm of planning frameworks to develop modules for dealing with interactive rehabilitation and reconstruction activities. However, such management still lacks due attention in perspective of the remedy of human capital loss particularly in environmental management. This paper discusses the post-disaster situations with respect to human capital flow and stock losses and some of their implications and suggests some measures to apply in the earthquake-affected areas of Azad Kashmir and NWFP. Introduction A sustainable environment facilitates directly and indirectly to the strengthening of economic growth, socio-cultural demographic uplift, infrastructural buildup, positive external generation, and improving beyond preserving levels the ‘quality of life for humans’. Further it is complementary to economic growth for long run human development objectives as well, where it significantly affects human capital, its accumulation and the overall environment.
    [Show full text]
  • The Project for National Disaster Management Plan in the Islamic Republic of Pakistan
    NATIONAL DISASTER MANAGEMENT AUTHORITY (NDMA) THE ISLAMIC REPUBLIC OF PAKISTAN THE PROJECT FOR NATIONAL DISASTER MANAGEMENT PLAN IN THE ISLAMIC REPUBLIC OF PAKISTAN FINAL REPORT NATIONAL MULTI-HAZARD EARLY WARNING SYSTEM PLAN MARCH 2013 JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS CO., LTD. CTI ENGINEERING INTERNATIONAL PT OYO INTERNATIONAL CORPORATION JR 13-001 NATIONAL DISASTER MANAGEMENT AUTHORITY (NDMA) THE ISLAMIC REPUBLIC OF PAKISTAN THE PROJECT FOR NATIONAL DISASTER MANAGEMENT PLAN IN THE ISLAMIC REPUBLIC OF PAKISTAN FINAL REPORT NATIONAL MULTI-HAZARD EARLY WARNING SYSTEM PLAN MARCH 2013 JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS CO., LTD. CTI ENGINEERING INTERNATIONAL OYO INTERNATIONAL CORPORATION The following foreign exchange rate is applied in the study: US$ 1.00 = PKR 88.4 PREFACE The National Disaster Management Plan (NDMP) is a milestone in the history of the Disaster Management System (DRM) in Pakistan. The rapid change in global climate has given rise to many disasters that pose a severe threat to the human life, property and infrastructure. Disasters like floods, earthquakes, tsunamis, droughts, sediment disasters, avalanches, GLOFs, and cyclones with storm surges are some prominent manifestations of climate change phenomenon. Pakistan, which is ranked in the top ten countries that are the most vulnerable to climate change effects, started planning to safeguard and secure the life, land and property of its people in particular the poor, the vulnerable and the marginalized. However, recurring disasters since 2005 have provided the required stimuli for accelerating the efforts towards capacity building of the responsible agencies, which include federal, provincial, district governments, community organizations, NGOs and individuals. Prior to 2005, the West Pakistan National Calamities Act of 1958 was the available legal remedy that regulated the maintenance and restoration of order in areas affected by calamities and relief against such calamities.
    [Show full text]
  • Multihazard Early Warning System
    Government of Pakistan Cabinet Division National Plan: Strengthening National Capacities for Multi Hazard Early Warning and Response System Phase: I Prepared by Dr. Qamar-uz-Zaman Chaudhry Director General Pakistan Meteorological Department Under the guidance of Mr. Ejaz Rahim Secretary, Cabinet Division May, 2006 Phase-I of National Plan : Submitted for seeking funding from the consortium formed in response to President Clinton’s (The UN Special Envoy for Tsunami Recovery) initiative urging developing countries in the Indian Ocean Region to develop national plans for the establishment of Early Warning and Response Systems. 2 CONTENTS Executive Summary 1. Introduction 1.1 Geography 1.2 Seismicity / Earthquakes 1.3 Tsunami 1.4 Tropical Cyclone 1.5 Drought 1.6 Floods 2. Disaster Management Policy at National Level 3. National Strategy for Disaster Management 4. Organizations with overall disaster related responsibilities 4.1 Emergency Relief Cell (ERC) 4.2 Pakistan Meteorological Department (PMD) 4.3 Federal Flood Commission (FFC) 4.4 National Crisis Management Cell (NCMC) 4.5 Civil Defence 4.6 Provincial Relief Departments 4.7 Provincial Irrigation Departments 4.8 Provincial Health Departments 4.9 Provincial Agriculture & Livestock Department 4.10 Provincial Food Departments 4.11 Communication & Works 4.12 Planning & Development Departments 4.13 Army 4.14 Police Department 4.15 Dams Safety Council 5. Disaster Management in Regional Bodies 5.1 South Asian Association for Regional Cooperation (SAARC) 5.1.1 The SAARC Regional Study on the
    [Show full text]
  • 1.3 Seismic Hazard
    1 Introduction Natural disasters inflicted by earthquakes, landslides, flood, drought, cyclone, forest fire, volcanic eruptions, epidemics etc. keep happening in some parts or the other around the globe leading to loss of life, damage to properties and causing widespread socio-economic disruptions. EM- DAT, a global disaster database maintained by the Centre for Research on the Epidemiology of Disasters (CRED) in Brussels, records more than 600 disasters globally every year (http://www. cred.be). Earthquakes are the major menace to the mankind killing thousands of people every year in different parts of the globe. An estimated average of 17,000 persons per year has been killed in the 20th century itself. Statistics taken for the period 1973-1997 (http://www.cred.be), organized in 5-year bins, exhibit that earthquakes are amongst the disasters with larger death impact as depicted in Figure 1.1 even though the occurrences of flood events are twice per year. According to the International Disaster database (i.e. CRED) the total human fatality occurred in Asia for the period between 1900 to 2015 is estimated to be 18,23,324 persons while in case of only the Indian subcontinent the casualty is estimated to be around 78,209 with total economy loss of 5222.7 million (US$). Thus earthquakes are considered to be one of the worst among all the natural disasters. Figure 1.1 Comparison amongst different types of natural catastrophes (after Ansal, 2004). A comparative analysis performed by CRED in terms of total damage in billions of US$ reportedly caused by natural disasters as shown in Figure 1.2 illustrates that Asia is more prone to earthquake disaster than any other continental regions in the world.
    [Show full text]
  • Seismic Risk Management in Areas of Paper Title Line 1 High Seismic
    Seismic Risk Management in Areas of High Seismic Hazard and Poor Accessibility Paper Title Line 1 Alpa Sheth Managing Director VMS Consultants Pvt. Ltd., Mumbai, India and Seismic Advisor, Gujarat State Disaster Management Authority V. Thiruppugazh Additional Chief Executive Officer, Gujarat State Disaster Management Authority, Gandhinagar, Gujarat, India SUMMARY : The 2011 M6.9 Sikkim (India) earthquake exposed poor disaster preparedness in remote villages of high seismicity. Similar experiences have been recorded in the 2005 Kashmir earthquake and 2001 Bhuj earthquake, amongst others. Often, areas of high seismicity have relatively low density and low development priority. There appears to be a reluctance to expend disproportionately large resources on disaster mitigation and management for this miniscule section of society. While trying to alleviate the burden such communities may be placing on the urban fabric, it is still the responsibility of the State to ensure access to safety, relief and rescue in a disaster for its every citizen. The paper studies the three earthquakes and suggests a policy approach identifying the key issues to be addressed to make such communities less vulnerable in disasters and makes a compelling case for building resilient infrastructure on part of the state and capacity building of the local community for disaster mitigation. 1. BACKGROUND An Mw 6.9 earthquake occurred on 18 September 2011 near the Nepal-Sikkim border. Sikkim was the worst affected state of India. The earthquake triggered an estimated 354 new landslides and reactivated 48 old ones in the state, besides causing significant damage to buildings and infrastructure. The damage (and fatalities) due to landslides, rock falls and mudslides exceeded the damage due to ground shaking.
    [Show full text]
  • Pakistan's Earthquake And
    Int. j. econ. env. geol. Vol:2(1) 19-29 Pakistans Earthquake and Tsunami Hazards Potential Impact on Infrastructure GEORGE PARARAS-CARAYANNIS 1741 Ala Moana Blvd. No. 70, Honolulu, Hawaii, 96815, USA [email protected] Abstract. Interaction of the Indian, Arabian and Eurasian tectonic plates has resulted in the formation of major active fault systems in South Asia. Compression along the tectonic boundaries results in thrust or reverse type of faulting and zones of crustal deformation characterized by high seismic activity and continuing Orogenesis. The more intense seismic activity occurs near regions of thrust faulting which is developing at the Himalayan foothills. In northern Pakistan, the Hindu Kush Mountains converge with the Karakoram Range to form a part of the Himalayan mountain system. Northern, western as well as southern Pakistan, Kashmir and northern India and Afghanistan are along such zones of high seismic activity. In Pakistan, most of the earthquakes occur in the north and western regions along the boundary of the Indian tectonic plate with the Iranian and Afghan micro-plates. The active zone extends from the Makran region in the southwest to the Hazara-Kashmir syntaxial bend in the north. Southwest Pakistan is vulnerable to both earthquake and tsunami hazards. In 2005, earthquakes devastated northern Pakistan and Kashmir and severely affected the cities of Muzaffarabad, Islamadad and Rawalpindi, causing severe destruction to the infrastructure of the northern region. A major earthquake along an extensive transform fault system in 1935 destroyed the city Quetta and the adjoining region. A major earthquake along the northern Arabian sea in 1945 generated a very destructive tsunami along the coasts of Baluchistan and Sindh Provinces.
    [Show full text]
  • Surface Rupture of the 2005 Kashmir, Pakistan, Earthquake and Its Active
    Bulletin of the Seismological Society of America, Vol. 98, No. 2, pp. 521–557, April 2008, doi: 10.1785/0120070073 Ⓔ Surface Rupture of the 2005 Kashmir, Pakistan, Earthquake and Its Active Tectonic Implications by Heitaro Kaneda, Takashi Nakata, Hiroyuki Tsutsumi, Hisao Kondo, Nobuhiko Sugito, Yasuo Awata, Sardar S. Akhtar, Abdul Majid, Waliullah Khattak, Adnan A. Awan, Robert S. Yeats, Ahmad Hussain, Muhammad Ashraf, Steven G. Wesnousky, and Allah B. Kausar Abstract To provide a detailed record of a relatively rare thrust surface rupture and examine its active tectonic implications, we have conducted field mapping of the sur- M face rupture associated with the 2005 w 7.6 Kashmir earthquake. Despite the diffi- culty arising from massive earthquake-induced landslides along the surface rupture, we found that typical pressure ridges and warps extend northwestward for a distance of ∼70 km, with a northeast-side-up vertical separation of up to ∼7 m. Neither the main frontal thrust nor the main boundary thrust is responsible for the earthquake, but three active faults or fault segments within the Sub-Himalaya, collectively called the Balakot–Bagh fault, compose the causative fault. Although the fault exhibits sub- stantial geomorphic expression of repeated similar surface ruptures, only a part of it had been mapped as active before the earthquake. The location of the hypocenter suggests that the rupture was initiated at a deep portion of the northern–central seg- ment boundary and propagated bilaterally to eventually break all three segments. Our obtained surface rupture traces and the along-strike-slip distribution are both in good agreement with results of prompt analyses of satellite images, indicating that space geodesy can greatly aid in time-consuming field mapping of surface ruptures.
    [Show full text]
  • The 2005, Mw 7.6 Kashmir Earthquake
    Earth and Planetary Science Letters 249 (2006) 514–528 www.elsevier.com/locate/epsl The 2005, Mw 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis ⁎ Jean-Philippe Avouac , Francois Ayoub, Sebastien Leprince, Ozgun Konca, Don V. Helmberger Tectonic Observatory, Geology and Planetary Science Division, Caltech Institute of Technology, Pasadena, CA, USA Received 6 April 2006; received in revised form 16 June 2006; accepted 16 June 2006 Available online 17 August 2006 Editor: R.D. van der Hilst Abstract We analyze the Mw7.6 Kashmir earthquake of October 8, 2005, using sub-pixel correlation of ASTER images to measure ground deformation, and modeling seismic waveforms. The surface rupture is continuous over a distance of 75 km and cuts across the Hazara syntaxis reactivating the Tanda and the Muzaffarabad faults. North of Muzaffarabad the surface rupture coincides approximately with the MBT, on the southwestern flank of the syntaxis, although the two faults have opposite dip angles. The rupture terminates abruptly at the hairpin turn of the MBT showing a strong structural control. The fault offset is 4 m on average and peaks to 7 m northwest of Muzaffarabad. The rupture lasted about 25 s and propagated updip and bi-laterally by ∼2 km/s, with a rise time of 2–5 s. The shallowness and compactness of the rupture, both in time and space, provide an explanation for the intensity of destructions. This kind of analysis could be achieved as soon as a post-earthquake image is available, and would provide key information for early assessment of damages.
    [Show full text]
  • Reconnaissance Report on the Mw 7.5 Hindu Kush Earthquake of 26Th October 2015 and the Subsequent Aftershocks
    United Arab Emirates University Reconnaissance report on the Mw 7.5 Hindu Kush earthquake of 26th October 2015 and the subsequent aftershocks Technical Report by Najif Ismail, MEERI CPEng MIPENZ and Nouman Khattak MPEC 12/26/2015 Department of Civil and Environmental Engineering Faculty of Engineering, United Arab Emirates University PO Box 15551, Al Ain United Arab Emirates www.uaeu.ac.ae About authors Najif Ismail is an Assistant Professor in the Department of Civil and Environmental Engineering at the United Arab Emirates University. Najif obtained his PhD from the University of Auckland in 2012, having previously completed his BE (Hons) and ME from the University of Engineering and Technology Taxila. Najif also has finished a formal teaching qualification from the Otago Polytechnic. He was awarded the 2013 Best Doctoral Dissertation Award by the Masonry Society (USA) and the 2013 OP Staff Award for Excellence in Research. Najif has contributed to several reports including the one submitted to Canterbury Earthquakes Royal Commission, reporting the seismic performance of buildings during the 2010/2011 Canterbury earthquake series. He has also served on the masonry subcommittee for 2013 revision of ASCE - 41 standards. Najif’s primary research interests are associated with seismic assessment and retrofit of concrete and masonry structures, and sustainable concrete technology. Over the last 1 year Najif has led a project considering the seismic assessment and retrofit of infilled concrete frame buildings, funded by the United Arab Emirates University research grant G00001603. Nouman Khattak is a Research Assistant at the United Arab Emirates University, working on the research project investigating seismic assessment and retrofit of infilled concrete frame buildings, funded through the United Arab Emirates University research grant G00001603.
    [Show full text]
  • The Bhuj Earthquake of 26Th January 2001
    THE KASHMIR, PAKISTAN EARTHQUAKE OF 8 OCTOBER 2005 A FIELD REPORT BY EEFIT Kashmir Pakistan Earthquake of 8 October 2005 A FIELD REPORT BY EEFIT Dr Navin Peiris Dr Tiziana Rossetto Dr Paul Burton Mr Suqlain Mahmood Earthquake Engineering Field Investigation Team Institution of Structural Engineers 11 Upper Belgrave St London SW1X 8BH United Kingdom Tel: +44 (0)207 235 4535 Fax: +44 (0)207 235 4294 www.eefit.org.uk ©EEFIT 2008 July 2008 ISBN 978 1 906335 11 3 EEFIT gratefully acknowledges the support of its corporate members: Arup Group Ltd BGS Buro Happold Ltd CREA Consultants Gifford Consulting Engineers Ltd Halcrow Group Ltd Risk Management Solutions Sir Robert McAlpine Sellafield Ltd. EEFIT gratefully acknowledges Prof Robin Spence (University of Cambridge), Mr Antonios Pomonis (Risk Management Solutions) and Mr Alan Stewart (Jacobs Engineering) for reviewing the report. Contents 1 Introduction .................................................................................................................................................... 4 1.1 The Kashmir Earthquake ........................................................................................................................ 4 1.2 The EEFIT Mission’s Team Members .................................................................................................... 5 1.3 Damage in Neighbouring Countries ........................................................................................................ 6 1.4 The Social and Economic Significance of the Kashmir Earthquake
    [Show full text]