LOWELL CATHOLIC HIGH SCHOOL

Summer Math ENTERING II & TRIGONOMETRY

Simplifying Expressions

Order of Operations

Parenthesis/grouping symbols Exponents

1. Simplify the expression within each grouping symbol, working outward from the innermost grouping. 2. simplify powers 3. Perform multiplication and divisions in order from left to right. 4. Perform and on order from let to right.

Example

25  6 3

25  6 3 10  6 3 10  2  8

Simplify.

1) 11(3 5)  2 4) 3 (8  45)

2) 36  9  4 5) 38  45

3) (42  6)  2  3 Simplifying Expressions

Substitution Principle

An expression may be replaced by another expression that has the same value.

Example

Evaluate if x = 4 and y = 3 into the expression 2xy  4x2

Solution: 2xy  4x 2  243 442  243 416  24  64  40

Evaluate

6) x  y 3z if x  7, y  8, and 9) 3y2  y  5 if x = 3, y = 2, and z=5 z  0

3x  y 10) 3(x 1) if x = 3 7) if x  5 and y  3. 3x  y

8) (yz  x)3 if x = 3, y = 2, and z = 5 Inequalities Symbols and Sentences

Inequality Symbol

, , , ,  are all inequality symbols.  is read “less than or equal to” and  is read “greater than or equal to”.

Inequality

An inequality is a sentence formed by placing an inequality symbol between two expressions.

Use one of the inequality symbols to make a true statement.

11)   5 _____  4 14) 51 ____ 5 1

12) 2  2 _____ 2 2 3  2 4  2 ____ 15) 3  2 4  2

13) (18  6) 3 ____ 18  (6 3)

Words into Algebra

Algebra is often used as a problem-solving tool. In order use this tool we often must change word phrases into algebraic expressions.

Example

Word Phrase

A increased by 10 n + 10 15 more than a number n + 15 The sum of a number and 67 n + 67 A number decreased by 22 n – 22 * 82 less than a number n – 82 * The difference between a number and 182 n - 182 The product of a number and 43 43n A number times 5.5 5.5n

The quotient of 10 and a number

A number divided by 5

* Notice the order of the terms of the expression. 22 – n is not the same as n – 22.

Translate the following word phrases into algebraic expressions. Use n for the in each problem.

16) A number decreased by 2 20) The quotient of 5 times a number and 2 times a number

17) 5.2 times a number

21) 2 times the sum of a number and 5 18) The sum of a number and 2 times the number

22) One more than the square of a 19) 15 less than a number number

Addition of Fractions

Example 1: Fractions with a common denominator.

3 1 5   8 8 8

Find the sum

3 1 5 (3 1 5) 9 1     or 1 8 8 8 8 8 8

Example 2: Fractions without a common denominator.

3 5 1   4 6 2

Find the sum

3 5 1 (3 3) (5  2) (1 6) (9 10  6) 25 1        or 2 4 6 2 (4  3) (6  2) (2  6) 12 12 12

5 1 2 6 3 2 1 23)     26)    7 7 7 7 5 15 3

1 5 2 11 5 7 24)    27)    3 6 3 18 18 18

1 1 1 25)    2 4 3 Subtraction of Fractions

Example 1: Fractions with a common denominator.

3 1 5   8 8 8

Find the difference

3 1 5 (3 1 5) 3      8 8 8 8 8

Example 2: Fractions without a common denominator.

5 3  6 4

Find the difference

5 3 (5 2) (33) (10  9) 1      6 4 (6 2) (43) 12 12

5 1 5 2 28)   31)   6 6 6 15

5 1 7 2 29)   32)   8 6 8 3

13 11 30)   29 29 Multiplication of Fractions

Example 1: 2 4  3 5

Find the product

2 4 Product of numerators 2  4 8     3 5 Product of deno min ators 35 15

3 7 9 5 33)   36)   4 8 10 3

2 3 7 34)  660  37)   3 11 2

12 21 35)   35 30 Division of Fractions

Example 1: 2 4  3 5

Find the quotient

2 4 2 5 2 5 10 5       3 5 3 4 3 4 12 6

3 1 9 1 38)   41)   4 2 16 4

7 1 15 3 39)   42)   8 3 8 4

8 4 40)   5 3 Sums and Differences of Positive and Negative

Rules for adding and subtracting any real numbers:

1) If two numbers have the same sign, add their absolute values and use their common sign (+ or -). 2) If two numbers have opposite signs, subtract the lesser number from the larger number and use the sign of the larger number.

Example

Expression Answer Explanation Both signs are the same so add the numbers and 4  6 10 take the common positive sign Both signs are different. Subtract 4 from 6 and  4  6 2 take the sign of the larger number (positive 6) Both signs are the same so add the numbers and  4  (6) 10 take the common sign ( Both signs are different. Subtract 4 from 6 and 4  (6)  2 take the sign of the larger number (negative because 6 is larger than 4)

Simplify.

43) 32  53

44) 68  (42)  (35)  61

45) 87 16  (22)  61

46) 10.2 17.6

47) 15  40 Sums and Differences of Positive and Negative Numbers

Definition of subtraction

Not every algebraic is an addition operation. To help make the subtraction operation easier, we can change it to an addition operation. To make this change, we use the definition of subtraction

a – b = a + (-b)

Another way to state this is to make the subtraction operation an addition operation and change the sign of the term following the operation.

Example

25   50  25  50  75

Find each difference.

48.  5 12

49.  7 (14)

50.  7 (7)

51.  7  7

52. 7 (7) Combining Like Terms

Like (or similar) terms Terms which have the same variables with the same exponents

Use the distributive property if necessary to simplify before combining like terms.

Distributive Property Property of the Opposite of a Sum

a(b + c) = ab + ac (a  b)  (a)  (b) a(b – c) = ab – ac

Example: 4y  2(6y  5)  4y 12y 10 16y 10

Simplify.

53. 6y  3z  3y 56. 13a 13b 13c 15a

54. 6y (3y 10) 57. 5x  6x (3x  5)

55. 3y  4x  2(4x  5y) 58. 4(3 y)  2(1 y)

Products of Real Numbers

Rules of Multiplication 1. The product of two positive numbers or two negative numbers is a positive number. 2. The product of a positive number and a negative number is a negative number.

Simplify.

1 62) 7k  4(3k  6) 59) ( )(4r)(s) 2

63)  3(p  5)  7p 60) 5(2)(7)(3)

64) (a)(2b)(3c) 61) 17(13) 17(7)

Quotients of Real Numbers

Rules for Division

1) The quotient of two positive numbers or two negative numbers is a positive number. 2) The quotient of two numbers when one is positive and the other negative is a negative number.

For a real numbers a and b and nonzero real numbers c,

a  b a b a  b a b   and   c c c c c c

Simplify.

65)  21 7 24  6x 2 68) 2

(3)(4)(2) 66) (6)(2) 36x 2  24x  6 69) 6

32  52 67) 3  (5) 9x 2  27 70)  3 Solving Equations

Example:

7x 13  50

7x 13 13  50 13

7x  63

7x 63  7 7 x  9

28  x  8x 28  x  x  8x  x You want to get the 28  7x variables on one side and numbers 28 7x  on the other. 7 7

4  x or x  4

Solve.

71) 9y 8  80 76) 18  3y  57

72) 3x 5  5  2x 77) 5(m 4)  8(m 2)

73) 3b  7b  35 15  2b m  4 78)  4 6

74) 3x 10  5(x  4)

75)  4x  83  1 Working with Polynomials Adding Polynomials

Definition Example Constant A number 1  2, , 0 2 Monomial a constant, a variable, or a product 1  3, 5x,  x 2 y3, x5 of a constant and one or more 4 variables Coefficient The constant factor of a monomial The coefficient of 3m2 is 3 Polynomial A monomial or a sum of 3x2  5x  7 monomials. The monomials in a The terms of the polynomial are called the terms of polynomial are 3x 2 ,  5x , the polynomial. 7

To add two or more polynomials, write their sum and then simplify by combining similar terms.

Example: Simplify by adding the following polynomials. Add 2x2  3x  5 and x3  5x2  2x  5. 79) 5m 4  (2m 3) (2x2  3x  5)  (x3  5x2  2x  5) x3  (2x2  5x2 )  (3x  2x)  (5  5) x3  3x2  x 80) 2n2 n  5  (n2 1)

81) 4a2  3ab b2  (b2  2ab)

82) w3  w 2  w 1 (1 w  w 2  w3 )

83) 2(4m2  3)  7(m2  2) 1

84) 3x2  2xy  4y2  (2x2  3y2 ) Working with Polynomials Subtracting Polynomials

To subtract one polynomial from another, add the opposite of each term of the polynomial you are subtracting.

Example:

Subtract 2x2  3x  5 from x3  5x2  2x  5

x3  5x2  2x  5 (2x2  3x  5)

x3  5x2  2x  5  (2x2  3x  5)

x3  (5x2  2x2 )  (2x  3x)  (5  (5)) Subtract.

x3  7x2  5x 10 85) 4a4  5 (2a4 1) 88)  5x3  3x  7 (4x2  5)

86) (8y3  3y  9) (8y2  2y  7) 89) y4  2y2  y 1(y4  3y3  3y 1)

87) 6x4  5x (5x5  2x4  3x2  2x 1) 90) 9m3 (3m2  2m 1)

Multiplying Using Exponents

Law of Exponents when multiplying a common base:

am an  amn

Example:

c5 c 3  c53  c8 35 34  354  39 (mn4 )(m5n6 )  (mm5 )(n4 n6 )

= (m15 )(n46 )

= m6n10 Simplify. *m is the same as m1

91) x3  x10

92) mmm

93) (5)4 (5)3

94) (xyz )(x3y2z4 )

95) 99 95 9

96) (3a4b5 )(3a2b3 ) Multiplying Using Exponents

Law of Exponents when raising a product to a power.

m m m (ab)  a b

Example: (xy )3  x3y3 (3ab)2  32 a2 b2 2 2 = 9a b

Law of Exponents when simplifying a power to a power.

(am )n  amn

Example: (x3 )4  x34  x12 (2x4 y3 )2  22 (x42 )(y32 )

8 6 = 4x y

Simplify.

97) (4a3b2 )2

98) (s2t)3 (st3 )2

99) (3pq4r 2 )3

100) p2q3 (p2  4q)

101) x4  xk4

102) (x 4 )3 Division Using Exponents

Law of Exponents when dividing two monomials m a mn If m  n, then  a a n

m a 1 If n  m, then n  nm a a

m  a  a m    m  b  b

Examples:

8 2 3 3 3 33 9 9  285  23 5x 5 5  t  t t t 5        2 7 73 4   13 3 x x x  3  3 3 27

Simplify. Assume that no denominator equals 0.

3 3 18x  3r  103) 106)   6x  s 2 

3 5t 2 2 2 104) 4r s  5 107) 15t 2 4r 2 s

a 2b3c 105) 3 3 3 2 2hk a bc 108)    h 2 k 2 

Multiplying Polynomials

To multiply two polynomials, you use the distributive property: Multiply each term of one polynomial by each of the other and add the resulting monomials.

Example:

Multiply 2x  3x2  4x  5

2x  3x2  4x  5 2xx2  4x  5 3x2  4x  5  2x3  8x 2 10x  3x 2 12x 15

3 2  2x 11x  2x 15

Multiply 2a  b3a  5b

2a  b3a  5b  2a3a  5b b3a  5b

 6a 2 10ab  3ab  5b2

2 2  6a  7ab  5b

Multiply x  2 2  

2 x  2  x  2x  2  xx  2 2x  2

 x 2  2x  2x  4

 x 2  4x  4

Multiply.

109) 3x 12x  5 112) x2  3x2  3

110) 9  5x5x  9 113) t  32t 2  t  2

2 111) x  3x  5x  2 114) 3x 102

Geometry

Area of a rectangle = length x width

Perimeter of a rectangle = (2 x length) + (2 x width)

Area of a triangle = ½ x base x height

Perimeter of a triangle = side + side + side

Find the area and perimeter of the Find the area and perimeter of the rectangle triangle:

8 Area = ½ x 6 x 4=12 5 3 5 Perimeter = 5 + 5 + 6 4 = 16

Area = 3 x 8 = 24 6 Perimeter = 3 + 3 + 8 + 8 = 22

Find the area and perimeter of each figure.

115) 12

5

116)

10 8

12

Geometry Distance and Midpoint

The Distance Formula The distance between two points Ax , x  and Bx , y  1 2 2 2 2 2 Distance between points A and B  x2  x1   y2  y1 

Example 1: Using the Distance Formula Find the distance between  3, 5 and 1,6

2 2 Distance  1  3  6   5  22  112

 4 121  125  25  5

 5 5

The Midpoint Formula The midpoint of the line segment joining points and is

 x1  x2 y1  y2  M  ,   2 2 

Example 2: Using the Midpoint Formula

Find the midpoint of the line segment joining points and .

  3  1  5  6   1  M  ,  = M  2,   2 2   2 

Find the distance between the points Find the midpoint between the points

117) 2,5 and 2,1 . 119) and

118) 2,3 and  3, 2 120) and

Geometry Distance and Midpoint