<<

FOR NUCLEAR APPLICATIONS

NUCLEAR TELEROBOTICS

INDUSTRIAL APPLICATIONS IN FRANCE

SAILING TO DEXTROUS TELE- « MANIPULATION »

PHILIPPE GARREC

ERF 2017 – EDIMBURGH 22-24 MARCH 2017 A favorable context in France leading to a steady activity in nuclear robotics

• France is producing about 80% of its electricity by nuclear power plants (EDF) • France recycles the nuclear fuel (AREVA) : La Hague plant is the principle user of (more than 500 MSM operational)

• The dismantling domain is a major field of application for telerobotics • A continuous long term collaboration between CEA and AREVA • Significant companies operating in the field of nuclear robotics: Getinge-La Calhène, ECA, Cybernetix, Comex, Haption..

• R&D CEA activity concerns the whole range of related technologies (rad-hard electronics and sensors, gamma/alpha camera, decontamination processes, real time dose rate estimation, rad-hard communication network

• The CEA supports the emergency intervention robotic group GIE INTRA (a partner of the equivalent German group KHG)

| 2 THE DEPLOYMENT OF A NEW GENERATION OF FORCE FEEDBACK TELEOPERATORS IN THE FRENCH NUCLEAR INDUSTRY SUSTAINS THE DEVELOPMENT OF ASSISTIVE WORKSHOP ON RANUF IROS 2015 - PHILIPPE GARREC

BASIC CONCEPTS OF MASTER-SLAVE TELEOPERATION

| 3 UNILATERAL COUPLING

Controller

MASTER ARM SLAVE ARM

End effector vision (direct/indirect) θ lM θ Sd M m θ Sm lS Position control F Operator S T= − K ( θ − ) Load S SSm S d (weight, contact, etc.) θθ = Sd M m

MASTER & SLAVE ARE 2 INDEPENDENT MECHANICALSYSTEMS

| 4 BILATERAL COUPLING EXTENDED SINGLE MECHANICAL Controller SYSTEM

SLAVE ARM MASTER ARM FM End effector vision (direct/indirect) lM

lS

Master position control Slave position control FS = − θ − Load T= − K ( θθ − ) TS K SS( S ) M MMm M d m d (weight, contact, etc.) θθ = θθ = S M Md S m d m

ANALOGY WITH ELASTIC COHESION FORCES IN A ROD

| 5 PERFORMANCE IMPROVEMENT 1

STATIC BALANCING

Operator

≡ − θ ≡ − θ Load Tg m master g cos master Tg m slave g cos slave master slave (weight, contact, etc.)

FS FM

mmaster g

mslave g

| 6 A NON LINEAR FORCE TRANSFER IS COMPROMISING JOINT TORQUE CONTROL :

Non linear spring

Non linear damper

Stick-slip (spatial for a multi-joint manipulator)

Detrimental to advanced guiding control (virtual mechanism) F = 0

F= k ∆ P Torque control

Torque control EVERYBODY WANTS A LINEAR JOINT TORQUE CONTROL !

| 7 FORCE TRANSFER IN THE ACTUATOR

REVERSIBLE MOTORING IRREVERSIBLE τ REGENERATING τ out out ω − i ω − i Transmissive quadrant Dissipative quadrant ρ −1 Dissipative quadrant ρ −1 R i R i

ω + ω + η −1 ρ i ρ i R i M M η −1i R η i η i M Low torque zone τ M f (obtained by prolongation of the 0 out characteristics) J τ τ J Transmissive quadrant in in 0 τ 0 τ Transmissive quadrant I f I f 0 in 0 in

ω − ω −

Dissipative quadrant Transmissive quadrant Dissipative quadrant ω + ω +

“Telerobotics research and development at CEA LIST” P. Garrec and F. Geffard and O. David and F-X Russotto and Y. Measson and Y. Perrot ANS EPRRSD - 13th Robotics & remote Systems for Hazardous Environments • 11th Emergency Preparedness & Response - Knoxville, TN, August 7-10, 2011

"Dry friction modeling in dynamic identification for manipulators: Theory and experiments," Kammerer, N.; Garrec, P., Mechatronics (ICM), 2013 IEEE International Conference | 8 FORCE TRANSFER LINEARITY ERROR IN ACTUATOR TRANSMISSION

τρ ρ  τ τ τ ≥, ( −1 −) + 2 − +  rin rI in I Dr in r 0 in ττ −  Linearity torque error : out out τ τ τ τ ≤ ≤ , 2 iτ rJin r in rI in r 0 in in max  − τ ρ τ  τ τ ≤, () −1 + 2  rin rJ in DI r in r 0 in

SERVO MANIPULATOR MA23 TYPICAL INDUSTRIAL MANIPULATOR 1,50 1,50

1,00 1,00

Linearity… 0,50 0,50

Lineari…

0,00 0,00 -1,0 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 -1,0 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

-0,50 -0,50

-1,00 -1,00

-1,50 -1,50

| 9 PERFORMANCE IMPROVEMENT 2

FRICTION COMPENSATION

Operator Load C= sign λθ(θ &) f + & (weight, contact, etc.) fslave slave slave slave C= sign λθ(θ &) f + & fmaster master master master FM FS

θ &master θ &slave = λθθ + Tf sign(& master) f master & master T= sign λθ(θ &) f + & master fslave slave slave slave Model based friction compensation (torque linearization)

Load (weight, contact, etc.)

FS

θ Local force feedback &slave

Active closed loop friction compensation (torque linearization) | 10 BACKDRIVABILITY VERSUS REVERSIBILITY (MECHANICALPROPERTY)

Mechanical type Behaviour (constructive property)

Reversible Backdrivable

Backdrivable Irreversible Self-locking if assisted (force closed loop)

| 11 KEY TECHNOLOGIES FOR NUCLEAR TELEROBOTICS

| 12 Full response for targeted systems • In/Out-doors mobile robots • In/Out-doors cranes • Inspection tools • Electric or hydraulic manipulators Validation for radioactive environments • From 1 kGy to 100 kGy • Fault-tolerance On sites since 1992 • Up-grading with recent electronic technologies • Hardening to specific environments (temperature, neutrons) • Adaptation to existing or new equipments (traveling cranes, cutting and soldering tools, ….)

| 13 CAMERAS DURCIES

• Camera Ermes TRL9 : Sphinx camera Series / VIZA PTZ / VIZA • Couleur • Résolution : 640x480 • Tenue : de 1,5 kGy à 2 MGy suivant modèle • Possibilité d’intégration dosimètre • Montage sur bras robotique ou fixe • Modèle submersible ( 40 m)

VZ-5.0E01-1000-C-LA-N-A-IP68(40m) model

VZ-2.0E01-1000-B-LB-N-A-IP68(40m) model SX-1.5E02-2002-1005-LA6.0E03-N-IP68(20m)-RD2 model

• LHERITIER Alcen : APPOLLON • Tenue : radiations > 100Mrads (1 Mrad/heure) • Immersion (6 bars)

| 14 Dismantling Life Cycle : To simulation, from concept up to task completion

Preparation Simulation Execution of the mission of the scenario

Scenario definition on Scenario qualification Supervision and the digital mock up Operator training operator assistance

Accessibility studies, Real-time simulation with haptics, Operator assistance and scenario dose rate evaluat°, task définit° interactive training Execution kinematics optimization Same content, context, and tools

| 15 VIRTUAL REALITY & I NTERACTIVE SIMULATION WORKS • Virtual prototyping : accessibility studies, assembly/disassembly on digital mock-up • Ergonomy studies : musculo-skeleton disorders diagnosis, task optimization • Robotics simulation / supervision : intervention scenario, assistance to cobotic solution design • Training of the operators

REAL -TIME MULTI -PHYSICS SOFTWARE (EXTENDED DYNAMIC ENGINE )

| 16 NUCLEAR TELEROBOTICS AT CEA LIST: INDUSTRIAL ACHIEVEMENTS AND R&D RESULTS

| 17 50 YEARS OF EXPERIENCE IN ROBOTICS

• Historical activity : Remote handling for nuclear industry

1970’s 1990’s computer assisted 2000’s Industrial transfer remote handling

Daily operations Intervention and Industrial hostile dismantling environment

| 18 TAO SOFTWARE CONTROLLER

Functions: • Force feedback teleoperation (« true » or proportionnal) • Trajectory controller • Joint or Cartesian control • Tool weight balancing • Virtual mechanisms • Adjustable homothetical speed and force ratios • Gripper tracking by camera • Continuous data recording • Graphic 3D supervision

TAO CONTROL

XM XM d d POSITION MULTILATERAL POSITION FORCE MASTER/SLAVE FORCE CONTROLLER CONTROLLER CONTROLLER XM XM m m

| 19 SUPERVISED CONTROLLER SCORE

| 20 ISO - TC85 - SC2 WG 24 - Remote handling devices for radioactive materials Promotion of a standard for telerobotics

Examples of up-to-date telerobotics systems

« Cold » zone « Hot » zone Emergency Emergency stop

Master device(s) control unit Low latency linklatency Low

Tuning, … 3D HMI

… Slave arm(s) ethernet »Cellule froide »Cellule haute activité

Functional scheme

XM d XM d CONTRÔLE CONTRÔLE CONTRÔLE BILATERAL POSITION POSITION MAITRE EFFORT EFFORT ESCLAVE

XM m XM m | 21 FORCE FEEDBACK MASTER ARMS

Virtuose 6D / MAT6D for teleoperation (2001) Ï replacing the MA23 (La Calhène) Virtuose 6D / MAT6D ß First arm using ball-screw and cable for torque amplification (patented)

ß Used in CEA’s laboratories and at AREVA a Hague plant (RX TAO et MT200 TAO)

Virtuose 6D Haptic (2002)

ß Torque amplification by capstan or Harmonic Drive

ß Sold worldwide

ß Used by major industrials

All products industrialized and commercialized by HAPTION™

Virtuose 6D Haptic

| 22 SHERPA – transporter (European TELEMAN program) Based on the hexapod telescopic legged transporter Odex 3 (Odetics, USA) Original tactile feet (CEA patent) Original algorithms for stair climbing and obstacle avoidance using reflex reactions First to be demonstrated in nuclear plants Transport of 200 kg on stairs in « loose » teleoperation (EDF Chooz-B, France in 1993 and CEA Fontenay-aux-Roses laboratory (early 1993) ENEL Trino in 1994)

| 23 EDF- PWR CHOOZ B - 1993

EXTENSIVE FIELD TESTS IN TWO NUCLEAR POWER PLANTS (1993 – 1994)

ENEL PWR TRINO - 1994

| 24 SHERPA 2 projet (CEA-EDF- TECHNICATOME) Ï1994- 1998

A compact hexapod (55cm width) able to transport 300 kg Deployment of a power foldable arm carrier Use of a compact industrial arm as a tool (Mitsubishi PA10) New telescopic leg mechanical design (patents)ouvelle technologie de jambe compacte et modulaire Bras porteur modulaire redondant (contournement des obstacles) Emport d’un outil de manipulation secondaire Technologie en partie exploitée sur le robot de maintenance de la chambre d’expérimentation du LMJ

| 25 Long Reach MANIPULATORS

• Long reach articulated arm (AIA) • CEA LIST design and developement (since 1995) • First introduction in the TORE SUPRA tokamak achieved in 2008 (restart of the installation the next day without « braking » the vacuum) • Applications forecasted at AREVA’s La Hague recycling plant

• Long reach telescopic arm • LMJ (Mega-Joule Laser) maintenance manipulator • Original design by CEA LIST (2004-2008) for the CEA DAM (CEA defense division) based on CEA LIST patents ( ÏSherpa 2 project) • Industrialization by Cybernetix in collaboration with CEA LIST • Operational (automatic plug-in of protective panels) in 2012

| 26 Long reach articulated arm (AIA) Real field test in the tokamak TORE SUPRA (2008) Operated at 120°C (200°C for degasing) and 10 -5 Pa Applications in tokamak and hot-cells (undergoing)

| 27 Long reach telescopic arm for the LMJ (Mega-Joule Laser)

100kg payload 12 m horizontal ext. 0,63m port diameter Collapses in a 6m mobile casing Centimetric hysteresis thanks to hyperstatic lighweight telescopic structure (high repeatability) Plug-in/out panels (50kg) automatically exploiting manipulator’s compliance

| 28 Dismantling – MAESTRO TAO Specifically developed 100kg payload hydraulic force feedback telerobot by CEA and IFREMER Industrialization with Cybernetix Applications in dismantling CEA’s laboratories (ongoing)

DISMANTLING WITH THE HYDRAULIC FORCE FEEDBACK TELEROBOT MAESTRO Y. Méasson, O. David, F.X. Russotto (CEA LIST), J.M. Idasiak (CEA, DEN), L. Facheris (Cybernétix) ANS EPRRSD - 13th Robotics & remote Systems for Hazardous Environments • 11th Emergency Preparedness & Response - Knoxville, TN, August 7-10, 2011

| 29 CYBERNETIX MAESTRO

| 30 Maintenance operations – RX TAO telerobot Industrial Stäubli RX robot adapted for force feedback teleoperation (hardened sensor and multiplexer) 5 major interventions since 2005 in La Hague (dissolver wheel)

« TAO2000 V2 computer-assisted force feedback telemanipulators used as maintenance and production tools at the AREVA NC–La Hague fuel recycling plant » Franck Geffard1, Philippe Garrec1, Gérard Piolain2, Marie-Anne Brudieu3, Jean-François Thro3, Alain Coudray4 and Eric Lelann4, Journal of Field Robotics, Special Issue: Applied Robotics for the Power Industry , Volume 29, Issue 1, pages 161–174, January/February 2012

| 31 TE Ω600 AREVA TEMIS

• Force feedback telerobotic system • Hardened up to 1 MGy • Payload 600N • Generic technology for the whole Stäubli serie • Two level of force sensivity

| 32 First functional prototype at CEA 2004 Hot-cell telescopic teleoperator MT200 TAO An ambitious tight pluri-annual collaboration between the R&D (CEA) and the user (AREVA – La Hague) System replacing a standard telescopic mechanical master slave (4 m extension ; 20 kg capacity) Slave actuator unit with force-vented motors (high transparency without force sensor) Master arm Virtuose 6D TAO 2000 software : bilateral coupling, virtual guides, Validation in AREVA Hague hot-cell automatic robotic modes 2011

« TAO2000 V2 computer-assisted force feedback telemanipulators used as maintenance and production tools at the AREVA NC–La Hague fuel recycling plant » Franck Geffard1, Philippe Garrec1, Gérard Piolain2, Marie-Anne Brudieu3, Jean- François Thro3, Alain Coudray4 and Eric Lelann4, Journal of Field Robotics, Special Issue: Applied Robotics for the Power Industry , Volume 29, Issue 1, pages 161–174, January/February 2012

| 33 | 34 OPERATIONAL RESULTS

• Users: 90% have appropriated the TAO system • Operating gain in efficiency (time related to a work) • 60 to 65% through increase in operating time (less tiredness) • 20% through more accurate movements • The slave arm has lasted 5 times longer than with a conventional MT200

| 35 TELEOPERATED « MANUAL » WELDING SYSTEM

TIG torch mounted on a robot Industrial dextrous industrial manipulator (Yaskawa SIA 10, 7 joints)

Teleoperation with 2 distinct haptic interfaces Bras Virtuose arm (Haption) 3D mouse Space mouse (souris 3D)

Contrôle Supervisé Utilisation de SCORE pour les assistances opérateur

| 36 DEXTEROUS MANIPULATION FOR DAGILEEXTEROUS MANUFACTURING HANDS (SLAVE )

HAPTIC MASTER EFFECTOR (HIGH BANDWIDTH FORCE TRANSFER )

| 37 COLLABORATIVE ROBOTICS

Assistive – Start-up ISYBOT™ 3 to 6 dof force controlled manipulator (without force sensor) Screw-Cable actuator (SCS) Playback mode and collaborative mode (force-position control) Balancing/Virtual guides/ Force amplification

Force controlled anthropomorphic robotic hand (HANDLE) Multi-finger Screw-cable actuators Robot force capability Proportional force control (without force sensor) Force controlled, versatile underactuated gripper - FP7 RoMans project 3 underactuated fingers Force control through mechanical reversibility (without force sensor)

| 38 H2020 ROMANS ROBOTIC MANIPULATION FOR NUCLEAR SORT AND SEGREGATION

| 39 BILATERAL CONTROL OF AN INDUSTRIAL COLLABORATIVE ROBOT ISYBOT: A COLLABORATIVE ROBOT Highly transparent (linear) actuators (low reflected friction and inertia) Force control/Hybrid control tasks Payload: 8-12 kg

Functions Torque control without sensor Intuitive programming by demonstration

Safety

Intrinsically safe manipulator (open loop force control) Contact detection using a dynamic model based on input motor torque control (<30N) Cohabitation within the workspace

| 40 DEXTROUS MASTER HANDS

MANDARIN Haptic hand interface Designed for manual interaction in a RV setting High transparency and natural movements

Functions: 4 finger force feedback (13 ddl) Adaptable to various size of hands Maximum force: 14 N (5N continuous) Ethernet communication Compatible tracking (ART)

| 41 MANIPULATION: ROBOTIC (SLAVE) HANDS

Objectives: ABILIS Hand Anthropomorphic architectures

Fonctionnalités: 4 / 5 fingers (13 to 24 ddl) Dexterity through force control Force sensivity : 0,1 N without force/torque sensor

Robust hand: 3 fingers (4 actuators) HANDLE

| 42 CHALLENGES FOR A DEXTROUS TELEMANIPULATION

• Hand-to-hand dextrous telemanipulation: a true necessity

• Current nuclear master slave performances are limited by the use of master lever (1dof) and slave parallel jaw gripper (a very poor force transmitter compared to mechanical transmissions) • A quickly rising needs: • Applications in glovebox for nuclear industry (laboratories, dismantling, Mixed OXides fuel production) • Applications in insulators (pharmacy, chemistry, biology) • A serious challenge: high bandwidth force transfer (motor to fingertip) combined with a rugged design

• Ultra-linear open loop torque amplification/transmission • Study of “augmented” tactile force-feedback with end effector force sensor • Sealed actuators compatible with demanding force transfer requirement • Minimalistic design for a simplified slave effector : reduced number of fingers and dof/finger • Design an ergonomic/intuitive master effector

| 43 Commissariat à l’énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019