Planetary Nebulae
Total Page:16
File Type:pdf, Size:1020Kb
Spectroscopy of Gaseous Nebulae in Galaxies M. J. Barlow, Dept of Physics & Astronomy, CL O TLINE: (i) Overview of ionized nebulae: HII regions, planetary nebulae and supernova remnants (ii) Determining nebular temperatures, densities and ionic abundances from collisionally excited lines (iii) Measuring element abundances in external galaxies (iv) Probing nebulae with deep spectra: s.process element forbidden lines and recombination lines from C, N, O and Ne. (v) Heavy element abundances from forbidden lines vs. those from optical recombination lines Photoioni)ed Nebulae: two main types HII regions: the brightest examples are the result of the formation of massive stars (> 20 Msun), which then ionize and disperse the natal cloud. The ionizing stars have temperatures of 2 ,000 K " Tstar " 0,000 K. Planetary Nebulae: the final stage in the life of low and intermediate mass stars before they become white dwarfs. The outer envelope is ejected during the red giant ,-. phase and then photoionized by the hot remnant star, with 2 ,000 K " Tstar " 200,000 K. The Orion Nebula (M40) ,n /00 region blister at the front of the 1rion Molecular 2loud Tstar 6 38,000K Large 9uantities of dust can be present in /00 regions 5 b ILL 5 I LL I 5 h b a #$ % D J K L JJ M % N J$ J# OL J LL J a J a JPP J , starburst galaxy with many /00 regions VLT image of NGC 1020. /00 regions show up as white in this image. Spectroscopic studies of heavy element forbidden lines have enabled element abundance gradients to be measured as a function of galactocentric distance for many galaxies. % N N $Q L$ I- LR S N T b h M h N Uh LV 22LLL M h N Uh LLV 22LW$LW$P M h$ N Uh LLLV 22#PPW % va Y 9O M ISS $$L#$Q Y N $ Planetary Nebulae % M N N N # % K $ MJ $MJ Y I LL I LL N R tb ] N N RD % IO O N ] N % J O # a O W a t N M O % ILL M JPP [aT tb %_ N IO IO N N M /ow to find extragalactic PNe Up to 00 Lsun in narrow (1 km/s) [1000A 008, lineB use narrowCband filter O N M JL [ J# [ C [O O a J UhLLLV WR b JO$ c CbIa M tb M N tb M M Od Mosaic imagers D automated detection methods now allow hundreds of intergalactic PN candidates to be found in a single run (Eeldmeier et al. 2003, 2004B 1kamura et al. 2003B ,rnaboldi et al. 2003). Mendez et al. (1998) detected 3 PNe in the elliptical N-2 4698 using filter images and slitless spectra. The former gave the [1000A PN Luminosity Eunction. The latter gave radial velocities for 31 of the PNe, allowing an accurate Mass/Light ratio to be derived for the galaxy. Artist3s impression of a dusty torus around an Active Galactic Nucleus ,ccretion disk around central massive black hole generates a hard, powerClaw, ultraviolet and ICray radiation field. Circinus Galaxy 4 an AGN seen at a favourable angle 0nfrared Space 1bservatory 2.4C4 um spectrum % O eO a Lf KcoronalL lines Many ionic fine JJ structure lines Silicate dust absorption Supernova Remnants N 2ollisionally 0onized Nebulae % N Sbf N c % N N gN _ N ] N N % Sbf T R N N N 9Y f N ] SN JPWR [aT T C N O % Y LMJW cJ c$ Y % eO a O 2handraD/STDSpitzer Cas A SNR 61780 AD Type IIb CCSN Collisionally excited lines (CELs): gas temperatures, gas densities and ionic abundances (e.g. ID//D) can all be derived from these relatively strong lines, for both photoionized and collisionally ionized nebulae e.g. :OIII; optical forbidden line ratios and infrared fine.structure line ratios can provide measures of a) electron temperatures, by comparing the fluxes of lines from levels with different excitation energies (e.g. 4272A and 500CD) b) electron density diagnostics (e.g. the 50um to 88um line ratio) using flux rations from lines with similar, or negligible, excitation energies b) O0E abundances relative to HE, by comparing with hydrogen recombination line fluxes T M L N % C[ C[ M N N N T M N UhLL V Uh LLL V h h$ N % M I JL Lt h N h$ LJ h$ h % M O N h LL h h LLL h$ % Y ] 6 J OJ N 6 J OJ :O III; 0p0 87C9C 5 2.4 1010 S0 :O II; 0p2 1777 7 1771 5800C 1/0 0 o4.4 10 58005 2/0 P 7.4 107 7012C 1 0.5 10C S0 04C0 0201 0221 C200 C219 C221 C220 4272 2 28704 2/ 0 o4.0 10 285C7 0 D 1.0 102 091C0 1D 7.9 105 5/ 0 0 4921 4959 500C 2C09 2C07 440 0 2500 2 4 o 172 1 P 500 0 S 2/0 0 0 883m503m Necrit Necrit (H) Tex (H) (cm.2) Tex (cm.2) C N OM N N R N N OM S N N N ≤©©£°¨ $• ≥©©•≥ f N M N ] M N N 9 RO R] M OM M N h$ LthK$O iKKd h$ Lt hK O RN b N N N % T] Y R]n b N ] n o R] K b o T] O ] d O ] Y TfL%LTR[ 59bSL%L9S T N N N ] R OM T] N ] N R] IN T] T] K R] % b N T] b C b d b N ] Y b] N ] b]R] C b i b N M N ] N N L M T] N bb Y T M N ] J ] $ M 9] N M T] b OJ b O$ C b i b OJ bb b d b O$ ] b N Y N C b b J i b i b $ J b $ bb $ J 9M UhLLV LW$RcLW$PR USLLV WLJcWJR UhLLLV $c. :O III; 0p0 87C9C 5 2.4 1010 [1 000A S0 1777 1771 Density diagnostic line ratios 7012C 1 0.5 10C S0 0201 0221 4272 091C0 1 7.9 105 D0 4921 4959 500C 440 0 2 2500 172 1 P 500 0 0 883m 503m Ne T (H) crit ex (cm.2) Temperature diagnostic line ratios :O III; 0p0 87C9C 5 2.4 1010 S0 1777 1771 7012C 1 0.5 10C S0 0201 0221 4272 091C0 1 7.9 105 D0 4921 4959 500C 440 0 2 2500 172 1 P 500 0 0 883m 503m Ne T (H) crit ex (cm.2) t b 4 S a d LI f LI ] 4 % M OLI % T N b N N I 4 JJ % N n % $ N LIc Y N C N N % N N $ [ J L Y JJ % 9Y D R 9Y JJ Y t N 9 ] 4 S 9 K O LI ] K% R N a M C % N N I p 4 t N 9 LI ] % Y h N v ] % N D N v b K fn D b v f v J$ - - % f K b b .(Te), where .(Te) N $ N J gOO_. - R M .(Te) - C10 C3/4 3 C1 .(Te) O 2 10 Te cm s JL L v N ] N b M L N M N M N M N N b N e N ] % OL b e Y N b e % M w] ] N -3 -1 ()C cm s Rij = Ne Ni ij(Te) /] S M 9] N [] -3 -1 L () C cm s ij = Rij Eij = Ne Ni ij(Te) Eij ergs /] n C / 1/2 / cm3 ij (T e ) = ( ij T e ) exp (E ij kT e ) b Y] Y % M N a M N q9] M C e b e K eb r e r e b r K rb I r tJ r N L N h h$ $ $ .