Understanding the Nearby Star-Forming Universe with JWST

Total Page:16

File Type:pdf, Size:1020Kb

Understanding the Nearby Star-Forming Universe with JWST Star formation in the Local Group Guido De Marchi (ESA), Nino Panagia (STScI) Elena Sabbi (STScI), Giacomo Beccari (ESO) and NIRSpec GTO team !1 Motivation • Solar mass stars account for most of the star formation in galaxies • Low mass stars can form in small clouds as well as in big ones, and form on longer timescale than massive stars • Need to probe diverse environments, Magellanic Clouds crucial for metallicity • At redshift z~2, environment was similar to Magellanic Clouds !2 PMS stars: How to find them? Low-mass stars grow in mass over time through accretion of matter from a circumstellar disc (e.g. Lynden-Bell & Pringle 1974; Bertout 1989) Typical signature: UV, IR and Hα excess emission How to measure it? Need spectroscopy Well calibrated relationship between L(Hα) and Lacc Spectroscopic search signs of accretion !4 Until JWST only feasible in the Milky Way In the meanwhile… Powerful method combines HST broad- (V, I ) and narrow- band (Hα) photometry and allows us to: • identify all objects with Hα excess emission • derive accretion luminosity and mass accretion rates • for hundreds of stars simultaneously De Marchi, Panagia & Romaniello 2010, ApJ, 715, 1 Beccari, Spezzi, De Marchi et al. 2010, ApJ, 720, 1108 De Marchi, Panagia & Sabbi 2011, ApJ, 740, 10 De Marchi, Panagia, Romaniello et al. 2011, ApJ, 740, 11 Spezzi, De Marchi, Panagia et al. 2012, MNRAS, 421, 78 De Marchi, Beccari & Panagia 2013, ApJ, 775, 68 Beccari, De Marchi, Panagia et al. 2015, A&A, 574, A44 De Marchi, Panagia & Beccari 2017, ApJ, 846, 110 Biazzo, Beccari, De Marchi, Panagia 2019, ApJ, 875, 51 !6 Actively accreting PMS stars • These PMS stars are discovered from broad-band (V, I) and narrow-band (Hα) photometry and show strong Hα excess emission due to ongoing accretion De Marchi et al. 2011a, 2017 De Marchi et al. 2011b, 2011c, 2013 gives L(Hα) 30 Dor (LMC) NGC 346 (SMC) • In massive young clusters in the local group thousands PMS stars continue to accrete much longer than the few Myr typical of nearby associations !7 Hodge 301 HTTP (Sabbi et al. 2014, 2016) Accretion rate and metallicity 1 2 3 20000 NGC 2060 4 5 6 Y 10000 15000 7 R 136 8 9 5000 ~ 200 pc 5000 10000 15000 20000 25000 30000 X Hα photometry De Marchi, Panagia & Beccari 2017 R136 Cluster within r < 20 pc ~1,000 stars !9 Hα photometry De Marchi, Panagia, Sabbi, et al. (in prep) Tarantula Nebula within r < 120 pc ~14,000 stars !10 PMS stars in the Tarantula De Marchi, Panagia, Sabbi, et al. (in prep) Tarantula !11 11 14,000 and counting… De Marchi, Panagia, Sabbi, et al. (in prep) Tarantula 2 Myr 4 8 AV=1 16 32 !12 Reddening vector in all bands De Marchi et al. 2016 UV U V I J H !13 Extinction law at optical and infrared • Not just a few lines of sight, but thousands! • Additional grey component, excess of big grains De Marchi & Panagia 2019, 2014; De Marchi et al. 2016 Galactic ISM !14 11 14,000 and counting… De Marchi, Panagia, Sabbi, et al. (in prep) Tarantula 2 Myr 4 8 AV=1 16 32 !15 12 14,000 and counting… De Marchi, Panagia, Sabbi, et al. (in prep) Tarantula < 8 Myr > 16 Myr !16 N E H301 R136 NGC 2060 N E < 8 Myr N E > 16 Myr Multiple generations ubiquitous De Marchi et al. 2013 De Marchi et al. 2011b NGC602 in SMC NGC346 in SMC • Multi-generation pattern always seen, Δt ~ 10 Myr • Younger PMS stars always more concentrated • Older PMS stars always more widely distributed !18 Accretion evolution with time De Marchi, Panagia, Beccari 2017 R 136 !19 Accretion evolution with time Sicilia-Aguilar et al. 2006; 2010 Hartmann et al. 1998 !20 Accretion evolution with time De Marchi, Panagia, Beccari 2017 R 136 !21 Accretion evolution with time R 136 De Marchi, Panagia, Beccari 2017 !22 Accretion evolution with time R 136 De Marchi, Panagia, Beccari 2017 !22 Accretion rate and metallicity De Marchi, Panagia & Beccari 2017 SMC LMC MW LH 95 !23 N E !25 Hα variability NE field NW field 10 σ V SE field SW field Hα variability De Marchi, Panagia, Sabbi (in prep) Stars with 5 Hα epochs • < 8 Myr • 8–16 Myr • > 16 Myr fluctuation [mag] α H bright faint Hα brightness [mag] !26 Hα variability < 8 Myr > 16 Myr !27 Richert, Lyra & Kuchner 2017 Hα variability: a Poisson toy-model De Marchi, Panagia, Sabbi (in prep) • < 8 Myr • 8–16 Myr • > 16 Myr fluctuation [mag] α H Hα brightness [mag] !29 Hα variability: a Poisson toy-model De Marchi, Panagia, Sabbi (in prep) Average accretion in Mirandas per week • < 8 Myr • 8–16 Myr • > 16 Myr 1 fluctuation [mag] α H 4 20 64 –11 Miranda: ~ 5 x 10 M◉ Hα brightness [mag] !29 6 Looking ahead with JWST NGC 3603 (MW) 30 Dor (LMC) NGC 346 (SMC) N N E E Spectra of ~100 stars per field, easy with NIRSpec: R~1000–2700, 1.7 – 3.0 μm, include Paα, Brβ, Brγ Photometry of thousands of stars in Paα, Brα with NIRCam!30 Rich sample of younger and older PMS stars 7 Fitting targets in microshutters 7 13 Observations: spectral features Pa α KAB~22 Br γ Br β G235M (R~1000) for line luminosity G235H (R~2700) for gas kinematics !32 Coordinated parallels NIRCam will cover fields about 7.5 arcmin from NIRSpec, still plenty of star formation going on in those regions! Broad- and narrow-band (Pa α, Br α) imaging to identify PMS stars that are accreting. Same as we did with HST Hα photometry. Pa α Br α F277W F150W F182M F430M !33 Summary • Multi-generation patterns common in all regions, Δt ~ 10 Myr, younger generations are always more concentrated • Extinction in starburst cluster is temporarily altered by SNe-II for Δt ~ 50 – 100 Myr after star formation episode • Mass accretion rate depends on metallicity, at low metallicity stars accrete more and longer, sizeable fraction of stellar mass accreted during PMS phase • Accretion process is discrete and made up of a number of clumps all with a similar mass (~ Miranda) !34 www.starformation.eu.
Recommended publications
  • A Radio Continuum Study of the Magellanic Clouds
    ASTRONOMY & ASTROPHYSICS JUNE II 1998, PAGE 421 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 130, 421–440 (1998) A radio continuum study of the Magellanic Clouds VII. Discrete radio sources in the Magellanic Clouds? M.D. Filipovi´c1,2,3,R.F.Haynes3,1,G.L.White1, and P.A. Jones1 1 University of Western Sydney, Nepean, P.O. Box 10, Kingswood, NSW 2747, Australia e-mail: [email protected]; [email protected]; [email protected] 2 Max-Planck-Institut f¨ur extraterrestrische Physik, Giessenbachstraße, D-85740 Garching, Germany 3 Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, NSW 2121, Australia e-mail: mfi[email protected]; [email protected] Received November 28; accepted December 24, 1997 Abstract. We present a study of discrete radio sources in 1. Radio-continuum surveys of the Magellanic Clouds the Magellanic Clouds (MCs) using the latest large-scale radio surveys made with the Parkes radio telescope be- During the last few decades, the Magellanic Clouds (MCs) tween 1.4 and 8.55 GHz. These surveys achieved higher have been investigated over almost all of the electro- sensitivity then previous surveys done with the Parkes magnetic spectrum. Radio-continuum investigations of the telescope and so the number of discrete radio sources de- MCs started with the detection by Mills & Little (1953). tected towards the MCs has increased by factor of five. Since that time, numerous radio surveys have been un- Also, we have obtained improved positions, flux densities dertaken. These include: Mills (1955) at 85.5 MHz; Mills and radio spectral indices for all of these sources.
    [Show full text]
  • Annual Report 2005
    Max Planck Institute t für Astron itu o st m n ie -I k H c e n id la e l P b - e x r a g M M g for Astronomy a r x e b P l la e n id The Max Planck Society c e k H In y s m titu no Heidelberg-Königstuhl te for Astro The Max Planck Society for the Promotion of Sciences was founded in 1948. It operates at present 88 Institutes and other facilities dedicated to basic and applied research. With an annual budget of around 1.4 billion € in the year 2005, the Max Planck Society has about 12 400 employees, of which 4300 are scientists. In addition, annually about 11000 junior and visiting scientists are working at the Institutes of the Max Planck Society. The goal of the Max Planck Society is to promote centers of excellence at the fore- front of the international scientific research. To this end, the Institutes of the Society are equipped with adequate tools and put into the hands of outstanding scientists, who Annual Report have a high degree of autonomy in their scientific work. 2005 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. 2005 Public Relations Office Hofgartenstr. 8 80539 München Tel.: 089/2108-1275 or -1277 Annual Report Fax: 089/2108-1207 Internet: www.mpg.de Max Planck Institute for Astronomie K 4242 K 4243 Dossenheim B 3 D o s s E 35 e n h e N i eckar A5 m e r L a n d L 531 s t r M a a ß nn e he im B e e r r S t tr a a - K 9700 ß B e e n z - S t r a ß e Ziegelhausen Wieblingen Handschuhsheim K 9702 St eu b A656 e n s t B 37 r a E 35 ß e B e In de A5 r r N l kar ec i c M Ne k K 9702 n e a Ruprecht-Karls- ß lierb rh
    [Show full text]
  • The Hubble Tarantula Treasury Project
    Mem. S.A.It. Vol. 89, 95 c SAIt 2018 Memorie della The Hubble Tarantula Treasury Project E. Sabbi and the HTTP Team Space Telescope Science Institute – 3700 San Martin Dr. 21218, Baltimore, MD USA e-mail: [email protected] Abstract. We present results from the Hubble Tarantula Treasury Project (HTTP), a Hubble Space Telescope panchromatic survey (from the near UV to the near IR) of the entire 30 Doradus region down to the sub-solar (∼ 0:5 M ) mass regime. The survey was done using the Wide Field Camera 3 and the Advanced Camera for Surveys in parallel. HTTP provides the first rich and statistically significant sample of intermediate- and low-mass pre-main se- quence candidates and allows us to trace how star formation has been developing through the region. We used synthetic color-magnitude diagrams (CMDs) to infer the star formation his- tory of the main clusters in the Tarantula Nebula, while the analysis of the pre-main sequence spatial distribution highlights the dual role of stellar feedback in quenching and triggering star formation on the giant Hii region scale. Key words. galaxies: star clusters: individual (30 Doradus, NGC2070, NGC2060, Hodge 301) – Magellanic Clouds – stars: formation – stars: massive – stars: pre-main sequence stars: evo- lution - stars: massive - stars: pre-main sequence 1. Introduction 1:3 × 10−8 erg cm−2 s−1, Kennicutt & Hodge 1986). Located in the Large Magellanic Cloud The Tarantula Nebula (also known as 30 (LMC), 30 Dor is the closest extragalactic gi- Doradus, hereafter ”30 Dor”) is one of the ant Hii region, and is comparable in size (∼ most famous objects in astronomy.
    [Show full text]
  • Star Cluster Physics and Stellar Population Synthesis Beyond the Local Group’S “Comfort Zone”
    Star cluster physics and stellar population synthesis beyond the Local Group’s “comfort zone” Richard de Grijs | 何锐思 Kavli Institute for Astronomy and Astrophysics Peking University, China; 2017 Erskine Fellow, University of Canterbury, NZ Key questions for TMT How does star formation occur, proceed, and how is it triggered? What is the importance of the interactions of newly born stars with their environment? How does the resulting IMF inform our understanding of star formation as a function of environment? (if at all!) What range of environments can we probe with TMT ? Galactic centres Starburst clusters (e.g., Arches) Low-metallicity environments; different stellar and gas densities Giant elliptical versus dwarf galaxies How far down the IMF can we go? = Kroupa Universal or not? Clustered star formation Massive stars rarely form in isolation: most stars > 0.5 M¤ form in star clusters (OB/TT to YMCs) (Massive) star clusters are records of episodes of higher-than- average star formation in their host galaxies The massive stars are the primary source of heavy elements injected into the ISM (as well as the IGM) Need large aperture and diffraction-limited spatial resolution in the optical and near- to mid-IR to probe to low(er) masses ALMA provides superb spatial resolution at complementary, dust- penetrating (sub)mm wavelengths – probe into the cores of the most active, dust-enshrouded star-forming regions With TMT and ALMA, we will be able to study the early evolution and the transformation from the youngest star-forming, cluster-like
    [Show full text]
  • The Tarantula – Revealed by X-Rays (T-Rex) a Definitive Chandra
    TheTarantula{ Revealed byX-rays (T-ReX) A Definitive Chandra Investigation of 30 Doradus Our first impressions of spiral and irregular galaxies are defined by massive star-forming regions (MSFRs), signposts marking spiral arms, bars, and starbursts. They remind us that galaxies really are evolving, churned by the continuous injection of energy and processed material. MSFRs offer us a microcosm of starburst astrophysics, where winds from O and Wolf-Rayet (WR) stars combine with supernovae to carve up the neutral medium from which they formed, both triggering and suppressing new generations of stars. With X-ray observations we see the stars themselves|the engines that shape the larger view of a galaxy|along with the hot, shocked ISM created by massive star feedback, which in turn fills the superbubbles that define starburst clusters (Fig. 1). We propose the 2 Ms Chandra/ACIS-I X-ray Visionary Project T-ReX, an intensive study of 30 Doradus (The Tarantula Nebula) in the LMC, the most powerful MSFR in the Local Group. To date Chandra has invested just 114 ks in this iconic target|proportionally far less than other premier observatories (e.g. HST, VLT, Spitzer, VISTA)|revealing only the most massive stars and large-scale diffuse structures. This very deep observation is essential to engage the great power of Chandra's unparalleled spatial resolution, a unique resource that will remain unmatched for another decade. T-ReX will reveal the X-ray properties of hundreds of 30 Dor's low-metallicity massive stars [1], thousands of lower-mass pre-main sequence (pre-MS) stars that record its star formation history [2], and parsec-scale shocks from winds and supernovae that are shredding its ISM [3,4].
    [Show full text]
  • The VLT-FLAMES Tarantula Survey
    Astronomy & Astrophysics manuscript no. msOrevfinalcorr c ESO 2019 May 8, 2019 The VLT-FLAMES Tarantula Survey XIV. The O-Type Stellar Content of 30 Doradus N. R. Walborn1, H. Sana1,2, S. Sim´on-D´ıaz3,4, J. Ma´ız Apell´aniz5, W. D. Taylor6,7, C. J. Evans7, N. Markova8, D. J. Lennon9, and A. de Koter2,10 1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2 Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands 3 Instituto de Astrof´ısica de Canarias, E-38200 La Laguna, Tenerife, Spain 4 Departamento de Astrof´ısica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain 5 Instituto de Astrof´ısica de Andaluc´ıa-CSIC, Glorieta de la Astronom´ıa s/n, E-18008 Granada, Spain 6 Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ, UK 7 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 8 Institute of Astronomy, National Astronomical Observatory, Bulgarian Academy of Sciences, PO Box 136, 4700 Smoljan, Bulgaria 9 European Space Agency, European Space Astronomy Centre, Camino Bajo del Castillo s/n, Urbanizaci´on Villafranca del Castillo, E-28691 Villanueva de la Ca˜nada, Madrid, Spain 10 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium ABSTRACT Detailed spectral classifications are presented for 352 O–B0 stars in the VLT-FLAMES Tarantula Survey ESO Large Programme, of which 213 O-type are judged of sufficiently high quality for further morphological analysis.
    [Show full text]
  • The R136 Star Cluster Dissected with Hubble Space Telescope/STIS. II
    This is a repository copy of The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/166782/ Version: Accepted Version Article: Bestenlehner, J.M. orcid.org/0000-0002-0859-5139, Crowther, P.A., Caballero-Nieves, S.M. et al. (11 more authors) (2020) The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136. Monthly Notices of the Royal Astronomical Society. ISSN 0035-8711 https://doi.org/10.1093/mnras/staa2801 This is a pre-copyedited, author-produced version of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record [Joachim M Bestenlehner, Paul A Crowther, Saida M Caballero-Nieves, Fabian R N Schneider, Sergio Simón-Díaz, Sarah A Brands, Alex de Koter, Götz Gräfener, Artemio Herrero, Norbert Langer, Daniel J Lennon, Jesus Maíz Apellániz, Joachim Puls, Jorick S Vink, The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136, Monthly Notices of the Royal Astronomical Society, , staa2801] is available online at: https://doi.org/10.1093/mnras/staa2801 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version.
    [Show full text]
  • THE MAGELLANIC CLOUDS NEWSLETTER an Electronic Publication Dedicated to the Magellanic Clouds, and Astrophysical Phenomena Therein
    THE MAGELLANIC CLOUDS NEWSLETTER An electronic publication dedicated to the Magellanic Clouds, and astrophysical phenomena therein No. 163 — 3 February 2020 https://www.astro.keele.ac.uk/MCnews Editor: Jacco van Loon Figure 1: Amateur deep exposures revealing low surface brightness structures around the Magellanic Clouds and in the foreground Milky Way (A), with the SMC shown in detail (B) and with an intensity scale highlighting the faintest emission (C). See the review article by David Mart´ınez-Delgado posted in this issue. 1 Editorial Dear Colleagues, It is my pleasure to present you the 163rd issue of the Magellanic Clouds Newsletter. The spectacular pictures on the cover were taken by amateurs, showing how they can make unique contributions to mapping low surface brightness structures. David Mart´ınez-Delgado (at Heidelberg), himself an exquisite deep imager, has been an ambassador for amateur–professional collaboration for a while now, and rightly so. See also his review article posted towards the back of the Newsletter. There’s a very interesting meeting being organised in Marseille in July, on dust and gas in galaxies. The next issue is planned to be distributed on the 1st of April. Editorially Yours, Jacco van Loon 2 Refereed Journal Papers On the wind accretion model of GX301-2 Ali Taani1, Shigeyuki Karino2, Liming Song3, Mohammad Mardini4,5, Mashhoor Al-Wardat6, Ahmad Abushattal7, Awni Khasawneh8 and Hamid Al-Naimiy9 1Physics Department, Faculty of Science, Al-Balqa Applied University, 19117 Salt, Jordan 2University, Department
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • The Sub-Solar Initial Mass Function in the Large Magellanic Cloud† Dimitrios A
    The Magellanic System: Stars, Gas, and Galaxies Proceedings IAU Symposium No. 256, 2008 c 2009 International Astronomical Union Jacco Th. van Loon & Joana M. Oliveira, eds. doi:10.1017/S1743921308028524 The sub-solar initial mass function in the Large Magellanic Cloud† Dimitrios A. Gouliermis Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany email: [email protected] Abstract. The Magellanic Clouds offer a unique variety of star forming regions seen as bright nebulae of ionized gas, related to bright young stellar associations. Nowadays, observations with the high resolving efficiency of the Hubble Space Telescope allow the detection of the faintest infant stars, and a more complete picture of clustered star formation in our dwarf neighbors has emerged. I present results from our studies of the Magellanic Clouds, with emphasis in the young low-mass pre-main sequence populations. Our data include imaging with the Advanced Camera for Surveys of the association LH 95 in the Large Magellanic Cloud, the deepest observations ever taken with HST of this galaxy. I discuss our findings in terms of the initial mass function, which we constructed with an unprecedented completeness down to the sub-solar regime, as the outcome of star formation in the low-metallicity environment of the LMC. Keywords. Magellanic Clouds, galaxies: star clusters, open clusters and associations: individual (NGC 346, NGC 602, LH 52, LH 95), stars: evolution, stars: pre–main-sequence, stars: luminosity function, mass function 1. Introduction The conversion of gas to stars is determined by the star formation process, the outcome of which are stars with a variety of masses.
    [Show full text]
  • The VLT FLAMES Tarantula Survey
    Astronomical Science The VLT FLAMES Tarantula Survey Chris Evans1 7 School of Physics, University of Exeter, high quality survey of extragalactic William Taylor2 United Kingdom massive stars ever assembled, and Hugues Sana3 8 ESO is already providing exciting new Vincent Hénault-Brunet2 9 Harvard–Smithsonian Center for Astro­ insights into their evolution, multiplicity Tullio Bagnoli3 physics, Cambridge, USA and formation. Nate Bastian4 10 Department of Astronomy, University of Joachim Bestenlehner5 Vienna, Austria Alceste Bonanos6 11 Argelander­Institut für Astronomie der Massive stars and their descendants Eli Bressert7, 8, 9 Universität Bonn, Germany dominate the dynamics and chemical Ines Brott10 12 Department of Physics and Astronomy, enrichment of young star­forming gal­ Michael Campbell2 The Open University, Milton Keynes, axies, through their intense winds, radia­ Matteo Cantiello11 United Kingdom tion fields and dramatic deaths as core- Giovanni Carraro8 13 Departamento de Astronomia, Univer­ collapse supernovae. An overarching Simon Clark12 sidad de Chile, Santiago, Chile goal for studies of stellar evolution and Edgardo Costa13 14 Department. of Physics & Astronomy, resolved stellar populations is to develop Paul Crowther14 University of Sheffield, United Kingdom realistic tools to analyse integrated­light Alex de Koter3, 15 15 University of Utrecht, the Netherlands observations of distant star clusters Selma de Mink16, 17 16 Space Telescope Science Institute, and galaxies; if we can understand the Emile Doran14 Baltimore, USA properties and behaviour of the stars Philip Dufton18 17 Hubble Fellow on our own doorstep, we can be more Paul Dunstall18 18 Department of Physics & Astronomy, confident of an accurate interpretation of Miriam Garcia19, 20 Queen’s University Belfast, Northern unresolved populations far away.
    [Show full text]
  • THE MAGELLANIC CLOUDS NEWSLETTER an Electronic Publication Dedicated to the Magellanic Clouds, and Astrophysical Phenomena Therein
    THE MAGELLANIC CLOUDS NEWSLETTER An electronic publication dedicated to the Magellanic Clouds, and astrophysical phenomena therein No. 98 | 1 April 2009 http://www.astro.keele.ac.uk/MCnews Editor: Jacco van Loon Editorial Dear Colleagues, It is my pleasure to present you the 98th issue of the Magellanic Clouds Newsletter. There is lots to entertain you, from galactic structure and initial mass functions, star clusters, variable stars and X-ray sources, to dust from supernovae and evolved stars | as well as a re-examination of my favourite star (besides the Sun), WOH G64. The next issue will be distributed on the 7th of June 2009; the deadline for contributions is the 6th of June. Editorially Yours, Jacco van Loon 1 Refereed Journal Papers The Optical Gravitational Lensing Experiment. OGLE-III Photometric Maps of the Small Magellanic Cloud A. Udalski1, I. Soszynski¶ 1, M.K. Szymanski¶ 1, M. Kubiak1, G. Pietrzynski¶ 1;2, LÃ . Wyrzykowski3, O. Szewczyk2, K. Ulaczyk1 and R. Poleski1 1Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland 2Universidad de Concepci¶on, Departamento de Fisica, Casilla 160{C, Concepci¶on, Chile 3Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK We present OGLE-III Photometric Maps of the Small Magellanic Cloud. They contain precise, calibrated VI pho- tometry of about 6.2 million stars from 41 OGLE-III ¯elds in the SMC observed regularly in the years 2001{2008 and covering about 14 square degrees in the sky. Also precise astrometry of these objects is provided. One of the ¯elds, SMC140, is centered on the 47 Tucanae Galactic globular cluster providing unique data on this object.
    [Show full text]