Approved Street Trees
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Acorn Size on the Seedling Growth of Shumard Oak, Quercus Shumardi/, Buckl
EFFECT OF ACORN SIZE ON THE SEEDLING GROWTH OF SHUMARD OAK, QUERCUS SHUMARDII, BUCKL. By PREMKUMAR THONDIKKATTIL Bachelor of Science University of Calicut Calicut, Kerala, India 1974 Master of Science University of Calicut Calicut. Kerals, India 1976 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1999 EFFECT OF ACORN SIZE ON THE SEEDLING GROWTH OF SHUMARD OAK, QUERCUS SHUMARDfI, BUCKL. Thesis Approved: ¥~Thesis ad VI er ~1W~ oanot the Graduate College ii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my major adviser, Dr. Stephen W. Hallgren, Associate Professor, Department of Forestry, for his excellent guidance, constructive criticism, understanding, inspiration, support, and above all, his friendly approach throughout. I would also like to extend my sincere thanks to my other graduate committee members, Dr. Robert F. Wittwer, Professor, Department of Forestry, Dr. Janet C. Cole, Professor, and Dr. Niels O. Maness, Associate Professor, Department of Horticulture, for their kind help, understanding and invaluable suggestions. I am extremely grateful to Mr. Greg Huffman, Nursery Superintendent, and other employees of Forest Regeneration Center (FRC), Washington. OK for providing all the facilities and arrangements for conducting the experiment. My special thanks goes to Mr. David Porterfield, FRC Specialist, who initially suggested the problem of variability experienced among Shumard oak seedlings in the nursery. I also wish to thank the Oklahoma Mesonet for providing climatological data for the period under study. I am very pleased to mention the name of Dr. Mark E. -
Department of Planning and Zoning
Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only -
Recommended Trees for Winnetka
RECOMMENDED TREES FOR WINNETKA SHADE TREES Common_Name Scientific_Name Ohio Buckeye Acer galbra Miyabe Maple Acer miyabei Black Maple Acer nigrum Norway Maple Acer plantanoides v. ___ Sugar Maple (many cultivars) Acer saccharum Shangtung Maple Acer truncatum Autumn Blaze or Marmo Maple Acer x freemanii Red Horsechestnut Aesculus x carnea 'Briotii' Horsechestnut Aesulus hippocastanum Alder Alnus glutinosa Yellowwood Caldrastis lutea Upright European Hornbeam Carpinus betulus “Fastigata” American Hornbeam Carpinus carolinians Hickory Carya ovata Catalpa Catalpa speciosa Hackberry Celtis occidentalis Katsuratree Cercidiphyllum japonicum Turkish Filbert Corylus colurna American Beech Fagus grandifolia Green Beech Fagus sylvatica European Beech Fagus sylvatica Ginkgo Ginkgo biloba Thornless Honeylocust Gleditsia triacanthos inermis Kentucky Coffeetree Gymnocladus dioica Goldenraintree Koelreuteria paniculata Sweetgum Liquidambar styraciflua Tulip Tree Liriodendron tulipfera Black gum, Tupelo Liriodendron tulipfera Hophornbeam Ostrya virginiana Corktree Phellodendron amurense Exclamation Plantree Plantanus x aceerifolia Quaking Aspen Populus tremuloides Swamp White Oak Quercus bicolor Shingle Oak Quercus imbricaria Bur Oak Quercus macrocarpa Chinkapin Oak Quercus muehlenbergii English Oak Quercus robur Red Oak Quercus rubra Schumard Oak Quercus shumardii Black Oak Quercus velutina May 2015 SHADE TREES Common_Name Scientific_Name Sassafras Sassafras albidum American Linden Tilia Americana Littleleaf Linden (many cultivars) Tilia cordata Silver -
Whole-Tree Silvic Identifications and the Microsatellite Genetic Structure of a Red Oak Species Complex in an Indiana Old-Growth Forest
Color profile: Generic CMYK printer profile Composite Default screen 2228 Whole-tree silvic identifications and the microsatellite genetic structure of a red oak species complex in an Indiana old-growth forest Preston R. Aldrich, George R. Parker, Charles H. Michler, and Jeanne Romero-Severson Abstract: The red oaks (Quercus section Lobatae) include important timber species, but we know little about their gene pools. Red oak species can be difficult to identify, possibly because of extensive interspecific hybridization, al- though most evidence of this is morphological. We used 15 microsatellite loci to examine the genetic composition of a red oak community in 20.6 ha of an Indiana old-growth forest. The community included northern red oak (Quercus rubra L.), Shumard oak (Quercus shumardii Buckl.), and pin oak (Quercus palustris Muenchh.). Species were identi- fied using whole-tree silvic characters, the approach most often implemented by foresters. We found high genetic diver- sity within species but limited genetic differences between species. Phenetic clustering showed that Q. rubra and Q. shumardii were more genetically similar than either was to Q. palustris, but a neighbor-joining tree revealed that individuals of the different species did not resolve into single-species clusters. We identified four mixed-species subpopulations using Structure, a computer program based on Monte Carlo simulation. The three largest groups are consistent with the following biological interpretations: (i) pure Q. rubra,(ii) Q. rubra, Q. shumardii, and their hy- brids, and (iii) Q. rubra, Q. shumardii, Q. palustris, and their hybrids. We discuss the implications of these findings for the whole-tree silvic approach to selection and for management of the red oak gene pool. -
Some Native Hill Country Trees Other Than Oaks
Some Native Hill Country Trees Other Than Oaks Several weeks ago I wrote about the Hill Country oaks in this column. There are, however a number of common, large, native trees that are not oaks. Here are some of them. Bald cypress ( Taxodium distichum ) is common along the banks of the Guadalupe and its tributaries as well as many other streams in the Hill Country. It is unusual for a conifer (cone-bearing) tree to be deciduous (loses its leaves in the winter) which is why it is called a bald cypress. These trees were highly prized for the durability of the wood for making shingles, which led to the settlement of Kerrville. They are fast growing, and generally the largest trees in the Hill Country. Cedar elm ( Ulmus crassifolia ) is an elm with very small, stiff, rough leaves. It is common throughout the Hill Country where it appears to be equally at home on limestone soils or acidic soils. It flowers and sets seed in late summer, which is unusual, and, because not much is blooming then, it attracts many native bees when flowering. Its leaves turn yellow in the fall. Two other species of elms grow in the Hill Country, although they are not nearly as common as cedar elms. American elm ( Ulmus americana ) and Slippery elm ( Ulmus rubra ) are both large trees with large leaves and are usually found in riparian areas. Escarpment black cherry ( Prunus serotina var. eximia ) is a Hill Country native cherry with thin, soft leaves that turn yellow in the fall. The tiny white flowers are produced on stalks in the spring, followed by tiny cherries for the birds. -
Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site
Powell, Schmidt, Halvorson In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Plant and Vertebrate Vascular U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Open-File Report 2005-1167 Southwest Biological Science Center Open-File Report 2005-1167 February 2007 U.S. Department of the Interior U.S. Geological Survey National Park Service In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site By Brian F. Powell, Cecilia A. Schmidt , and William L. Halvorson Open-File Report 2005-1167 December 2006 USGS Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web:http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested Citation Powell, B. F, C. A. Schmidt, and W. L. Halvorson. 2006. Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site. -
Native Nebraska Woody Plants
THE NEBRASKA STATEWIDE ARBORETUM PRESENTS NATIVE NEBRASKA WOODY PLANTS Trees (Genus/Species – Common Name) 62. Atriplex canescens - four-wing saltbrush 1. Acer glabrum - Rocky Mountain maple 63. Atriplex nuttallii - moundscale 2. Acer negundo - boxelder maple 64. Ceanothus americanus - New Jersey tea 3. Acer saccharinum - silver maple 65. Ceanothus herbaceous - inland ceanothus 4. Aesculus glabra - Ohio buckeye 66. Cephalanthus occidentalis - buttonbush 5. Asimina triloba - pawpaw 67. Cercocarpus montanus - mountain mahogany 6. Betula occidentalis - water birch 68. Chrysothamnus nauseosus - rabbitbrush 7. Betula papyrifera - paper birch 69. Chrysothamnus parryi - parry rabbitbrush 8. Carya cordiformis - bitternut hickory 70. Cornus amomum - silky (pale) dogwood 9. Carya ovata - shagbark hickory 71. Cornus drummondii - roughleaf dogwood 10. Celtis occidentalis - hackberry 72. Cornus racemosa - gray dogwood 11. Cercis canadensis - eastern redbud 73. Cornus sericea - red-stem (redosier) dogwood 12. Crataegus mollis - downy hawthorn 74. Corylus americana - American hazelnut 13. Crataegus succulenta - succulent hawthorn 75. Euonymus atropurpureus - eastern wahoo 14. Fraxinus americana - white ash 76. Juniperus communis - common juniper 15. Fraxinus pennsylvanica - green ash 77. Juniperus horizontalis - creeping juniper 16. Gleditsia triacanthos - honeylocust 78. Mahonia repens - creeping mahonia 17. Gymnocladus dioicus - Kentucky coffeetree 79. Physocarpus opulifolius - ninebark 18. Juglans nigra - black walnut 80. Prunus besseyi - western sandcherry 19. Juniperus scopulorum - Rocky Mountain juniper 81. Rhamnus lanceolata - lanceleaf buckthorn 20. Juniperus virginiana - eastern redcedar 82. Rhus aromatica - fragrant sumac 21. Malus ioensis - wild crabapple 83. Rhus copallina - flameleaf (shining) sumac 22. Morus rubra - red mulberry 84. Rhus glabra - smooth sumac 23. Ostrya virginiana - hophornbeam (ironwood) 85. Rhus trilobata - skunkbush sumac 24. Pinus flexilis - limber pine 86. Ribes americanum - wild black currant 25. -
Shumard's Oak (Quercus Shumardii)
Shumard’s Oak (Quercus shumardii) Plant Species of Concern State Rank: S1 (critically imperiled), Global Rank: G5 (secure) Identification Shumard’s oak is a large, deciduous tree that reaches up to 100 feet (30 meters) in height. It has gray, furrowed bark and grayish-brown, dull, bud scales on the mature branchlets. The leaves are alternate and deeply lobed. Each leaf has 7 to 9 sharply toothed lobes that tend to widen slightly toward the tip. The 4 to 7 inch (10-18 cm) leaves are dark green above, and paler green below with hairs clustered in the leaf axils. The flowers are produced when leaves emerge in spring. Male and female flowers are produced separately, with female flowers held singly or in pairs and male flowers held in clusters of long, drooping catkins. Acorns are about 1 inch (2.5 cm) long and have scaly, saucer-shaped caps that cover less than ⅓ of the acorn. North American State/Province Conservation Status Map by NatureServe (2007) Photo source: John Kunsman (PNHP) Habitat Shumard’s oak has a distribution from Ontario and New York south into Texas and Florida. In Pennsylvania, it has been found in the south-central and northwestern counties. The species grows in moist to wet woods along streams, bottomlands, and lower slopes, often on calcareous substrate. Status The PA Biological Survey considers Shumard’s oak to be a species of special concern, based on the relatively few occurrences that have been confirmed. It has been assigned a rarity status of Endangered. Conservation Maintenance of known populations and preservation of the communities where Shumard’s oak grows will be crucial to its survival. -
Common Name (S) Genus Species TREE SPECIES NATIVE to INDIANA with Common and Scientific Names
TREE SPECIES NATIVE TO INDIANA with common and scientific names Common name (s) Genus Species Ash Black Fraxinus nigra Blue Fraxinus quadrangulata Green (Red) Fraxinus pennsylvanica Pumpkin Fraxinus profunda White Fraxinus americana Aspen Big-tooth Populus grandidentata Quaking Populus tremuloides Basswood, American Tilia americana Beech, American Fagus grandifolia Birch Gray Betula populifolia Paper Betula papyrifera River Betula nigra Yellow Betula alleghaniensis Black gum (sour, tupelo) Nyssa sylvatica Buckeye Ohio Aesculus glabra Yellow Aesculus aiton Butternut Juglans cinerea Catalpa, northern Catalpa speciosa Cedar Eastern red Juniperus virginiana Northern white Thuja occidentalis Cherry Black Prunus serotina Chestnut, American Castanea dentata Coffeetree, Kentucky Gymnocladus dioica Cottonwood Eastern Populus deltoides Swamp Populus heterophylla Crabapple Sweet, American Pyrus coronaria Prairie Pyrus ioensis Cypress, bald Taxiodium distichum Dogwood, flowering Cornus florida Elm American (White) Ulmus americana Rock Ulmus thomasii Slippery (Red) Ulmus rubra Winged Ulmus alata Hackberry Southern hackberry (Sugar) Celtis laevigata Northern hackberry Celtis occidentalis Hawthorn TREE SPECIES NATIVE TO INDIANA with common and scientific names Common name (s) Genus Species Cockspur-thorn Crataegus crus-galli Dotted Crataegus punctata Downy Crataegus mollis Green Crataegus viridis Hemlock, eastern Tsuga canadensis Hickory Bitternut Carya cordiformis Mockernut Carya tomentosa Pale (Sand) Carya pallida Pignut Carya glabra Red Carya ovalis -
Sugarberry Plant Fact Sheet
Plant Fact Sheet Wildlife: Many species of songbirds including SUGARBERRY mockingbirds and robins eat the fruit and use the tree for nesting habitat. It is a larval and nectar host for two Celtis laevigata Willd. butterflies: hackberry emperor (Asterocampa celtis) and Plant Symbol = CELA American snout (Libytheana carineta). White-tailed deer browse the leaves and fruit. Contributed by: USDA NRCS Plant Materials Program Other Uses: Sugarberry is used for furniture, athletic goods, firewood, and plywood. It has limited use for flooring, creating, and for wood posts. It is used as an ornamental and as a street tree in residential areas in the lower South Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g. threatened or endangered species, state noxious status, and wetland indicator values). Description and Adaptation Sugarberry is a native tree that can grow up to 80 feet in height and up to 3 feet in diameter. It is a short lived tree, probably living not more than 150 years. It has a broad crown formed by spreading branches that are often drooped. The bark is light gray in color and can be smooth or covered with corky warts. The branchlets are covered with short hairs at first and eventually they become smooth. The leaves are alternated, simple, and slightly serrate. The leaves are 2-4 inches long and 1 to 2 Robert H. Mohlenbrock. USDA SCS, 1989. Midwest wetland flora: inches wide. The lance-shaped leaves gradually taper to a Field office illustrated guide to plant species. -
Climate-Ready Tree List
Location Type 1 - Small Green Stormwater Infrastructure (GSI) Features Location Characteristics Follows “Right Tree in the Right Place” Low Points Collect Stormwater Runoff Soil Decompacted to a Depth ≥ 18” May Have Tree Trenches, Curb Cuts, or Scuppers Similar Restrictions to Location Type 5 Examples:Anthea Building, SSCAFCA, and South 2nd St. Tree Characteristics Recommended Trees Mature Tree Height: Site Specific Celtis reticulata Netleaf Hackberry Inundation Compatible up to 96 Hours. Cercis canadensis var. mexicana* Mexican Redbud* Cercis occidentalis* Western Redbud* Pollution Tolerant Cercis reniformis* Oklahoma Redbud* Cercis canadensis var. texensis* Texas Redbud* Crataegus ambigua* Russian Hawthorne* Forestiera neomexicana New Mexico Privet Fraxinus cuspidata* Fragrant Ash* Lagerstroemia indica* Crape Myrtle* Pistacia chinensis Chines Pistache Prosopis glandulosa* Honey Mesquite* Prosopis pubescens* Screwbean Mesquite* Salix gooddingii Gooding’s Willow Sapindus saponaria var. drummondii* Western Soapberry* * These species have further site specific needs found in Master List Photo Credit: Land andWater Summit ClimateReady Trees - Guidelines for Tree Species Selection in Albuquerque’s Metro Area 26 Location Type 2 - Large Green Stormwater Infrastructure (GSI) Features Location Characteristics Follows “Right Tree in the Right Place” Low Points Collect Stormwater Runoff Soil Decompacted to a Depth ≥ 18” May Have Basins, Swales, or Infiltration Trenches Examples: SSCAFCA landscaping, Pete Domenici Courthouse, and Smith Brasher Hall -
Introduction to the Southern Blue Ridge Ecoregional Conservation Plan
SOUTHERN BLUE RIDGE ECOREGIONAL CONSERVATION PLAN Summary and Implementation Document March 2000 THE NATURE CONSERVANCY and the SOUTHERN APPALACHIAN FOREST COALITION Southern Blue Ridge Ecoregional Conservation Plan Summary and Implementation Document Citation: The Nature Conservancy and Southern Appalachian Forest Coalition. 2000. Southern Blue Ridge Ecoregional Conservation Plan: Summary and Implementation Document. The Nature Conservancy: Durham, North Carolina. This document was produced in partnership by the following three conservation organizations: The Nature Conservancy is a nonprofit conservation organization with the mission to preserve plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Southern Appalachian Forest Coalition is a nonprofit organization that works to preserve, protect, and pass on the irreplaceable heritage of the region’s National Forests and mountain landscapes. The Association for Biodiversity Information is an organization dedicated to providing information for protecting the diversity of life on Earth. ABI is an independent nonprofit organization created in collaboration with the Network of Natural Heritage Programs and Conservation Data Centers and The Nature Conservancy, and is a leading source of reliable information on species and ecosystems for use in conservation and land use planning. Photocredits: Robert D. Sutter, The Nature Conservancy EXECUTIVE SUMMARY This first iteration of an ecoregional plan for the Southern Blue Ridge is a compendium of hypotheses on how to conserve species nearest extinction, rare and common natural communities and the rich and diverse biodiversity in the ecoregion. The plan identifies a portfolio of sites that is a vision for conservation action, enabling practitioners to set priorities among sites and develop site-specific and multi-site conservation strategies.