Tutorial on P2P Systems

Total Page:16

File Type:pdf, Size:1020Kb

Tutorial on P2P Systems P2P Systems Keith W. Ross Dan Rubenstein Polytechnic University Columbia University http://cis.poly.edu/~ross http://www.cs.columbia.edu/~danr [email protected] [email protected] Thanks to: B. Bhattacharjee, A. Rowston, Don Towsley © Keith Ross and Dan Rubenstein 1 Defintion of P2P 1) Significant autonomy from central servers 2) Exploits resources at the edges of the Internet P storage and content P CPU cycles P human presence 3) Resources at edge have intermittent connectivity, being added & removed 2 It’s a broad definition: U P2P file sharing U DHTs & their apps P Napster, Gnutella, P Chord, CAN, Pastry, KaZaA, eDonkey, etc Tapestry U P2P communication U P Instant messaging P2P apps built over P Voice-over-IP: Skype emerging overlays P PlanetLab U P2P computation P seti@home Wireless ad-hoc networking not covered here 3 Tutorial Outline (1) U 1. Overview: overlay networks, P2P applications, copyright issues, worldwide computer vision U 2. Unstructured P2P file sharing: Napster, Gnutella, KaZaA, search theory, flashfloods U 3. Structured DHT systems: Chord, CAN, Pastry, Tapestry, etc. 4 Tutorial Outline (cont.) U 4. Applications of DHTs: persistent file storage, mobility management, etc. U 5. Security issues: vulnerabilities, solutions, anonymity U 6. Graphical structure: random graphs, fault tolerance U 7. Experimental observations: measurement studies U 8. Wrap up 5 1. Overview of P2P U overlay networks U P2P applications U worldwide computer vision 6 Overlay networks overlay edge 7 Overlay graph Virtual edge U TCP connection U or simply a pointer to an IP address Overlay maintenance U Periodically ping to make sure neighbor is still alive U Or verify liveness while messaging U If neighbor goes down, may want to establish new edge U New node needs to bootstrap 8 More about overlays Unstructured overlays U e.g., new node randomly chooses three existing nodes as neighbors Structured overlays U e.g., edges arranged in restrictive structure Proximity U Not necessarily taken into account 9 Overlays: all in the application layer application Tremendous design transport network flexibility data link physical P Topology, maintenance P Message types P Protocol P Messaging over TCP or UDP Underlying physical net is transparent to developer application P But some overlays exploit application transport transport network proximity network data link data link physical physical 10 Examples of overlays U DNS U BGP routers and their peering relationships U Content distribution networks (CDNs) U Application-level multicast P economical way around barriers to IP multicast U And P2P apps ! 11 1. Overview of P2P U overlay networks U current P2P applications P P2P file sharing & copyright issues P Instant messaging / voice over IP P P2P distributed computing U worldwide computer vision 12 P2P file sharing U Alice runs P2P client U Asks for “Hey Jude” application on her U Application displays notebook computer other peers that have U Intermittently copy of Hey Jude. connects to Internet; U Alice chooses one of gets new IP address the peers, Bob. for each connection U File is copied from U Registers her content Bob’s PC to Alice’s in P2P system notebook: P2P U While Alice downloads, other users uploading from Alice. 13 Millions of content servers Blue NPR ER Hey Jude Star Wars Magic Flute 14 Killer deployments U Napster P disruptive; proof of concept U Gnutella P open source U KaZaA/FastTrack P Today more KaZaA traffic then Web traffic! U eDonkey / Overnet P Becoming popular in Europe P Appears to use a DHT Is success due to massive number of servers, or simply because content is free? 15 P2P file sharing software U Allows Alice to open up U Allows users to search a directory in her file nodes for content system based on keyword P Anyone can retrieve a matches: file from directory P Like Google P Like a Web server U Allows Alice to copy Seems harmless files from other users’ to me ! open directories: P Like a Web client 16 Copyright issues (1) Direct infringement: U end users who download or upload copyrighted works direct infringers Indirect infringement: U Hold an individual accountable for actions of others U Contributory U Vicarious 17 Copyright issues (2) Contributory infringer: Vicarious infringer: U knew of underlying U able to control the direct infringement, direct infringers (e.g., and terminate user U caused, induced, or accounts), and materially contributed U derived direct financial to direct infringement benefit from direct infringement (money, more users) (knowledge not necessary) 18 Copyright issues (3) Betamax VCR defense Guidelines for P2P developers U Manufacturer not U total control so that liable for contributory there’s no direct infringement infringement U “capable of substantial or non-infringing use” U no control over users – no U But in Napster case, remote kill switch, court found defense automatic updates, actively does not apply to all promote non-infringing vicarious liability uses of product U Disaggregate functions: indexing, search, transfer U No customer support 19 Instant Messaging U Alice runs IM client on U Alice initiates direct her PC TCP connection with U Intermittently Bob: P2P connects to Internet; U Alice and Bob chat. gets new IP address for each connection U Registers herself with U Can also be voice, “system” video and text. U Learns from “system” that Bob in her buddy We’ll see that Skype list is active is a VoIP P2P system 20 P2P Distributed Computing seti@home U Peer sets up TCP U Search for ET connection to central intelligence computer, downloads U Central site collects chunk radio telescope data U Peer does FFT on U Data is divided into chunk, uploads results, work chunks of 300 gets new chunk Kbytes U User obtains client, Not peer to peer, but exploits which runs in backgrd resources at network edge 21 1. Overview of P2P U overlay networks U P2P applications U worldwide computer vision 22 Worldwide Computer Vision Alice’s home computer: U Alice’s computer is U Working for biotech, moonlighting matching gene sequences U Payments come from U DSL connection downloading biotech company, movie telescope data system and backup service U Contains encrypted Your PC is only a component fragments of thousands of non-Alice files in the “big” computer U Occasionally a fragment is read; it’s part of a movie someone is watching in Paris U Her laptop is off, but it’s backing up others’ files 23 Worldwide Computer (2) Anderson & Kubiatowicz: Challenges Internet-scale OS U heterogeneous hosts U Thin software layer running U security on each host & central U payments coordinating system Central server complex running on ISOS server U complex needed to ensure privacy of sensitive data U allocating resources, U coordinating currency ISOS server complex transfer maintains databases of resource descriptions, U Supports data processing & usage policies, and task online services descriptions 24 2. Unstructured P2P File Sharing U Napster U Gnutella U KaZaA U BitTorrent U search theory U dealing with flash crowds 25 Napster U Paradigm shift U not the first (c.f. probably Eternity, from Ross Anderson in Cambridge) U but instructive for what it gets right, and U also wrong… U also had a political message…and economic and legal… 26 Napster U program for sharing files over the Internet U a “disruptive” application/technology? U history: P 5/99: Shawn Fanning (freshman, Northeasten U.) founds Napster Online music service P 12/99: first lawsuit P 3/00: 25% UWisc traffic Napster P 2/01: US Circuit Court of Appeals: Napster knew users violating copyright laws P 7/01: # simultaneous online users: Napster 160K, Gnutella: 40K, Morpheus (KaZaA): 300K 27 Napster U judge orders Napster 8M to pull plug in July ‘01 U other file sharing apps 6M take over! 4M bits per sec 2M 0.0 gnutella napster fastrack (KaZaA) 28 Napster: how did it work U Application-level, client-server protocol over point-to-point TCP U Centralized directory server Steps: U connect to Napster server U upload your list of files to server. U give server keywords to search the full list with. U select “best” of correct answers. (pings) 29 Napster napster.com 1. File list centralized directory and IP address is uploaded 30 Napster napster.com User 2. centralized directory requests search at server. Query and results 31 Napster napster.com 3. User pings centralized directory hosts that apparently have data. Looks for pings best transfer pings rate. 32 Napster napster.com 4. User chooses centralized directory server Napster’s centralized Retrieves server farm had file difficult time keeping up with traffic 33 2. Unstructured P2P File Sharing U Napster U Gnutella U KaZaA U BitTorrent U search theory U dealing with flash crowds 34 Distributed Search/Flooding 35 Distributed Search/Flooding 36 Gnutella U focus: decentralized method of searching for files P central directory server no longer the bottleneck P more difficult to “pull plug” U each application instance serves to: P store selected files P route queries from and to its neighboring peers P respond to queries if file stored locally P serve files 37 Gnutella U Gnutella history: P 3/14/00: release by AOL, almost immediately withdrawn P became open source P many iterations to fix poor initial design (poor design turned many people off) U issues: P how much traffic does one query generate? P how many hosts can it support at once? P what is the latency associated with querying? P is there a bottleneck? 38 Gnutella: limited scope query Searching by flooding: U if you don’t have the file you want, query 7 of your neighbors. U if they don’t have it, they contact 7 of their neighbors, for a maximum hop count of 10.
Recommended publications
  • A Content-Addressable Network for Similarity Search in Metric Spaces Fabrizio Falchi
    University of Pisa Masaryk University Faculty of Informatics Department of Department of Information Engineering Information Technologies Doctoral Course in Doctoral Course in Information Engineering Informatics Ph.D. Thesis A Content-Addressable Network for Similarity Search in Metric Spaces Fabrizio Falchi Supervisor Supervisor Supervisor Lanfranco Lopriore Fausto Rabitti Pavel Zezula 2007 Abstract Because of the ongoing digital data explosion, more advanced search paradigms than the traditional exact match are needed for content- based retrieval in huge and ever growing collections of data pro- duced in application areas such as multimedia, molecular biology, marketing, computer-aided design and purchasing assistance. As the variety of data types is fast going towards creating a database utilized by people, the computer systems must be able to model hu- man fundamental reasoning paradigms, which are naturally based on similarity. The ability to perceive similarities is crucial for recog- nition, classification, and learning, and it plays an important role in scientific discovery and creativity. Recently, the mathematical notion of metric space has become a useful abstraction of similarity and many similarity search indexes have been developed. In this thesis, we accept the metric space similarity paradigm and concentrate on the scalability issues. By exploiting computer networks and applying the Peer-to-Peer communication paradigms, we build a structured network of computers able to process similar- ity queries in parallel. Since no centralized entities are used, such architectures are fully scalable. Specifically, we propose a Peer- to-Peer system for similarity search in metric spaces called Met- ric Content-Addressable Network (MCAN) which is an extension of the well known Content-Addressable Network (CAN) used for hash lookup.
    [Show full text]
  • Content Addressable Network (CAN) Is an Example of a DHT Based on a D-Dimensional Torus
    Overlay and P2P Networks Structured Networks and DHTs Prof. Sasu Tarkoma 6.2.2014 Contents • Today • Semantic free indexing • Consistent Hashing • Distributed Hash Tables (DHTs) • Thursday (Dr. Samu Varjonen) • DHTs continued • Discussion on geometries Rings Rings are a popular geometry for DHTs due to their simplicity. In a ring geometry, nodes are placed on a one- dimensional cyclic identifier space. The distance from an identifier A to B is defined as the clockwise numeric distance from A to B on the circle Rings are related with tori and hypercubes, and the 1- dimensional torus is a ring. Moreover, a k-ary 1-cube is a k-node ring The Chord DHT is a classic example of an overlay based on this geometry. Each node has a predecessor and a successor on the ring, and an additional routing table for pointers to increasingly far away nodes on the ring Chord • Chord is an overlay algorithm from MIT – Stoica et. al., SIGCOMM 2001 • Chord is a lookup structure (a directory) – Resembles binary search • Uses consistent hashing to map keys to nodes – Keys are hashed to m-bit identifiers – Nodes have m-bit identifiers • IP-address is hashed – SHA-1 is used as the baseline algorithm • Support for rapid joins and leaves – Churn – Maintains routing tables Chord routing I Identifiers are ordered on an identifier circle modulo 2m The Chord ring with m-bit identifiers A node has a well determined place within the ring A node has a predecessor and a successor A node stores the keys between its predecessor and itself The (key, value) is stored on the successor
    [Show full text]
  • Overlook: Scalable Name Service on an Overlay Network
    Overlook: Scalable Name Service on an Overlay Network Marvin Theimer and Michael B. Jones Microsoft Research, Microsoft Corporation One Microsoft Way Redmond, WA 98052, USA {theimer, mbj}@microsoft.com http://research.microsoft.com/~theimer/, http://research.microsoft.com/~mbj/ Keywords: Name Service, Scalability, Overlay Network, Adaptive System, Peer-to-Peer, Wide-Area Distributed System Abstract 1.1 Use of Overlay Networks This paper indicates that a scalable fault-tolerant name ser- Existing scalable name services, such as DNS, tend to rely vice can be provided utilizing an overlay network and that on fairly static sets of data replicas to handle queries that can- such a name service can scale along a number of dimensions: not be serviced out of caches on or near a client. Unfortu- it can be sized to support a large number of clients, it can al- nately, static designs don’t handle flash crowd workloads very low large numbers of concurrent lookups on the same name or well. We want a design that enables dynamic addition and sets of names, and it can provide name lookup latencies meas- deletion of data replicas in response to changing request loads. ured in seconds. Furthermore, it can enable updates to be Furthermore, in order to scale, we need a means by which the made pervasively visible in times typically measured in sec- changing set of data replicas can be discovered without requir- onds for update rates of up to hundreds per second. We ex- ing global changes in system routing knowledge. plain how many of these scaling properties for the name ser- Peer-to-peer overlay routing networks such as Tapestry vice are obtained by reusing some of the same mechanisms [24], Chord [22], Pastry [18], and CAN [15] provide an inter- that allowed the underlying overlay network to scale.
    [Show full text]
  • D3.5 Design and Implementation of P2P Infrastructure
    INNOVATION ACTION H2020 GRANT AGREEMENT NUMBER: 825171 WP3 – Vision Materialisation and Technical Infrastructure D3.5 – Design and implementation of P2P infrastructure Document Info Contractual Delivery Date: 31/12/2019 Actual Delivery Date: 31/12/2019 Responsible Beneficiary: INOV Contributing Beneficiaries: UoG Dissemination Level: Public Version: 1.0 Type: Final This project has received funding from the European Union’s H2020 research and innovation programme under the grant agreement No 825171 ` DOCUMENT INFORMATION Document ID: D3.5: Design and implementation of P2P infrastructure Version Date: 31/12/2019 Total Number of Pages: 36 Abstract: This deliverable describes the EUNOMIA P2P infrastructure, its design, the EUNOMIA P2P APIs and a first implementation of the P2P infrastructure and the corresponding APIs made available for the remaining EUNOMIA modules to start integration (for the 1st phase). Keywords: P2P design, P2P infrastructure, IPFS AUTHORS Full Name Beneficiary / Organisation Role INOV INESC INOVAÇÃO INOV Overall Editor University of Greenwich UoG Contributor REVIEWERS Full Name Beneficiary / Organisation Date University of Nicosia UNIC 23/12/2019 VERSION HISTORY Version Date Comments 0.1 13/12/2019 First internal draft 0.6 22/12/2019 Complete draft for review 0.8 29/12/2019 Final draft following review 1.0 31/12/2019 Final version to be released to the EC Type of deliverable PUBLIC Page | ii H2020 Grant Agreement Number: 825171 Document ID: WP3 / D3.5 EXECUTIVE SUMMARY This deliverable describes the P2P infrastructure that has been implemented during the first phase of the EUNOMIA to provide decentralized support for storage, communication and security functions. It starts with a review of the main existing P2P technologies, where each one is analysed and a selection of candidates are selected to be used in the project.
    [Show full text]
  • Effective Manycast Messaging for Kademlia Network
    Effective Manycast Messaging for Kademlia Network Lubos Matl Tomas Cerny Michael J. Donahoo Czech Technical University Czech Technical University Baylor University Charles square 13, 121 35 Charles square 13, 121 35 Waco, TX, US Prague 2, CZ Prague 2, CZ [email protected] [email protected] [email protected] ABSTRACT General Terms Peer-to-peer (P2P) communication plays an ever-expanding Measurement, Reliability, Performance, Experimentation role in critical applications with rapidly growing user bases. In addition to well-known P2P systems for data sharing Keywords (e.g., BitTorrent), P2P provides the core mechanisms in VoIP (e.g., Skype), distributed currency (e.g., BitCoin), etc. Distributed systems, performance, communication, P2P, There are many communication commonalities in P2P ap- DHT, key-based search plications; consequently, we can factor these communication primitives into overlay services. Such services greatly sim- 1. INTRODUCTION plify P2P application development and even allow P2P in- P2P networking is a widely-known architectural pattern frastructures to host multiple applications, instead of each for distributed systems. P2P has been applied to a variety of having its own network. Note well that such services must be applications, including file sharing (BitTorrent [10]), video both self-scaling and robust to meet the needs of large, ad- or audio streaming (SplitStream [5], Coolstream [22]), par- hoc user networks. One such service is Distributed Hash Ta- allel computation, online payment systems (Bitcoin [16]), ble (DHT) providing a dictionary-like location service, useful or voice-over-IP services (Skype). All these applications in many types of P2P applications. Building on the DHT demonstrate that the architecture is important and useful primitives for search and store, we can add even more power- for multiple domains.
    [Show full text]
  • One Ring to Rule Them All: Service Discovery and Binding in Structured Peer-To-Peer Overlay Networks
    One Ring to Rule them All: Service Discovery and Binding in Structured Peer-to-Peer Overlay Networks Miguel Castro Peter Druschel Anne-Marie Kermarrec Antony Rowstron Microsoft Research, Rice University, Microsoft Research, Microsoft Research, 7 J J Thomson Close, 6100 Main Street, 7 J J Thomson Close, 7 J J Thomson Close, Cambridge, MS-132, Houston, Cambridge, Cambridge, CB3 0FB, UK. TX 77005, USA. CB3 0FB, UK. CB3 0FB, UK. [email protected] [email protected] [email protected] [email protected] One Ring to rule them all. One Ring to find them. One Ring to bring In these systems a live node in the overlay to each key them all. And in the darkness bind them. J.R.R. Tolkien and provide primitives to send a message to a key. Mes- Abstract sages are routed to the live node that is currently responsi- ble for the destination key. Keys are chosen from a large space and each node is assigned an identifier (nodeId) cho- Self-organizing, structured peer-to-peer (p2p) overlay sen from the same space. Each node maintains a routing networks like CAN, Chord, Pastry and Tapestry offer a table with nodeIds and IP addresses of other nodes. The novel platform for a variety of scalable and decentralized protocols use these routing tables to assign keys to live distributed applications. These systems provide efficient nodes. For instance, in Pastry, a key is assigned to the live and fault-tolerant routing, object location, and load bal- node with nodeId numerically closest to the key. ancing within a self-organizing overlay network.
    [Show full text]
  • Distributed Systems – Lectures
    377 P2P Systems 11.1 Introduction & overview 11 Peer-to-Peer Systems1 11.1 Introduction & overview Client-server Model • Clients and servers each with distinct roles • The server and the network become the bottlenecks and points of failure Peer-to-peer Model “Peer-to-Peer (P2P) is a way of structuring distributed applications such that the individual nodes have symmetric roles. Rather than being divided into clients and servers each with quite distinct roles, in P2P applications a node may act as both a client and a server.” (Excerpt from the Charter of Peer-to-Peer Research Group, IETF/IRTF, June 24, 2003 http://www.irtf.org/charters/p2prg.html) 1Textbook Chapter 10 378 P2P Systems 11.1 Introduction & overview • Peers play similar roles • No distinction of responsibilities Key characteristics of P2P Systems: • Ensures that each user contributes resources to the system • All the nodes have the same functional capabilities and responsibilities • Their correct operation does not depend on the existence of any centrally- administered systems • They can be designed to offer a limited degree of anonymity to the providers and users of resources • A key issue: placement of data across many hosts – efficiency 379 P2P Systems 11.1 Introduction & overview – load balancing – availability Generations • Early services – DNS, Netnews/Usenet – Xerox Grapevine name/mail service – Lamport’s part-time parliament algorithm for distributed consesnus – Bayou replicated storage system – classless inter-domain IP routing algorithm • 1st generation – centralized
    [Show full text]
  • Tapestry: a Resilient Global-Scale Overlay for Service Deployment Ben Y
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 41 Tapestry: A Resilient Global-Scale Overlay for Service Deployment Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, Member, IEEE, and John D. Kubiatowicz, Member, IEEE Abstract—We present Tapestry, a peer-to-peer overlay routing delivery to mobile or replicated endpoints in the presence of infrastructure offering efficient, scalable, location-independent instability in the underlying infrastructure. As a result, a DOLR routing of messages directly to nearby copies of an object or network provides a simple platform on which to implement service using only localized resources. Tapestry supports a generic decentralized object location and routing applications program- distributed applications—developers can ignore the dynamics ming interface using a self-repairing, soft-state-based routing of the network except as an optimization. Already, Tapestry has layer. This paper presents the Tapestry architecture, algorithms, enabled the deployment of global-scale storage applications and implementation. It explores the behavior of a Tapestry such as OceanStore [4] and multicast distribution systems such deployment on PlanetLab, a global testbed of approximately 100 as Bayeux [5]; we return to this in Section VI. machines. Experimental results show that Tapestry exhibits stable Tapestry is a peer-to-peer (P2P) overlay network that pro- behavior and performance as an overlay, despite the instability of the underlying network layers. Several widely distributed vides high-performance, scalable, and location-independent applications have been implemented on Tapestry, illustrating its routing of messages to close-by endpoints, using only localized utility as a deployment infrastructure.
    [Show full text]
  • 0 to 10K in 20 Seconds: Bootstrapping Large-Scale DHT Networks
    0 to 10k in 20 seconds: Bootstrapping Large-scale DHT networks Jae Woo Lee∗, Henning Schulzrinne∗, Wolfgang Kellerer† and Zoran Despotovic† ∗ Department of Computer Science, Columbia University, New York, USA {jae,hgs}@cs.columbia.edu † DoCoMo Communications Laboratories Europe, Munich, Germany {kellerer,despotovic}@docomolab-euro.com Abstract—A handful of proposals address the problem of of computers starting up at the same time. In fact, a large bootstrapping a large DHT network from scratch, but they fraction of computers connected to the Internet today routinely all forgo the standard DHT join protocols in favor of their reboot at the same time when they receive a periodic operating own distributed algorithms that build routing tables directly. Motivating their algorithms, the proposals make a perfunctory systems update. In August 2007, one such massive reboot claim that the standard join protocols are not designed to handle triggered a hidden bug in the Skype client software, causing the huge number of concurrent join requests involved in such a world-wide failure of the Skype voice-over-IP network for a bootstrapping scenario. Moreover, the proposals assume a two days [2]. A DHT-based overlay multicast system such as pre-existing unstructured overlay as a starting point for their SplitStream [3] is another example. A large number of users algorithms. We find the assumption somewhat unrealistic. We take a step back and reexamine the performance of the may join the overlay for a live streaming of a popular event. standard DHT join protocols. Starting with nothing other than A few proposals address the problem of bootstrapping a a well-known bootstrap server, when faced with a large number DHT from scratch [4]–[8], but they all forgo the standard DHT of nodes joining nearly simultaneously, can the standard join join protocols in favor of their own distributed algorithms that algorithms form a stable DHT overlay? If so, how quickly? Our build routing tables directly.
    [Show full text]
  • One Ring to Rule Them All: Service Discovery and Binding in Structured Peer-To-Peer Overlay Networks
    One Ring to Rule them All: Service Discovery and Binding in Structured Peer-to-Peer Overlay Networks Miguel Castro Peter Druschel Anne-Marie Kermarrec Antony Rowstron Microsoft Research, Rice University, Microsoft Research, Microsoft Research, 7 J J Thomson Close, 6100 Main Street, 7 J J Thomson Close, 7 J J Thomson Close, Cambridge, MS-132, Houston, Cambridge, Cambridge, CB3 0FB, UK. TX 77005, USA. CB3 0FB, UK. CB3 0FB, UK. [email protected] [email protected] [email protected] [email protected] One Ring to rule them all. One Ring to find them. One Ring to bring In these systems a live node in the overlay to each key them all. And in the darkness bind them. J.R.R. Tolkien and provide primitives to send a message to a key. Mes- Abstract sages are routed to the live node that is currently responsi- ble for the destination key. Keys are chosen from a large space and each node is assigned an identifier (nodeId) cho- Self-organizing, structured peer-to-peer (p2p) overlay sen from the same space. Each node maintains a routing networks like CAN, Chord, Pastry and Tapestry offer a table with nodeIds and IP addresses of other nodes. The novel platform for a variety of scalable and decentralized protocols use these routing tables to assign keys to live distributed applications. These systems provide efficient nodes. For instance, in Pastry, a key is assigned to the live and fault-tolerant routing, object location, and load bal- node with nodeId numerically closest to the key. ancing within a self-organizing overlay network.
    [Show full text]
  • Topology-Aware Routing in Structured Peer-To-Peer Overlay Networks
    Topology-aware routing in structured peer-to-peer overlay networks ¡ ¢ Miguel Castro Peter Druschel Y. Charlie Hu Antony Rowstron Microsoft Research, 7 J J Thomson Close, Cambridge, CB3 0FB, UK. ¡ Rice University, 6100 Main Street, MS-132, Houston, TX 77005, USA. ¢ Purdue University, 1285 EE Building, West Lafayette, IN 47907, USA. Abstract tant distinction lies in the approach they take to consider- ing and exploiting proximity in the underlying Internet. Structured peer-to-peer (p2p) overlay networks like Chord in its original design, for instance, does not con- CAN, Chord, Pastry and Tapestry offer a novel platform sider network proximity at all. As a result, its protocol for a variety of scalable and decentralized distributed ap- for maintaining the overlay network is very light-weight, plications. They provide efficient and fault-tolerant rout- but messages may travel arbitrarily long distances in the ing, object location and load balancing within a self- Internet in each routing hop. organizing overlay network. One important aspect of In a version of CAN, each node measures its network these systems is how they exploit network proximity in delay to a set of landmark nodes, in an effort to deter- the underlying Internet. We present a study of topology- mine its relative position in the Internet and to construct aware routing approaches in p2p overlays, identify prox- an Internet topology-aware overlay. Tapestry and Pastry imity neigbor selection as the most promising technique, construct a topology-aware overlay by choosing nearby and present an improved design in Pastry. Results ob- nodes for inclusion in their routing tables.
    [Show full text]
  • A Decentralized User-Friendly Peer-To-Peer File-Sharing System
    TinyP2P: A Decentralized User-Friendly Peer-to-Peer File-Sharing System Submitted in partial fullment of the requirements of the degree of Bachelor of Science (Honours) of Rhodes University Nichola Reid Grahamstown, South Africa November 2015 Abstract Peer-to-Peer is said to be the next era of the internet, enabling the development of highly ecient and scalable distributed applications. File sharing is a popular online activity car- ried out by millions of users every day, but le sharing applications face several challenges to uptake, including availability, freeloading and legality issues. This paper explores these challenges, and investigates the viability of a purely decentralized application based on a Distributed Hash Table. We look at Human Computer Interaction, user interface goals and end user perspectives in order to achieve usability. We conclude that it is viable to develop a lightweight application to facilitate le sharing and communication in a user- friendly way, without the restriction of connecting to a central server or registering an account. Acknowledgements I would like to thank my supervisor, Mr Yusuf Motara, for his guidance and assistance throughout the project. I would like to thank him, in addition to Mr Karl van der Schy and Mr Christopher Morley, for the loan of two virtual machines to assist with developing and testing the application. Thank you to Caro Watkins, the Departmental Manager at the Hamilton Computer Sci- ence and Information Systems Department at Rhodes, for assisting me with distributing my survey as well as being helpful throughout my degree. I would also like to thank my parents for their nancial and emotional support I would like to acknowledge the nancial and technical support of Telkom SA, Tellabs, Easttel, Bright Ideas 39, THRIP and NRF SA (UID 75107) through the Telkom Centre of Excellence in the Department of Computer Science at Rhodes University.
    [Show full text]