Calculus 1 – Spring 2019 Section 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leibniz's Rule and Fubini's Theorem Associated with Hahn Difference
View metadata, citation and similar papers at core.ac.uk brought to you by CORE I S S N 2provided 3 4 7 -by1921 KHALSA PUBLICATIONS Volume 12 Number 06 J o u r n a l of Advances in Mathematics Leibniz’s rule and Fubini’s theorem associated with Hahn difference operators å Alaa E. Hamza † , S. D. Makharesh † † Jeddah University, Department of Mathematics, Saudi, Arabia † Cairo University, Department of Mathematics, Giza, Egypt E-mail: [email protected] å † Cairo University, Department of Mathematics, Giza, Egypt E-mail: [email protected] ABSTRACT In 1945 , Wolfgang Hahn introduced his difference operator Dq, , which is defined by f (qt ) f (t) D f (t) = , t , q, (qt ) t 0 where = with 0 < q <1, > 0. In this paper, we establish Leibniz’s rule and Fubini’s theorem associated with 0 1 q this Hahn difference operator. Keywords. q, -difference operator; q, –Integral; q, –Leibniz Rule; q, –Fubini’s Theorem. 1Introduction The Hahn difference operator is defined by f (qt ) f (t) D f (t) = , t , (1) q, (qt ) t 0 where q(0,1) and > 0 are fixed, see [2]. This operator unifies and generalizes two well known difference operators. The first is the Jackson q -difference operator which is defined by f (qt) f (t) D f (t) = , t 0, (2) q qt t see [3, 4, 5, 6]. The second difference operator which Hahn’s operator generalizes is the forward difference operator f (t ) f (t) f (t) = , t R, (3) (t ) t where is a fixed positive number, see [9, 10, 13, 14]. -
[Math.NA] 10 Jan 2001 Plctoso H Dmoetmti Ler Odsrt O Discrete to Algebra [9]– Matrix Theory
Idempotent Interval Analysis and Optimization Problems ∗ G. L. Litvinov ([email protected]) International Sophus Lie Centre A. N. Sobolevski˘ı([email protected]) M. V. Lomonosov Moscow State University Abstract. Many problems in optimization theory are strongly nonlinear in the traditional sense but possess a hidden linear structure over suitable idempotent semirings. After an overview of ‘Idempotent Mathematics’ with an emphasis on matrix theory, interval analysis over idempotent semirings is developed. The theory is applied to construction of exact interval solutions to the interval discrete sta- tionary Bellman equation. Solution of an interval system is typically NP -hard in the traditional interval linear algebra; in the idempotent case it is polynomial. A generalization to the case of positive semirings is outlined. Keywords: Idempotent Mathematics, Interval Analysis, idempotent semiring, dis- crete optimization, interval discrete Bellman equation MSC codes: 65G10, 16Y60, 06F05, 08A70, 65K10 Introduction Many problems in the optimization theory and other fields of mathe- matics are nonlinear in the traditional sense but appear to be linear over semirings with idempotent addition.1 This approach is developed systematically as Idempotent Analysis or Idempotent Mathematics (see, e.g., [1]–[8]). In this paper we present an idempotent version of Interval Analysis (its classical version is presented, e.g., in [9]–[12]) and discuss applications of the idempotent matrix algebra to discrete optimization theory. The idempotent interval analysis appears to be best suited for treat- ing problems with order-preserving transformations of input data. It gives exact interval solutions to optimization problems with interval un- arXiv:math/0101080v1 [math.NA] 10 Jan 2001 certainties without any conditions of smallness on uncertainty intervals. -
Elementary Calculus
Elementary Calculus 2 v0 2g 2 0 v0 g Michael Corral Elementary Calculus Michael Corral Schoolcraft College About the author: Michael Corral is an Adjunct Faculty member of the Department of Mathematics at School- craft College. He received a B.A. in Mathematics from the University of California, Berkeley, and received an M.A. in Mathematics and an M.S. in Industrial & Operations Engineering from the University of Michigan. This text was typeset in LATEXwith the KOMA-Script bundle, using the GNU Emacs text editor on a Fedora Linux system. The graphics were created using TikZ and Gnuplot. Copyright © 2020 Michael Corral. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. Preface This book covers calculus of a single variable. It is suitable for a year-long (or two-semester) course, normally known as Calculus I and II in the United States. The prerequisites are high school or college algebra, geometry and trigonometry. The book is designed for students in engineering, physics, mathematics, chemistry and other sciences. One reason for writing this text was because I had already written its sequel, Vector Cal- culus. More importantly, I was dissatisfied with the current crop of calculus textbooks, which I feel are bloated and keep moving further away from the subject’s roots in physics. In addi- tion, many of the intuitive approaches and techniques from the early days of calculus—which I think often yield more insights for students—seem to have been lost. -
Lp-Solution to the Random Linear Delay Differential Equation with a Stochastic Forcing Term
mathematics Article Lp-solution to the Random Linear Delay Differential Equation with a Stochastic Forcing Term Juan Carlos Cortés * and Marc Jornet Instituto Universitario de Matemática Multidisciplinar, Building 8G, access C, 2nd floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; [email protected] * Correspondence: [email protected] Received: 25 May 2020; Accepted: 18 June 2020; Published: 20 June 2020 Abstract: This paper aims at extending a previous contribution dealing with the random autonomous-homogeneous linear differential equation with discrete delay t > 0, by adding a random forcing term f (t) that varies with time: x0(t) = ax(t) + bx(t − t) + f (t), t ≥ 0, with initial condition x(t) = g(t), −t ≤ t ≤ 0. The coefficients a and b are assumed to be random variables, while the forcing term f (t) and the initial condition g(t) are stochastic processes on their respective time domains. The equation is regarded in the Lebesgue space Lp of random variables with finite p-th moment. The deterministic solution constructed with the method of steps and the method of variation of constants, which involves the delayed exponential function, is proved to be an Lp-solution, under certain assumptions on the random data. This proof requires the extension of the deterministic Leibniz’s integral rule for differentiation to the random scenario. Finally, we also prove that, when the delay t tends to 0, the random delay equation tends in Lp to a random equation with no delay. Numerical experiments illustrate how our methodology permits determining the main statistics of the solution process, thereby allowing for uncertainty quantification. -
Algebraic Division by Zero Implemented As Quasigeometric Multiplication by Infinity in Real and Complex Multispatial Hyperspaces
Available online at www.worldscientificnews.com WSN 92(2) (2018) 171-197 EISSN 2392-2192 Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces Jakub Czajko Science/Mathematics Education Department, Southern University and A&M College, Baton Rouge, LA 70813, USA E-mail address: [email protected] ABSTRACT An unrestricted division by zero implemented as an algebraic multiplication by infinity is feasible within a multispatial hyperspace comprising several quasigeometric spaces. Keywords: Division by zero, infinity, multispatiality, multispatial uncertainty principle 1. INTRODUCTION Numbers used to be identified with their values. Yet complex numbers have two distinct single-number values: modulus/length and angle/phase, which can vary independently of each other. Since values are attributes of the algebraic entities called numbers, we need yet another way to define these entities and establish a basis that specifies their attributes. In an operational sense a number can be defined as the outcome of an algebraic operation. We must know the space where the numbers reside and the basis in which they are represented. Since division is inverse of multiplication, then reciprocal/contragradient basis can be used to represent inverse numbers for division [1]. Note that dual space, as conjugate space [2] is a space of functionals defined on elements of the primary space [3-5]. Although dual geometries are identical as sets, their geometrical structures are different [6] for duality can ( Received 18 December 2017; Accepted 03 January 2018; Date of Publication 04 January 2018 ) World Scientific News 92(2) (2018) 171-197 form anti-isomorphism or inverse isomorphism [7]. -
Integral and Differential Structure on the Free C∞-Ring Modality
INTEGRAL AND DIFFERENTIAL STRUCTURE ON THE FREE C1-RING MODALITY Geoffrey CRUTTWELL Jean-Simon Pacaud LEMAY Rory B. B. LUCYSHYN-WRIGHT Resum´ e.´ Les categories´ integrales´ ont et´ e´ recemment´ developp´ ees´ comme homologues aux categories´ differentielles.´ En particulier, les categories´ inte-´ grales sont equip´ ees´ d’un operateur´ d’integration,´ appele´ la transformation integrale,´ dont les axiomes gen´ eralisent´ les identites´ d’integration´ de base du calcul comme l’integration´ par parties. Cependant, la litterature´ sur les categories´ integrales´ ne contient aucun exemple decrivant´ l’integration´ de fonctions lisses arbitraires : les exemples les plus proches impliquent l’inte-´ gration de fonctions polynomiales. Cet article comble cette lacune en develo-´ ppant un exemple de categorie´ integrale´ dont la transformation integrale´ agit sur des 1-formes differentielles´ lisses. De plus, nous fournissons un autre point de vue sur la structure differentielle´ de cet exemple cle,´ nous etudions´ les derivations´ et les coder´ elictions´ dans ce contexte et nous prouvons que les anneaux C1 libres sont des algebres` de Rota-Baxter. Abstract. Integral categories were recently developed as a counterpart to differential categories. In particular, integral categories come equipped with an integration operator, known as an integral transformation, whose axioms generalize the basic integration identities from calculus such as integration by parts. However, the literature on integral categories contains no example that captures integration of arbitrary smooth functions: the closest are exam- ples involving integration of polynomial functions. This paper fills in this gap G.C,J-S.P.L,R.L-W INT.& DIFF. STRUCT. ON C1-RING MOD. by developing an example of an integral category whose integral transforma- tion operates on smooth 1-forms. -
F1.3YE2 Revision Notes on Group Theory 1 Introduction 2 Binary
F1.3YE2 Revision Notes on Group Theory 1 Introduction By a group we mean a set together with some algebraic operation (such as addition or multiplication of numbers) that satisfies certain rules. There are many examples of groups in Mathematics, so it makes sense to understand their general theory, rather than try to reprove things every time we come across a new example. Common examples of groups include the set of integers together with addition, the set of nonzero real numbers together with multiplication, the set of invertible n n matrices together with matrix multiplication. × 2 Binary Operations The formal definition of a group uses the notion of a binary operation.A binary operation on a set A is a map A A A, written (a; b) a b. Examples include most of the∗ standard arithmetic operations× ! on the real or7! complex∗ numbers, such as addition (a + b), multiplication (a b), subtraction (a b). Other examples of binary operations (on suitably defined sets)× are exponentiation− ab (on the set of positive reals, for example), composition of functions, matrix addition and multiplication, subtraction, vector addition, vector procuct of 3-dimensional vectors, and so on. Definition A binary operation on a set A is commutative if a b = b a a; b A. ∗ ∗ ∗ 8 2 Addition and multiplication of numbers is commutative, as is addition of matri- ces or vectors, union and intersection of sets, etc. Subtraction of numbers is not commutative, nor is matrix multiplication. Definition A binary operation on a set A is associative if a (b c) = (a b) c a; b; c A. -
Why Do Fingers Cool Before Than the Face When It Is Cold?
Why do fingers cool before than the face when it is cold? Julio Ben´ıtez L´opez, Universidad Polit´ecnica de Valencia, [email protected] Abstract The purpose of this note is to show a physical application of vector calculus by using the heat equation. In this note we will answer the question of the title under reasonable physical hypotheses and without considering medical reasons as blood pressure or sweating. Vector calculus is used in many fields of physical sciences: electromagnetism, gravitation, thermodynamics, fluid dynamics, ... (see, for example, [1]). Here, we will apply vector calculus to the heat equation in order to show a simple and intuitive physical fact. Throughout this note some scattered mathematical concepts shall appear, as the gradient, the chain rule, the space curves, the divergence theorem, the Leibniz integral rule, and the isoperimetric inequality. We start with a brief introduction, the interested reader can consult [1, 2]. Let us consider a body which occupies a region Ω ⊂ R3 with a temperature distribution. Let T (x, y, z, t) be the temperature of the point (x, y, z) ∈ Ω at the time t. Thus, we can 1 model the temperature as a mapping T :Ω × R → R differentiable enough. The colder regions warm up and the warmer regions cool, and therefore we can imagine that there is a heat flux from warmer areas to cooler ones. It is natural to assume that the magnitude of this flux is proportional to the spatial change of the temperature T . Fourier’s Law relates the heat flux, J, and the gradient of T : ∂T ∂T ∂T J = −k∇T = −k , , , (1) ∂x ∂y ∂z where k is a positive constant which depends on the material. -
Lecture 3: the Fundamental Theorem of Calculus
Lecture 3: The Fundamental Theorem of Calculus Today: The Fundamental Theorem of Calculus, Leibniz Integral Rule, Mean Value Theo- rem We defined the definite integral and introduced the Evaluation Theorem to help us evaluate definite integrals. In today’s class, we will explore the relation between two central ideas of calculus: differentiation and integration. The Fundamental Theorem of Calculus The fundamental theorem of calculus deals with functions of the form x F (x) = f(t) dt, Za where f(x) is continuous on the interval [a, b] and x is taken on [a, b]. Recall that the definite integral is always a number that depends on the integrand, the upper and lower limits, but does not depend on the variable t that we integrate over. If x is fixed, the value of the function F (x) is also fixed, and if we let x vary, the function F (x), defined as the definite integral above, would vary with x. Example. Let f(x) = x + 1. Define x F (x) = f(t) dt. Z0 (1) Sketch the graph of f(x) over the interval [0, 3]. (2) Evaluate F (0), F (1), F (2), and F (3). (3) Find a formula for F (x). (4) Calculate F 0(x). The graph of f(x) is a straight line. 0 1 2 3 4 4 3 3 2 2 1 1 0 0 0 1 2 3 19 0 First, F (0) = 0 f(t) dt = 0. The values of F (x) at x = 1, 2, 3 could be computed by area of trapezoids: R 1 (1 + 2) 1 3 F (1) = f(t) dt = · = , 2 2 Z0 2 (1 + 3) 2 F (2) = f(t) dt = · = 4, 2 Z0 3 (1 + 4) 3 15 F (3) = f(t) dt = · = . -
MAT 070-Algebra I-Word Problems Read and Translate Comparisons Fixed Rate and Variable Rate
MAT 070-Algebra I-Word Problems Read and translate Comparisons Fixed rate and variable rate Objectives a Read and translate word problems. b Solve problems involving comparisons. c Solve fixed rate + variable rate word problems. a Reading and translating word problems Students taking Algebra frequently complain that the course would be easier if it were only in English. Yet the minute they encounter a word problem, they complain that it would be easier if they had an equation to solve. Reading Math is not like reading a Science Fiction novel. It is more like learning a foreign language. There are certain “key” words that are used for mathematical meanings. Addition ( ) English Words English Phrases Algebraic Translation The sum of a sum x 4 number and 4 4 more than a more than x 4 number A number increased x 4 increased by 4 4 greater than a greater than x 4 number plus A number plus 4 x 4 A number added added to x 4 to 4 1 2 MAT 070-Word Problems: Read/Translate; Comparisons; Fixed Rate & Variable Rate Subtraction ( ) English Words English Phrases Algebraic Translation The difference difference between a number x 4 and 4 4 less than a less than x 4 number A number decreased x 4 decreased by 4 4 fewer than a fewer than x 4 number minus A number minus 4 x 4 4 subtracted from subtracted x 4 a number less A number less 4 x 4 Multiplication English Words English Phrases Algebraic ( or ) Translation product The product of a 4x number and 4 times 4 times a number 4x of 4 of a number 4x Division ( ) English Words English Phrases Algebraic Translation A number divided x divided by by 4 4 quotient The quotient of a x number and 4 4 Algebraic Equals ( ) English Words English Phrases Translation A number plus 4 is (or was, will be) x 4 6 is 6. -
Dictionary of Mathematical Terms
DICTIONARY OF MATHEMATICAL TERMS DR. ASHOT DJRBASHIAN in cooperation with PROF. PETER STATHIS 2 i INTRODUCTION changes in how students work with the books and treat them. More and more students opt for electronic books and "carry" them in their laptops, tablets, and even cellphones. This is This dictionary is specifically designed for a trend that seemingly cannot be reversed. two-year college students. It contains all the This is why we have decided to make this an important mathematical terms the students electronic and not a print book and post it would encounter in any mathematics classes on Mathematics Division site for anybody to they take. From the most basic mathemat- download. ical terms of Arithmetic to Algebra, Calcu- lus, Linear Algebra and Differential Equa- Here is how we envision the use of this dictio- tions. In addition we also included most of nary. As a student studies at home or in the the terms from Statistics, Business Calculus, class he or she may encounter a term which Finite Mathematics and some other less com- exact meaning is forgotten. Then instead of monly taught classes. In a few occasions we trying to find explanation in another book went beyond the standard material to satisfy (which may or may not be saved) or going curiosity of some students. Examples are the to internet sources they just open this dictio- article "Cantor set" and articles on solutions nary for necessary clarification and explana- of cubic and quartic equations. tion. The organization of the material is strictly Why is this a better option in most of the alphabetical, not by the topic. -
Algebraic Equations Examples with Answers
Algebraic Equations Examples With Answers Neoplastic and acred Jonas never abominate gloriously when Lew renamed his glaziers. Testicular Roddie hydroplane appliesdrizzly, hesupinely chondrifies and decorticating his monger verysmall. parenthetically. Kimball is three-piece and fictionalize quizzically as shredded Barney Infringement notice that have standards based iep sample attrition, examples with algebraic equations answers What are examples for example of consecutive numbers and answer by signing up to rewrite an international options. What strategy with examples were delivered by guessing and answer and all about the denominators of the question is correct? Display an answer by gerolamo cardano. We use algebraic operation with examples to answer is often be getting different ideas and. Word problems illustrated a set in his toys as topics, multi step is true for individual criterion receives a template reference when you need help you. But our answer to answer is equal to both sides of examples, or in this example shows a for. Hello will then they choose and answers children might be? Sat math concepts discussed in algebra! Solving algebra examples should i trying to answer is a time to identify linear equations with answers to solve equations. The equation with math, spring following algebraic equations quiz questions or formulas, feat does order. Is much and always use google search and test your answer by all linear functions and relating to represent that models this study examples. Ask students can multiply each other new strategies. Your near links or a randomized trials with. Please enter a good luck in order in regular time in for unknown variables that student? Whenever the answers the newly learned anything that we avoid duplicate bindings if we have a shortcut method you make sure the.