Fractional Calculus: Definitions and Applications Joseph M

Total Page:16

File Type:pdf, Size:1020Kb

Fractional Calculus: Definitions and Applications Joseph M Western Kentucky University TopSCHOLAR® Masters Theses & Specialist Projects Graduate School 4-2009 Fractional Calculus: Definitions and Applications Joseph M. Kimeu Western Kentucky University, [email protected] Follow this and additional works at: http://digitalcommons.wku.edu/theses Part of the Algebraic Geometry Commons, and the Numerical Analysis and Computation Commons Recommended Citation Kimeu, Joseph M., "Fractional Calculus: Definitions and Applications" (2009). Masters Theses & Specialist Projects. Paper 115. http://digitalcommons.wku.edu/theses/115 This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. FRACTIONAL CALCULUS: DEFINITIONS AND APPLICATIONS A Thesis Presented to The Faculty of the Department of Mathematics Western Kentucky University Bowling Green, Kentucky In Partial Fulfillment Of the Requirements for the Degree Master of Science By Joseph M. Kimeu May 2009 FRACTIONAL CALCULUS: DEFINITIONS AND APPLICATIONS Date Recommended 04/30/2009 Dr. Ferhan Atici, Director of Thesis Dr. Di Wu Dr. Dominic Lanphier _________________________________________ Dean, Graduate Studies and Research Date A C K N O W L E D G E M E N TS I would like to express my deepest gratitude to my advisor, Dr. Ferhan Atici, for her thoughtful suggestions and excellent guidance, without which the completion of this thesis would not have been possible. I would also like to extend my sincere appreciation to Dr. Wu and Dr. Lanphier for their serving as members of my thesis committee; and to Dr. Chen and Dr. Magin for their insightful discussions on the Mittag-Leffler function. Lastly, I would like to thank Penzi Joy, and my family for their encouragement and support. iii TABLE OF C O N T E N TS TABLE OF CONTENTS ................................................................................................... iv ABSTRACT ........................................................................................................................ v CHAPTER 1: INTRODUCTION ....................................................................................... 1 1.1 The Origin of Fractional Calculus ................................................................................ 1 1.2 Definition of Fractional Calculus.................................................................................. 3 1.3 Useful Mathematical Functions .................................................................................... 3 CHAPTER 2: THE RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL .................... 9 2.1 Definition of the Riemann-Liouville Fractional Integral .............................................. 9 2.2 Examples of Fractional Integrals ................................................................................ 11 2.3 Dirichlet’s Formula ..................................................................................................... 15 2.4 The Law of Exponents for Fractional Integrals .......................................................... 16 2.5 Derivatives of the Fractional Integral and the Fractional Integral of Derivatives ...... 17 CHAPTER 3: THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE .............. 19 3.1 Definition of the Riemann-Liouville Fractional Derivative ....................................... 19 3.2 Examples of Fractional Derivatives ............................................................................ 19 CHAPTER 4: FRACTIONAL DIFFERENTIAL EQUATIONS ..................................... 23 4.1 The Laplace Transform ............................................................................................... 23 4.2 Laplace Transform of the Fractional Integral ............................................................. 24 4.3 Laplace Transform of the Fractional Derivative ......................................................... 24 4.4 Examples of Fractional Differential Equations........................................................... 27 CHAPTER 5: APPLICATIONS AND THE PUTZER ALGORITHM ........................... 31 5.1 A Mortgage Problem................................................................................................... 31 5.2 A Decay-Growth Problem .......................................................................................... 35 5.3 The Matrix Exponential Function ............................................................................... 36 5.4 The Matrix Mittag-Leffler Function ........................................................................... 40 CONCLUSION AND FUTURE SCOPE ......................................................................... 52 APPENDIX ....................................................................................................................... 53 BIBLIOGRAPHY ............................................................................................................. 55 iv FR A C T I O N A L C A L C U L US: D E FINI T I O NS A ND APPL I C A T I O NS Joseph M. Kimeu May 2009 55Pages Directed by Dr. Ferhan Atici Department of Mathematics Western Kentucky University A BST R A C T Using ideas of ordinary calculus, we can differentiate a function, say, to the or order. We can also establish a meaning or some potential applications of the results. However, can we differentiate the same function to, say, the order? Better still, can we establish a meaning or some potential applications of the results? We may not achieve that through ordinary calculus, but we may through fractional calculus—a more generalized form of calculus. This thesis, consisting of five chapters, explores the definition and potential applications of fractional calculus. The first chapter gives a brief history and definition of fractional calculus. The second and third chapters, respectively, look at the Riemann-Liouville definitions of the fractional integral and derivative. The fourth chapter looks at some fractional differential equations with an emphasis on the Laplace transform of the fractional integral and derivative. The last chapter considers two application problems—a mortgage problem and a decay-growth problem. The decay-growth problem prompts the use of an extended Putzer algorithm to evaluate , where is a matrix, and is the matrix Mittag-Leffler function. It is shown that when , the value of equals that of the matrix exponential function, , which is essential in solving the integer order differential equation . The new function, , is then used in solving the fractional differential equation , where Finally, a brief comparison is made between the fractional and integer order solutions. v C H APT E R 1 IN T R O DU C T I O N The concept of integration and differentiation is familiar to all who have studied elementary calculus. We know, for instance, that if , then integrating to the order results in , and integrating the same function to the order results in . Similarly, , and . However, what if we wanted to integrate our function to the order, or find its order derivative? How could we define our operations? Better still, would our results have a meaning or an application comparable to that of the familiar integer order operations? 1.1 The Origin of Fractional Calculus Fractional calculus owes its origin to a question of whether the meaning of a derivative to an integer order could be extended to still be valid when is not an integer. This question was first raised by L’Hopital on September 30th, 1695. On that day, in a letter to Leibniz, he posed a question about , Leibniz’s notation for the derivative of the linear function . L’Hopital curiously asked what the result would be if Leibniz responded that it would be “an apparent paradox, from which one day useful consequences will be drawn,” [5]. 1 2 Following this unprecedented discussion, the subject of fractional calculus caught the attention of other great mathematicians, many of whom directly or indirectly contributed to its development. They included Euler, Laplace, Fourier, Lacroix, Abel, Riemann and Liouville. In 1819, Lacroix became the first mathematician to publish a paper that mentioned a fractional derivative [3]. Starting with where m is a positive integer, Lacroix found the nth derivative, (1.1.1) And using Legendre’s symbol , for the generalized factorial, he wrote (1.1.2) Finally by letting and , he obtained (1.1.3) However, the first use of fractional operations was made not by Lacroix, but by Abel in 1823 [3]. He applied fractional calculus in the solution of an integral equation that arises in the formulation of the tautochrone problem—the problem of determining the shape of 3 the curve such that the time of descent of an object sliding down that curve under uniform gravity is independent of the object’s starting point. 1.2 Definition of Fractional Calculus Over the years, many mathematicians, using their own notation and approach, have found various definitions that fit the idea of a non-integer order integral or derivative. One version that has been popularized in the world of fractional calculus is the Riemann- Liouville definition. It is interesting to note that the Riemann-Liouville definition of a fractional derivative gives the same result as that obtained by Lacroix in equation (1.1.3). Since most of the other definitions of fractional calculus are largely variations of the Riemann-Liuoville version, it is this version that will be mostly addressed in this work. 1.3 Useful Mathematical
Recommended publications
  • Leibniz's Rule and Fubini's Theorem Associated with Hahn Difference
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE I S S N 2provided 3 4 7 -by1921 KHALSA PUBLICATIONS Volume 12 Number 06 J o u r n a l of Advances in Mathematics Leibniz’s rule and Fubini’s theorem associated with Hahn difference operators å Alaa E. Hamza † , S. D. Makharesh † † Jeddah University, Department of Mathematics, Saudi, Arabia † Cairo University, Department of Mathematics, Giza, Egypt E-mail: [email protected] å † Cairo University, Department of Mathematics, Giza, Egypt E-mail: [email protected] ABSTRACT In 1945 , Wolfgang Hahn introduced his difference operator Dq, , which is defined by f (qt ) f (t) D f (t) = , t , q, (qt ) t 0 where = with 0 < q <1, > 0. In this paper, we establish Leibniz’s rule and Fubini’s theorem associated with 0 1 q this Hahn difference operator. Keywords. q, -difference operator; q, –Integral; q, –Leibniz Rule; q, –Fubini’s Theorem. 1Introduction The Hahn difference operator is defined by f (qt ) f (t) D f (t) = , t , (1) q, (qt ) t 0 where q(0,1) and > 0 are fixed, see [2]. This operator unifies and generalizes two well known difference operators. The first is the Jackson q -difference operator which is defined by f (qt) f (t) D f (t) = , t 0, (2) q qt t see [3, 4, 5, 6]. The second difference operator which Hahn’s operator generalizes is the forward difference operator f (t ) f (t) f (t) = , t R, (3) (t ) t where is a fixed positive number, see [9, 10, 13, 14].
    [Show full text]
  • Arxiv:1901.11134V3
    Infinite series representation of fractional calculus: theory and applications Yiheng Weia, YangQuan Chenb, Qing Gaoc, Yong Wanga,∗ aDepartment of Automation, University of Science and Technology of China, Hefei, 230026, China bSchool of Engineering, University of California, Merced, Merced, 95343, USA cThe Institute for Automatic Control and Complex Systems, University of Duisburg-Essen, Duisburg 47057, Germany Abstract This paper focuses on the equivalent expression of fractional integrals/derivatives with an infinite series. A universal framework for fractional Taylor series is developedby expandingan analyticfunction at the initial instant or the current time. The framework takes into account of the Riemann–Liouville definition, the Caputo definition, the constant order and the variable order. On this basis, some properties of fractional calculus are confirmed conveniently. An intuitive numerical approximation scheme via truncation is proposed subsequently. Finally, several illustrative examples are presented to validate the effectiveness and practicability of the obtained results. Keywords: Taylor series; fractional calculus; singularity; nonlocality; variable order. 1. Introduction Taylor series has intensively developed since its introduction in 300 years ago and is nowadays a mature research field. As a powerful tool, Taylor series plays an essential role in analytical analysis and numerical calculation of a function. Interestingly, the classical Taylor series has been tied to another 300-year history tool, i.e., fractional calculus. This combination produces many promising and potential applications [1–4]. The original idea on fractional generalized Taylor series can be dated back to 1847, when Riemann formally used a series structure to formulate an analytic function [5]. This series was not proven and the related manuscript probably never intended for publishing.
    [Show full text]
  • A Generalized Fractional Power Series for Solving a Class of Nonlinear Fractional Integro-Differential Equation
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 September 2018 doi:10.20944/preprints201809.0476.v1 Article A Generalized Fractional Power Series for Solving a Class of Nonlinear Fractional Integro-Differential Equation Sirunya Thanompolkrang 1and Duangkamol Poltem 1,2,* 1 Department of Mathematics, Faculty of Science, Burapha University, Chonburi, 20131, Thailand; [email protected] 2 Centre of Excellence in Mathematics, Commission on Higher Education, Ministry of Education, Bangkok 10400, Thailand * Correspondence: [email protected]; Tel.: +6-638-103-099 Version September 25, 2018 submitted to Preprints 1 Abstract: In this paper, we investigate an analytical solution of a class of nonlinear fractional 2 integro-differential equation base on a generalized fractional power series expansion. The fractional 3 derivatives are described in the conformable’s type. The new approach is a modified form of the 4 well-known Taylor series expansion. The illustrative examples are presented to demonstrate the 5 accuracy and effectiveness of the proposed method. 6 Keywords: fractional power series; integro-differential equations; conformable derivative 7 1. Introduction 8 Fractional calculus and fractional differential equations are widely explored subjects thanks 9 to the great importance of scientific and engineering problems. For example, fractional calculus 10 is applied to model the fluid-dynamic traffics [1], signal processing [2], control theory [3], and 11 economics [4]. For more details and applications about fractional derivative, we refer the reader 12 to [5–8]. Many mathematical formulations contain nonlinear integro-differential equations with 13 fractional order. However, the integro-differential equations are usually difficult to solve analytically, 14 so it is required to obtain an efficient approximate solution.
    [Show full text]
  • What Is... Fractional Calculus?
    What is... Fractional Calculus? Clark Butler August 6, 2009 Abstract Differentiation and integration of non-integer order have been of interest since Leibniz. We will approach the fractional calculus through the differintegral operator and derive the differintegrals of familiar functions from the standard calculus. We will also solve Abel's integral equation using fractional methods. The Gr¨unwald-Letnikov Definition A plethora of approaches exist for derivatives and integrals of arbitrary order. We will consider only a few. The first, and most intuitive definition given here was first proposed by Gr¨unwald in 1867, and later Letnikov in 1868. We begin with the definition of a derivative as a difference quotient, namely, d1f f(x) − f(x − h) = lim dx1 h!0 h It is an exercise in induction to demonstrate that, more generally, n dnf 1 X n = lim (−1)j f(x − jh) dxn h!0 hn j j=0 We will assume that all functions described here are sufficiently differen- tiable. Differentiation and integration are often regarded as inverse operations, so d−1 we wish now to attach a meaning to the symbol dx−1 , what might commonly be referred to as anti-differentiation. However, integration of a function is depen- dent on the lower limit of integration, which is why the two operations cannot be regarded as truly inverse. We will select a definitive lower limit of 0 for convenience, so that, d−nf Z x Z xn−1 Z x2 Z x1 −n ≡ dxn−1 dxn−2 ··· dx1 f(x0)dx0 dx 0 0 0 0 1 By instead evaluating this multiple intgral as the limit of a sum, we find n N−1 d−nf x X j + n − 1 x = lim f(x − j ) dx−n N!1 N j N j=0 in which the interval [0; x] has been partitioned into N equal subintervals.
    [Show full text]
  • Elementary Calculus
    Elementary Calculus 2 v0 2g 2 0 v0 g Michael Corral Elementary Calculus Michael Corral Schoolcraft College About the author: Michael Corral is an Adjunct Faculty member of the Department of Mathematics at School- craft College. He received a B.A. in Mathematics from the University of California, Berkeley, and received an M.A. in Mathematics and an M.S. in Industrial & Operations Engineering from the University of Michigan. This text was typeset in LATEXwith the KOMA-Script bundle, using the GNU Emacs text editor on a Fedora Linux system. The graphics were created using TikZ and Gnuplot. Copyright © 2020 Michael Corral. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. Preface This book covers calculus of a single variable. It is suitable for a year-long (or two-semester) course, normally known as Calculus I and II in the United States. The prerequisites are high school or college algebra, geometry and trigonometry. The book is designed for students in engineering, physics, mathematics, chemistry and other sciences. One reason for writing this text was because I had already written its sequel, Vector Cal- culus. More importantly, I was dissatisfied with the current crop of calculus textbooks, which I feel are bloated and keep moving further away from the subject’s roots in physics. In addi- tion, many of the intuitive approaches and techniques from the early days of calculus—which I think often yield more insights for students—seem to have been lost.
    [Show full text]
  • HISTORICAL SURVEY SOME PIONEERS of the APPLICATIONS of FRACTIONAL CALCULUS Duarte Valério 1, José Tenreiro Machado 2, Virginia
    HISTORICAL SURVEY SOME PIONEERS OF THE APPLICATIONS OF FRACTIONAL CALCULUS Duarte Val´erio 1,Jos´e Tenreiro Machado 2, Virginia Kiryakova 3 Abstract In the last decades fractional calculus (FC) became an area of intensive research and development. This paper goes back and recalls important pio- neers that started to apply FC to scientific and engineering problems during the nineteenth and twentieth centuries. Those we present are, in alphabet- ical order: Niels Abel, Kenneth and Robert Cole, Andrew Gemant, Andrey N. Gerasimov, Oliver Heaviside, Paul L´evy, Rashid Sh. Nigmatullin, Yuri N. Rabotnov, George Scott Blair. MSC 2010 : Primary 26A33; Secondary 01A55, 01A60, 34A08 Key Words and Phrases: fractional calculus, applications, pioneers, Abel, Cole, Gemant, Gerasimov, Heaviside, L´evy, Nigmatullin, Rabotnov, Scott Blair 1. Introduction In 1695 Gottfried Leibniz asked Guillaume l’Hˆopital if the (integer) order of derivatives and integrals could be extended. Was it possible if the order was some irrational, fractional or complex number? “Dream commands life” and this idea motivated many mathematicians, physicists and engineers to develop the concept of fractional calculus (FC). Dur- ing four centuries many famous mathematicians contributed to the theo- retical development of FC. We can list (in alphabetical order) some im- portant researchers since 1695 (see details at [1, 2, 3], and posters at http://www.math.bas.bg/∼fcaa): c 2014 Diogenes Co., Sofia pp. 552–578 , DOI: 10.2478/s13540-014-0185-1 SOME PIONEERS OF THE APPLICATIONS . 553 • Abel, Niels Henrik (5 August 1802 - 6 April 1829), Norwegian math- ematician • Al-Bassam, M. A. (20th century), mathematician of Iraqi origin • Cole, Kenneth (1900 - 1984) and Robert (1914 - 1990), American physicists • Cossar, James (d.
    [Show full text]
  • Fractional Calculus
    faculty of mathematics and natural sciences Fractional Calculus Bachelor Project Mathematics October 2015 Student: D.E. Koning First supervisor: Dr. A.E. Sterk Second supervisor: Prof. dr. H.L. Trentelman Abstract This thesis introduces fractional derivatives and fractional integrals, shortly differintegrals. After a short introduction and some preliminaries the Gr¨unwald-Letnikov and Riemann-Liouville approaches for defining a differintegral will be explored. Then some basic properties of differintegrals, such as linearity, the Leibniz rule and composition, will be proved. Thereafter the definitions of the differintegrals will be applied to a few examples. Also fractional differential equations and one method for solving them will be discussed. The thesis ends with some examples of fractional differential equations and applications of differintegrals. CONTENTS Contents 1 Introduction4 2 Preliminaries5 2.1 The Gamma Function........................5 2.2 The Beta Function..........................5 2.3 Change the Order of Integration..................6 2.4 The Mittag-Leffler Function.....................6 3 Fractional Derivatives and Integrals7 3.1 The Gr¨unwald-Letnikov construction................7 3.2 The Riemann-Liouville construction................8 3.2.1 The Riemann-Liouville Fractional Integral.........9 3.2.2 The Riemann-Liouville Fractional Derivative.......9 4 Basic Properties of Fractional Derivatives 11 4.1 Linearity................................ 11 4.2 Zero Rule............................... 11 4.3 Product Rule & Leibniz's Rule................... 12 4.4 Composition............................. 12 4.4.1 Fractional integration of a fractional integral....... 12 4.4.2 Fractional differentiation of a fractional integral...... 13 4.4.3 Fractional integration and differentiation of a fractional derivative........................... 14 5 Examples 15 5.1 The Power Function......................... 15 5.2 The Exponential Function.....................
    [Show full text]
  • Lp-Solution to the Random Linear Delay Differential Equation with a Stochastic Forcing Term
    mathematics Article Lp-solution to the Random Linear Delay Differential Equation with a Stochastic Forcing Term Juan Carlos Cortés * and Marc Jornet Instituto Universitario de Matemática Multidisciplinar, Building 8G, access C, 2nd floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; [email protected] * Correspondence: [email protected] Received: 25 May 2020; Accepted: 18 June 2020; Published: 20 June 2020 Abstract: This paper aims at extending a previous contribution dealing with the random autonomous-homogeneous linear differential equation with discrete delay t > 0, by adding a random forcing term f (t) that varies with time: x0(t) = ax(t) + bx(t − t) + f (t), t ≥ 0, with initial condition x(t) = g(t), −t ≤ t ≤ 0. The coefficients a and b are assumed to be random variables, while the forcing term f (t) and the initial condition g(t) are stochastic processes on their respective time domains. The equation is regarded in the Lebesgue space Lp of random variables with finite p-th moment. The deterministic solution constructed with the method of steps and the method of variation of constants, which involves the delayed exponential function, is proved to be an Lp-solution, under certain assumptions on the random data. This proof requires the extension of the deterministic Leibniz’s integral rule for differentiation to the random scenario. Finally, we also prove that, when the delay t tends to 0, the random delay equation tends in Lp to a random equation with no delay. Numerical experiments illustrate how our methodology permits determining the main statistics of the solution process, thereby allowing for uncertainty quantification.
    [Show full text]
  • Integral and Differential Structure on the Free C∞-Ring Modality
    INTEGRAL AND DIFFERENTIAL STRUCTURE ON THE FREE C1-RING MODALITY Geoffrey CRUTTWELL Jean-Simon Pacaud LEMAY Rory B. B. LUCYSHYN-WRIGHT Resum´ e.´ Les categories´ integrales´ ont et´ e´ recemment´ developp´ ees´ comme homologues aux categories´ differentielles.´ En particulier, les categories´ inte-´ grales sont equip´ ees´ d’un operateur´ d’integration,´ appele´ la transformation integrale,´ dont les axiomes gen´ eralisent´ les identites´ d’integration´ de base du calcul comme l’integration´ par parties. Cependant, la litterature´ sur les categories´ integrales´ ne contient aucun exemple decrivant´ l’integration´ de fonctions lisses arbitraires : les exemples les plus proches impliquent l’inte-´ gration de fonctions polynomiales. Cet article comble cette lacune en develo-´ ppant un exemple de categorie´ integrale´ dont la transformation integrale´ agit sur des 1-formes differentielles´ lisses. De plus, nous fournissons un autre point de vue sur la structure differentielle´ de cet exemple cle,´ nous etudions´ les derivations´ et les coder´ elictions´ dans ce contexte et nous prouvons que les anneaux C1 libres sont des algebres` de Rota-Baxter. Abstract. Integral categories were recently developed as a counterpart to differential categories. In particular, integral categories come equipped with an integration operator, known as an integral transformation, whose axioms generalize the basic integration identities from calculus such as integration by parts. However, the literature on integral categories contains no example that captures integration of arbitrary smooth functions: the closest are exam- ples involving integration of polynomial functions. This paper fills in this gap G.C,J-S.P.L,R.L-W INT.& DIFF. STRUCT. ON C1-RING MOD. by developing an example of an integral category whose integral transforma- tion operates on smooth 1-forms.
    [Show full text]
  • Fractional Calculus Approach in the Study of Instability Phenomenon in Fluid Dynamics J
    Palestine Journal of Mathematics Vol. 1(2) (2012) , 95–103 © Palestine Polytechnic University-PPU 2012 FRACTIONAL CALCULUS APPROACH IN THE STUDY OF INSTABILITY PHENOMENON IN FLUID DYNAMICS J. C. Prajapati, A. D. Patel, K. N. Pathak and A. K. Shukla Communicated by Jose Luis Lopez-Bonilla MSC2010 Classifications: 76S05, 35R11, 33E12 . Keywords: Fluid flow through porous media, Laplace transforms, Fourier sine transform, Mittag - Leffler function, Fox-Wright function, Fractional time derivative. Authors are indeed extremely grateful to the referees for valuable suggestions which have helped us improve the paper. Abstract. The work carried out in this paper is an interdisciplinary study of Fractional Calculus and Fluid Me- chanics i.e. work based on Mathematical Physics. The aim of this paper is to generalize the instability phenomenon in fluid flow through porous media with mean capillary pressure by transforming the problem into Fractional partial differential equation and solving it by using Fractional Calculus and Special functions. 1 Introduction and Preliminaries The subject of fractional calculus deals with the investigations of integrals and derivatives of any arbitrary real or complex order, which unify and extend the notions of integer-order derivative and n-fold integral. It has gained importance and popularity during the last four decades or so, mainly due to its vast potential of demonstrated ap- plications in various seemingly diversified fields of science and engineering, such as fluid flow, rheology, diffusion, relaxation, oscillation, anomalous diffusion, reaction-diffusion, turbulence, diffusive transport akin to diffusion, elec- tric networks, polymer physics, chemical physics, electrochemistry of corrosion, relaxation processes in complex systems, propagation of seismic waves, dynamical processes in self-similar and porous structures and others.
    [Show full text]
  • Efficient Numerical Methods for Fractional Differential Equations
    Von der Carl-Friedrich-Gauß-Fakultat¨ fur¨ Mathematik und Informatik der Technischen Universitat¨ Braunschweig genehmigte Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) von Marc Weilbeer Efficient Numerical Methods for Fractional Differential Equations and their Analytical Background 1. Referent: Prof. Dr. Kai Diethelm 2. Referent: Prof. Dr. Neville J. Ford Eingereicht: 23.01.2005 Prufung:¨ 09.06.2005 Supported by the US Army Medical Research and Material Command Grant No. DAMD-17-01-1-0673 to the Cleveland Clinic Contents Introduction 1 1 A brief history of fractional calculus 7 1.1 The early stages 1695-1822 . 7 1.2 Abel's impact on fractional calculus 1823-1916 . 13 1.3 From Riesz and Weyl to modern fractional calculus . 18 2 Integer calculus 21 2.1 Integration and differentiation . 21 2.2 Differential equations and multistep methods . 26 3 Integral transforms and special functions 33 3.1 Integral transforms . 33 3.2 Euler's Gamma function . 35 3.3 The Beta function . 40 3.4 Mittag-Leffler function . 42 4 Fractional calculus 45 4.1 Fractional integration and differentiation . 45 4.1.1 Riemann-Liouville operator . 45 4.1.2 Caputo operator . 55 4.1.3 Grunw¨ ald-Letnikov operator . 60 4.2 Fractional differential equations . 65 4.2.1 Properties of the solution . 76 4.3 Fractional linear multistep methods . 83 5 Numerical methods 105 5.1 Fractional backward difference methods . 107 5.1.1 Backward differences and the Grunw¨ ald-Letnikov definition . 107 5.1.2 Diethelm's fractional backward differences based on quadrature .
    [Show full text]
  • Fractional Calculus: Theory and Applications
    Fractional Calculus: Theory and Applications Edited by Francesco Mainardi Printed Edition of the Special Issue Published in Mathematics www.mdpi.com/journal/mathematics Fractional Calculus: Theory and Applications Fractional Calculus: Theory and Applications Special Issue Editor Francesco Mainardi MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Francesco Mainardi University of Bologna Italy Editorial Office MDPI St. Alban-Anlage 66 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Mathematics (ISSN 2227-7390) from 2017 to 2018 (available at: http://www.mdpi.com/journal/ mathematics/special issues/Fractional Calculus Theory Applications) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-206-8 (Pbk) ISBN 978-3-03897-207-5 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is c 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/). Contents About the Special Issue Editor ...................................... vii Francesco Mainardi Fractional Calculus: Theory and Applications Reprinted from: Mathematics 2018, 6, 145, doi: 10.3390/math6090145 ...............
    [Show full text]