2.7.6 Excitation-Autoionisation in the Previous Section We Showed How a Collision of a Free Electron with an Ion Can Lead to Ionisation

Total Page:16

File Type:pdf, Size:1020Kb

2.7.6 Excitation-Autoionisation in the Previous Section We Showed How a Collision of a Free Electron with an Ion Can Lead to Ionisation 2.7.6 Excitation-Autoionisation In the previous section we showed how a collision of a free electron with an ion can lead to ionisation. In principle, if the free electron has insufficient energy (E<I), there will be no ionisation. However, even in that case it is sometimes possible to ionise, but in a more complicated way. The process is as follows. The collision can bring one of the electrons in the outermost shells in a higher quantum level (excitation). In most cases, the ion will return to its ground level by a radiative transition. But in some cases the excited state is unstable, and a radiationless Auger transition can occur. Later on we will treat the Auger process in more detail, but shortly speaking the vacancy that is left behind by the excited electron is being filled by another electron from one of the outermost shells, while the excited electron is able to leave the ion (or a similar, process with the role of both electrons reversed). Because of energy conservation, this process only occurs if the excited electron comes from one of the inner shells (the ionisation potential barrier must be taken anyhow). The process is in particular important for Li-like and Na-like ions, and for several other individual atoms and ions. Figure 2.16: The Excitation-Autoionisation process for a Li-like ion. As an example we treat here Li-like ions (see Fig. 2.16). In that case the most important contribution comes from a 1s–2p excitation. The effective cross section Q for excitation from 1s to 2p followed by auto-ionisation can be approximated by (EH = 13.6 eV): 2 2 Z EH Q = πa0 2B 2 ΩH (2.38) Zeff (1s) E in which a0 is the Bohr radius, and Zeff = Z 0.43 is the effective charge that a 1s electron experiences because of the presence− of the other 1s electron and the 2s electron in the Li-like ion. Just as before, E is the energy of the free electron that causes the excitation. Further, B is the so-called branching ratio. It gives the probability that after the excitation there will be an auto-ionisation (the other possibility was a radiative transition). The following approximation for B can be used: 1 B (2.39) ≃ 1+(Z/17)3 Finally, the scaled hydrogenic collision strength is given by: 0.18 1.20 Z2Ω 2.22 ln ǫ +0.67 + (2.40) H ≃ − ǫ ǫ2 49 where ǫ E/E and the excitation energy E I I . Similar to the case of ≡ ex ex ≡ 1s − 2p direct ionisation, it is straightforward to average the excitation-autoionisation cross section over a Maxwellian electron distribution. Figure 2.17: Collisional ionisation Figure 2.18: Collisional ionisation cross section for O vi. cross section for Fe xvi. In Figs. 2.17 and 2.18 we show the total collisional ionisation cross section (direct + excitation-autoionisation) for an ion in the Li electronic sequence and the Na isoelectronic sequence. Clearly, for Fe xvi the excitation autoionisation process is very important. The increasing importance of excitation autoionisation relative to direct ionisation is also illustrated in Fig. 2.19. Figure 2.19: Ratio between the Excitation-Autoionisation cross section to the Direct Ionisation cross section for Na-like ions. From Arnaud & Rothenflug (1985). 50 2.7.7 Photoionisation Figure 2.20: Photoionisation cross section in barn (10−28 m−2) for Fe i (left) and Fe xvi (right). The p and d states (dashed and dotted) have two lines each because of splitting into two sublevels with different j. This process is very similar to direct ionisation. The difference is that in the case of photoionisation a photon instead of an electron is causing the ionisation. Further, the effective cross section is in general different from that for direct ionisation. As an example Fig. 2.20 shows the cross section for neutral iron and Na-like iron. It is evident that for the more highly ionised iron the so-called ”edges” (ionisation potentials) are found at higher energies than for neutral iron. Contrary to the case of direct ionisation, the cross section at threshold for photoionisation is not zero. The effective cross section just above the edges sometimes changes rapidly (the so-called Cooper minima and maxima). Contrary to the direct ionisation, all the inner shells have now the largest cross section. For the K-shell one can approximate for E>I σ(E) σ (I/E)3 (2.41) ≃ 0 where as before I is the edge energy. For a given ionising spectrum F (E) (photons per unit volume per unit energy) the total number of photoionsations follows as ∞ CPI = c niσ(E)F (E)dE. (2.42) Z 0 For hydrogenlike ions one can write: 2 64πng(E, n)αa0 I 3 σPI = ( ) , (2.43) 3√3Z2 E where n is the principal quantum number, α the fine structure constant and A0 the Bohr radius. The gaunt factor g(E, n) is of order unity and varies only slowly. It has been calculated and tabulated by Karzas & Latter (1961). The above equation is also applicable to excited states of the atom, and is a good approximation for all excited atoms or ions where n is larger than the corresponding value for the valence electron. 51 2.7.8 Compton ionisation Scattering of a photon on an electron generally leads to energy transfer from one of the particles to the other. In most cases only scattering on free electrons is considered. But Compton scattering also can occur on bound electrons. If the energy transfer from the photon to the electron is large enough, the ionisation potential can be overcome leading to ionisation. This is the Compton ionisation process. Figure 2.21: Compton ionisation cross section for neutral atoms of H, He, C, N, O, Ne and Fe. In the Thomson limit the differential cross section for Compton scattering is given by dσ 3σ = T (1 + cos2 θ), (2.44) dΩ 16π with θ the scattering angle and σ the Thomson cross section (6.65 10−29 m−2). T × The energy transfer ∆E during the scattering is given by (E is the photon energy): E2(1 cos θ) ∆E = − . (2.45) m c2 + E(1 cos θ) e − Only those scatterings where ∆E>I contribute to the ionisation. This defines a critical angle θc, given by: m c2I cos θ =1 e . (2.46) c − E2 IE − For E I we have σ(E) σT (all scatterings lead in that case to ionisation) and ≫ → 2 further for θc π we have σ(E) 0. Because for most ions I mec , this last condition occurs→ for E Im c2→/2 I. See Fig. 2.21 for an≪ example of some ≃ e ≫ cross sections. In general, Comptonp ionisation is important if the ionising spectrum contains a significant hard X-ray contribution, for which the Compton cross section is larger than the steeply falling photoionisation cross section. One sees immediately that for E I we have σ(E) σ (all scatterings lead ≫ → T in that case to ionisation) and further that for θc π we have σ(E) 0. Because for most ions I m c2, this last condition occurs→ for E Im c2→/2 I. See ≪ e ≃ e ≫ Fig. 2.21 for an example of some cross sections. p exercise 2.9. Estimate for which energy Compton ionisation becomes more im- portant than photoionisation for neutral iron. 52 2.7.9 Radiative recombination Radiative recombination is the reverse process of photoionisation. A free electron is captured by an ion while emitting a photon. The released radiation is the so-called free-bound continuum emission. It is relatively easy to show that there is a simple relation between the photoionisation cross section σbf (E) and the recombination cross section σfb, namely the Milne-relation: 2 E gnσbf (E) σfb(v)= 2 2 (2.47) mec mev where gn is the statistical weight of the quantum level into which the electron is cap- 2 tured (for an empty shell this is gn =2n ). By averaging over a Maxwell distribution one gets the recombination-coefficient to level n: ∞ Rn = nine vf(v)σfb(v)dv. (2.48) Z 0 1 2 Of course there is energy conservation, so E = 2 mev + I. exercise 2.10. Demonstrate that for the photoionisation cross section (2.43) and 2 for g = 1, constant and gn =2n : 128√2πn3αa2I3eI/kT n n R = 0 i e E (I/kT ) (2.49) n 2 3 1 3√3mekTZ kT mec With the asymptotic relations (2.13) and (2.14) it is seen that − 1 kT I : R T 2 (2.50) ≪ n ∼ kT I : R ln(I/kT )T −3/2 (2.51) ≫ n ∼ Therefore for T 0 the recombination coefficient approaches infinity: a cool plasma → is hard to ionise. For T the recombination coefficient goes to zero, because of the Milne relation (v →∞) and because of the sharp decrease of the photoionisation cross section for high→∞ energies. As a rough approximation we can use further that I (Z/n)2. Substituting ∼ −1 this we find that for kT I (recombining plasma’s) Rn n , while for kT I ≪−3 ∼ ≫ (ionising plasma’s) Rn n . In recombining plasma’s therefore in particular many higher excited levels will∼ be populated by the recombination, leading to significantly stronger line emission (see Sect. 2.10). On the other hand, in ionising plasmas (such as supernova remnants) recombination mainly occurs to the lowest levels. Note that for recombination to the ground level the approximation (2.49) cannot be used (the hydrogen limit), but instead one should use the exact photoionisation cross section of the valence electron.
Recommended publications
  • HI Balmer Jump Temperatures for Extragalactic HII Regions in the CHAOS Galaxies
    HI Balmer Jump Temperatures for Extragalactic HII Regions in the CHAOS Galaxies A Senior Thesis Presented in Partial Fulfillment of the Requirements for Graduation with Research Distinction in Astronomy in the Undergraduate Colleges of The Ohio State University By Ness Mayker The Ohio State University April 2019 Project Advisors: Danielle A. Berg, Richard W. Pogge Table of Contents Chapter 1: Introduction ............................... 3 1.1 Measuring Nebular Abundances . 8 1.2 The Balmer Continuum . 13 Chapter 2: Balmer Jump Temperature in the CHAOS galaxies .... 16 2.1 Data . 16 2.1.1 The CHAOS Survey . 16 2.1.2 CHAOS Balmer Jump Sample . 17 2.2 Balmer Jump Temperature Determinations . 20 2.2.1 Balmer Continuum Significance . 20 2.2.2 Balmer Continuum Measurements . 21 + 2.2.3 Te(H ) Calculations . 23 2.2.4 Photoionization Models . 24 2.3 Results . 26 2.3.1 Te Te Relationships . 26 − 2.3.2 Discussion . 28 Chapter 3: Conclusions and Future Work ................... 32 1 Abstract By understanding the observed proportions of the elements found across galaxies astronomers can learn about the evolution of life and the universe. Historically, there have been consistent discrepancies found between the two main methods used to measure gas-phase elemental abundances: collisionally excited lines and optical recombination lines in H II regions (ionized nebulae around young star-forming regions). The origin of the discrepancy is thought to hinge primarily on the strong temperature dependence of the collisionally excited emission lines of metal ions, principally Oxygen, Nitrogen, and Sulfur. This problem is exacerbated by the difficulty of measuring ionic temperatures from these species.
    [Show full text]
  • 1.1 Questions Chapter 1
    i 1.1 Questions Chapter 1 Question 1.5 Question 1.5 What is H I? And H II and H III? Do these spectra have spectral lines? What is the 21 cm line associated with? Does Fe XII have spectral lines? If so, in which wavelength region? H I = the spectrum of neutral hydrogen (proton + electron). H II = the spectrum of ionized hydrogen (H+, free proton). H III does not exist. H I contains the Lyman-, Balmer-, Paschen-, Pfundt- etc. series, see Figure 1.4 H II does not have spectral lines, there is no bound electron that can do bb transi- tions. The 21 cm line is part of the H I spectrum but is not part of a series of bb transitions of the electron; this transition is a flip of the spin of the electron in the ground state. The energy difference between these two spin states is ∆Espin = 6 × 10−6 eV. Fe XII is the spectrum of Fe11+. This spectrum contains lines because the twelfth, thirteenth electron, etc. still can make bb transitions. These inner-shell electrons are strongly bound, therefore the ∆Emn is large and the spectral lines have short wavelengths. Figure 8.11 shows an example of the emission line of Fe XII at 195 A.˚ Question 1.6 Question 1.6 Compare the observed wavelengths of the Na I D lines in Figure 1.2 and the Lyα line in Figure 1.3 with those of the associated bb transitions in the relevant term diagrams (see Appendix). What is your conclusion? Figure 1.3 shows a large number of spectral lines with λ < 3530 A:˚ the Lyα forest.
    [Show full text]
  • E R U P T I V E S T a R S S P E C T R O S C O
    Erupti ve stars spectroscopy Catacl ys mics, Sy mbi otics, Novae, Supernovae ARAS Eruptive Stars Information letter n° 14 #2015‐02 28‐02‐2015 Observations of February 2015 Contents News Two novae discovered in february Novae p. 2‐8 Nova Sco 2015 = PNV J17032620‐3504140 Nova Cyg 2014 Nova Cen 2013 Ungoing observations 2015 February 11.837 UT at mag 8.1 Nova Del 2013 rsising in the morning sky by Tadashi Kojima Nova Sco 2015 Nova Sgr 2015 Spectra obtained by C. Buil Nova Sgr 2015 = PNV J18142514‐2554343 Symbiotics p. 9‐22 2015 February 12.840 at mag 11.2 by Hideo Nishimura, Survey of V694 Mon Koichi Nishiyama CH Cygni campaign : fisrt spectrum of the new season the 1th of and Fujio Kabashima march ( see next issue) Cataclysmics p. 23‐27 SS Aur in outburst : a complete coverage of the outburst in February by P. Somgogyi and J. Guarro U Gem outburst late February Notes from Steve shore : p. 28‐31 Recent publications about eruptive stars p. 32‐34 ARAS Spectroscopy Extra : Cat’s eye nebula spectroscopy, 150 years after Huggins, ARAS Web page by Olivier Thizy http://www.astrosurf.com/aras/ p. 35 ‐ 47 ARAS Forum http://www.spectro‐aras.com/forum/ ARAS list https://groups.yahoo.com/neo/groups/sp Acknowledgements : ectro‐l/info V band light curves from AAVSO photometric data base ARAS preliminary data base http://www.astrosurf.com/aras/Aras_Data Authors : Base/DataBase.htm F. Teyssier, S. Shore, A. Skopal, P. Somogyi, D. Boyd, J. Edlin, J. Guarro, ARAS BeAM Franck Boubault http://arasbeam.free.fr/?lang=en ARAS Eruptive Stars Information Letter
    [Show full text]
  • Atomic Excitation Potentials
    ATOMIC EXCITATION POTENTIALS PURPOSE In this lab you will study the excitation of mercury atoms by colliding electrons with the atoms, and confirm that this excitation requires a specific quantity of energy. THEORY In general, atoms of an element can exist in a number of either excited or ionized states, or the ground state. This lab will focus on electron collisions in which a free electron gives up just the amount of kinetic energy required to excite a ground state mercury atom into its first excited state. However, it is important to consider all other processes which constantly change the energy states of the atoms. An atom in the ground state may absorb a photon of energy exactly equal to the energy difference between the ground state and some excited state, whereas another atom may collide with an electron and absorb some fraction of the electron's kinetic energy which is the amount needed to put that atom in some excited state (collisional excitation). Each atom in an excited state then spontaneously emits a photon and drops from a higher excited state to a lower one (or to the ground state). Another possibility is that an atom may collide with an electron which carries away kinetic energy equal to the atomic excitation energy so that the atom ends up in, say, the ground state (collisional deexcitation). Lastly, an atom can be placed into an ionized state (one or more of its electrons stripped away) if the collision transfers energy greater than the ionization potential of the atom. Likewise an ionized atom can capture a free electron.
    [Show full text]
  • Arxiv:1012.0600V1 [Astro-Ph.SR] 2 Dec 2010 a Ulctossre,Vl ,2018 Publisher ?, the Vol
    Title : will be set by the publisher Editors : will be set by the publisher EAS Publications Series, Vol. ?, 2018 NON-LTE MODEL ATOM CONSTRUCTION Norbert Przybilla1 Abstract. Model atoms are an integral part in the solution of non- LTE problems. They comprise the atomic input data that are used to specify the statistical equilibrium equations and the opacities and emissivities of radiative transfer. A realistic implementation of the structure and the processes governing the quantum-mechanical system of an atom is decisive for the successful modelling of observed spectra. We provide guidelines and suggestions for the construction of robust and comprehensive model atoms as required in non-LTE line-formation computations for stellar atmospheres. Emphasis is given on the use of standard stars for testing model atoms under a wide range of plasma conditions. 1 Introduction Astrophysical plasmas like stellar atmospheres, gaseous nebulae or accretion disks are not in any sense closed systems, as they emit photons into interstellar space. Therefore, the thermodynamic state of such plasmas is in general not described well by the equilibrium relations of statistical mechanics and thermodynamics for local values of temperature and density, i.e. by local thermodynamic equilibrium (LTE). The presence of an intense radiation field, which in character is very dif- ferent from the equilibrium Planck distribution, results in deviations from LTE (non-LTE) because of strong interactions between photons and particles. The thermodynamic state is then determined by the principle of statistical equilib- rium. All microscopic processes that produce transitions from one atomic state arXiv:1012.0600v1 [astro-ph.SR] 2 Dec 2010 to another need to be considered in detail via the rate equations.
    [Show full text]
  • Molecular Excitation in the Interstellar Medium: Recent Advances In
    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes Evelyne Roueff∗,† and François Lique∗,‡ Laboratoire Univers et Théories, Observatoire de Paris, 92190, Meudon, France, and LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 540, 76058, Le Havre, France E-mail: [email protected]; [email protected] Contents 1 Introduction 3 2 Collisional excitation 7 2.1 Methods . 9 2.1.1 Theory . 9 2.1.2 Potential energy surfaces . 10 2.1.3 Scattering Calculations . 13 arXiv:1310.8259v1 [physics.chem-ph] 30 Oct 2013 2.1.4 Experiments . 17 2.2 H2, CO and H2O molecules as benchmark systems . 19 2.2.1 H2 ....................................... 19 ∗To whom correspondence should be addressed †Laboratoire Univers et Théories, Observatoire de Paris, 92190, Meudon, France ‡LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 540, 76058, Le Havre, France 1 2.2.2 CO . 22 2.2.3 H2O...................................... 27 2.3 Other recent results . 30 2.3.1 CN / HCN / HNC . 31 2.3.2 CS / SiO / SiS / SO / SO2 .......................... 34 2.3.3 NH3 /NH................................... 38 2.3.4 O2 / OH / NO . 40 2.3.5 C2 /C2H/C3 /C4 / HC3N.......................... 41 2.3.6 Complex Organic Molecules : H2CO / HCOOCH3 / CH3OH . 45 + + + + + 2.3.7 Cations : CH / SiH / HCO /N2H / HOCO . 49 + 2.3.8 H3 ...................................... 52 − − 2.3.9 Anions : CN /C2H ............................ 52 2.4 Isotopologues . 55 3 Radiative and chemical excitation 57 3.1 Radiative effects . 57 3.2 Chemical effects . 59 3.3 Examples .
    [Show full text]
  • Photoionization Models for the Semi-Forbidden C III] 1909
    Draft of October 13, 2016 Preprint typeset using LATEX style AASTeX6 v. 1.0 PHOTOIONIZATION MODELS FOR THE SEMI-FORBIDDEN C iii] λ1909 EMISSION IN STAR-FORMING GALAXIES A. E. Jaskot, 1 & S. Ravindranath 2 1Department of Astronomy, Smith College, Northampton, MA 01063, USA. 2Space Telescope Science Institute, Baltimore, MD 21218, USA. ABSTRACT The increasing neutrality of the intergalactic medium at z > 6 suppresses Lyα emission, and spectroscopic confirmation of galaxy redshifts requires detecting alternative UV lines. The strong [C iii] λ1907+C iii] λ1909 doublet frequently observed in low-metallicity, actively star-forming galax- ies is a promising emission feature. We present CLOUDY photoionization model predictions for C iii] equivalent widths (EWs) and line ratios as a function of starburst age, metallicity, and ionization parameter. Our models include a range of C/O abundances, dust content, and gas density. We also examine the effects of varying the nebular geometry and optical depth. Only the stellar models that incorporate binary interaction effects reproduce the highest observed C iii] EWs. The spectral energy distributions from the binary stellar population models also generate observable C iii] over a longer timescale relative to single-star models. We show that diagnostics using C iii] and nebular He ii λ1640 can separate star-forming regions from shock-ionized gas. We also find that density-bounded systems should exhibit weaker C iii] EWs at a given ionization parameter, and C iii] EWs could therefore select candidate Lyman continuum-leaking systems. In almost all models, C iii] is the next strongest line at < 2700 A˚ after Lyα, and C iii] reaches detectable levels for a wide range of conditions at low metallicity.
    [Show full text]
  • The H II Region/PDR Connection: Self-Consistent Calculations of Physical
    THE H II REGION/PDR CONNECTION: SELF-CONSISTENT CALCULATIONS OF PHYSICAL CONDITIONS IN STAR-FORMING REGIONS N. P. Abel,1 G. J. Ferland,1 G. Shaw, 1 P. A. M. van Hoof2 1University of Kentucky, Department of Physics & Astronomy, Lexington, KY 40506; [email protected], [email protected], [email protected] 2Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussels, Belgium [email protected] Abstract We have performed a series of calculations designed to reproduce infrared diagnostics used to determine physical conditions in star forming regions. We self-consistently calculate the thermal and chemical structure of an H II region and photodissociation region (PDR) that are in pressure equilibrium. This differs from previous work, which used separate calculations for each gas phase. Our calculations span a wide range of stellar temperatures, gas densities, and ionization parameters. We describe improvements made to the spectral synthesis code Cloudy that made these calculations possible. These include the addition of a molecular network with ~1000 reactions involving 68 molecular species and improved treatment of the grain physics. Data from the Spitzer First Look Survey, along with other archives, are used to derive important physical characteristics of the H II region and PDR. These include stellar temperatures, electron densities, ionization parameters, UV radiation flux (G0), and PDR density. Finally, we calculate the contribution of the H II region to PDR emission line diagnostics, which allows for a more accurate determination of physical conditions in the PDR. 1 Introduction A major goal of infrared missions such as Spitzer, SOFIA, Hershel, and JWST is to understand the physical processes in galaxies and local regions of star formation.
    [Show full text]
  • Remote Oxygen Sensing by Ionospheric Excitation (ROSIE)
    Ann. Geophys., 27, 2183–2189, 2009 www.ann-geophys.net/27/2183/2009/ Annales © Author(s) 2009. This work is distributed under Geophysicae the Creative Commons Attribution 3.0 License. Remote Oxygen Sensing by Ionospheric Excitation (ROSIE) K. S. Kalogerakis1, T. G. Slanger1, E. A. Kendall2,*, T. R. Pedersen3, M. J. Kosch4, B. Gustavsson5, and M. T. Rietveld6 1Molecular Physics Laboratory, SRI International, Menlo Park, CA, USA 2Center for Geospace Studies, SRI International, Menlo Park, CA, USA 3Space Vehicles Directorate, Air Force Research Laboratory, Hanscom AFB, MA, USA 4Communication Systems, Lancaster University, Lancaster, UK 5Department of Physics and Technology, University of Tromsø, Norway 6EISCAT Scientific Association, Ramfjordmoen, Norway *formerly Gerken Received: 1 October 2008 – Revised: 29 April 2009 – Accepted: 29 April 2009 – Published: 13 May 2009 Abstract. The principal optical observable emission re- 1 Introduction sulting from ionospheric modification (IM) experiments is the atomic oxygen red line at 630 nm, originating from the 1 3 1 It has been a prime goal of optical aeronomy to make re- O( D– P) transition. Because the O( D) atom has a long ra- mote measurements of atmospheric emissions and deduce diative lifetime, it is sensitive to collisional relaxation and the atomic and molecular composition of the region being an observed decay faster than the radiative rate can be at- observed. A pre-eminent ionospheric emission, observed tributed to collisions with atmospheric species. In contrast at all latitudes is that of the O(1D–3P) oxygen red lines at to the common practice of ignoring O-atoms in interpreting 630.0 and 636.4 nm.
    [Show full text]
  • Collisional Excitations of C II P3/2 Will Usually Be Followed by Radiative Decays, Removing Energy from the Gas
    Chapter Seventeen Collisional Excitation Collisional excitation is important in the ISM for two reasons: 1. It puts ions, atoms, and molecules into excited states from which they may decay radiatively; these radiative losses result in cooling of the gas. 2. It puts species into excited states that can serve as diagnostics of the physical conditions in the gas. If the level populations can be determined observation- ally, from either emission lines or absorption lines, we may be able to infer the density, temperature, or radiationfield in the region where the diagnostic species is located. Throughout this chapter and the rest of the book, we will be making use of rate coefficients and transition rates. We will use the notationk if σv i f ≡� � → for collisional rate coefficients, andA if A i f to denote radiative transition ≡ → probabilities, where thefirst subscript ink if orA if denotes the initial state, and the second thefinal state. For energy-level differences, we will setE E E . u� ≡ u − � 17.1 Two-Level Atom In some cases, it is sufficient to consider only the ground state and thefirst excited state – when attention is limited to these two states, we speak of the “two-level atom.” Considerfirst the case where there is no background radiation present, and the only processes acting are collisional excitation, collisional deexcitation, and radiative decay. Let the ground state be level 0, and the excited state be level 1. Letn j be the number density of the species in levelj. For collisional excitation by some species (e.g., electrons) with densityn c, the population of the excited state must satisfy dn 1 =n n k n n k n A .
    [Show full text]
  • Ionization Cross Sections in the Collision Between Two Ground State Hydrogen Atoms at Low Energies
    atoms Article Ionization Cross Sections in the Collision between Two Ground State Hydrogen Atoms at Low Energies Saed J. Al Atawneh 1 , Örs Asztalos 2, Borbála Szondy 2, Gerg˝oI. Pokol 2,3 and Károly T˝okési 1,* 1 Institute for Nuclear Research, ATOMKI, 4032 Debrecen, Hungary; [email protected] 2 Institute of Nuclear Techniques, Budapest University of Technology and Economics, M˝uegyetemrkp. 3, 1111 Budapest, Hungary; [email protected] (Ö.A.); [email protected] (B.S.); [email protected] (G.I.P.) 3 Centre for Energy Research, Konkoly-Thege Miklos 29-33, 1121 Budapest, Hungary * Correspondence: [email protected] Received: 10 May 2020; Accepted: 17 June 2020; Published: 22 June 2020 Abstract: The interaction between two ground state hydrogen atoms in a collision was studied using the four-body classical trajectory Monte Carlo method. We present the total cross sections for the dominant channels, namely for the single ionization of the target, the ionization of the projectile, resulting from pure ionization, and also from the electron transfer (capture or loss) processes. We also present cross sections for the complete break of the system, resulting in the final channel for four free particles. The calculations were carried out at low energies, relevant to the interest of fusion research. We present our cross sections in the projectile energy range between 2.0 keV and 100 keV and compare them with previously obtained theoretical and experimental results. Keywords: classical trajectory Monte Carlo method; ionization; four-body collision 1. Introduction Beam emission spectroscopy (BES) is an active plasma diagnostic tool used for density measurements in fusion research [1].
    [Show full text]
  • Spitzer Mid-Infrared Spectroscopic Observations of Planetary Nebulae
    Mon. Not. R. Astron. Soc. 000, 1–?? (2016) Printed 18 September 2018 (MN LATEX style file v2.2) Spitzer mid-infrared spectroscopic observations of planetary nebulae⋆ H. Mata1†, G. Ramos-Larios2, M.A. Guerrero3, A. Nigoche-Netro2, J.A. Toala´3,4, X. Fang3, G. Rubio1, S.N. Kemp2, S.G. Navarro2, and L.J. Corral2 1Centro Universitario de Ciencias Exactas e Ingenier´ıas, Universidad de Guadalajara, Av. Revoluci´on 1500, Guadalajara, Jalisco, Mexico 2Instituto de Astronom´ıa y Meteorolog´ıa, CUCEI, Universidad de Guadalajara, Av. Vallarta No. 2602, Col. Arcos Vallarta, 44130 Guadalajara, Jalisco, Mexico 3Instituto de Astrof´ısica de Andaluc´ıa, IAA-CSIC, C/ Glorieta de la Astronom´ıa s/n, 18008 Granada, Spain 4Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan Received 2015 May 09; in original form 2014 August 18 ABSTRACT We present Spitzer Space Telescope archival mid-infrared (mid-IR) spectroscopy of a sample of eleven planetary nebulae (PNe). The observations, acquired with the Spitzer In- frared Spectrograph (IRS), cover the spectral range 5.2-14.5 µm that includes the H2 0-0 S(2) to S(7) rotational emission lines. This wavelength coverage has allowed us to derive the Boltz- mann distribution and calculate the H2 rotational excitation temperature (Tex). The derived excitation temperatures have consistent values ≃900±70 K for different sources despite their different structural components. We also report the detection of mid-IR ionic lines of [Ar III], [S IV], and [Ne II] in most objects, and polycyclic aromatic hydrocarbon (PAH) features in a few cases. The decline of the [Ar III]/[Ne II] line ratio with the stellar effective temperature can be explained either by a true neon enrichment or by high density circumstellar regions of PNe that presumably descend from higher mass progenitor stars.
    [Show full text]