A Review of Single-Cell Adhesion Force Kinetics and Applications

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Single-Cell Adhesion Force Kinetics and Applications cells Review A Review of Single-Cell Adhesion Force Kinetics and Applications Ashwini Shinde 1 , Kavitha Illath 1, Pallavi Gupta 1, Pallavi Shinde 1, Ki-Taek Lim 2 , Moeto Nagai 3 and Tuhin Subhra Santra 1,* 1 Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; [email protected] (A.S.); [email protected] (K.I.); [email protected] (P.G.); [email protected] (P.S.) 2 Department of Biosystems Engineering, Kangwon National University, Chuncheon-Si, Gangwon-Do 24341, Korea; [email protected] 3 Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan; [email protected] * Correspondence: [email protected]; Tel.: +91-044-2257-4747 Abstract: Cells exert, sense, and respond to the different physical forces through diverse mechanisms and translating them into biochemical signals. The adhesion of cells is crucial in various develop- mental functions, such as to maintain tissue morphogenesis and homeostasis and activate critical signaling pathways regulating survival, migration, gene expression, and differentiation. More impor- tantly, any mutations of adhesion receptors can lead to developmental disorders and diseases. Thus, it is essential to understand the regulation of cell adhesion during development and its contribution to various conditions with the help of quantitative methods. The techniques involved in offering different functionalities such as surface imaging to detect forces present at the cell-matrix and deliver quantitative parameters will help characterize the changes for various diseases. Here, we have briefly reviewed single-cell mechanical properties for mechanotransduction studies using standard and recently developed techniques. This is used to functionalize from the measurement of cellular Citation: Shinde, A.; Illath, K.; deformability to the quantification of the interaction forces generated by a cell and exerted on its Gupta, P.; Shinde, P.; Lim, K.-T.; surroundings at single-cell with attachment and detachment events. The adhesive force measurement Nagai, M.; Santra, T.S. A Review of for single-cell microorganisms and single-molecules is emphasized as well. This focused review Single-Cell Adhesion Force Kinetics should be useful in laying out experiments which would bring the method to a broader range of and Applications. Cells 2021, 10, 577. research in the future. https://doi.org/10.3390/cells10030577 Keywords: single-cell adhesion; mechanotransduction; microbial cell adhesion; single-molecule Academic Editor: Daniel Bouvard adhesion Received: 28 January 2021 Accepted: 2 March 2021 Published: 5 March 2021 1. Introduction Publisher’s Note: MDPI stays neutral Within a living organism, cells gather information about their surroundings and with regard to jurisdictional claims in process them by chemical, electrical and mechanical signals. Chemical and electrical signals published maps and institutional affil- are well understood; however, there is much need to learn about mechanical signaling. iations. Along with the traditional knowledge of chemical and electric signaling as the primary mechanism, now mechanical signaling is also known to play an essential role in a vast range of biological activities. Many cells such as immune cells [1], neurons [2], endothelial cells [3], muscle cells [4] and osteocytes [5] are mechanically sensitive, and thus, they generate force. The process known as mechanotransduction is the force between the cell Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. and its surrounding that transmits mechanical signals which are converted into biochemical This article is an open access article signals. Mechanotransduction and mechanical activities play a central role in various cell distributed under the terms and processes such as cell growth [6], differentiation [7], meiosis and mitosis [8], apoptosis [9] conditions of the Creative Commons and homeostasis [10]. Thus, the malfunction of mechanical stimuli sensed by the cell can Attribution (CC BY) license (https:// have severe consequences which lead to diseases, such as vascular diseases [11], kidney creativecommons.org/licenses/by/ diseases [12], dystrophy [13] and cancer [14]. Thus, it is imperative to characterize and 4.0/). understand mechanical signaling to the same extent as chemical and electrical signaling. Cells 2021, 10, 577. https://doi.org/10.3390/cells10030577 https://www.mdpi.com/journal/cells Cells 2021, 10, 577 2 of 46 have severe consequences which lead to diseases, such as vascular diseases [11], kidney diseases [12], dystrophy [13] and cancer [14]. Thus, it is imperative to characterize and understand mechanical signaling to the same extent as chemical and electrical signaling. Cells 2021, 10, 577 The study of single-cell adhesion is one of the most important and2 of 46 complicated as- pects to understand in life sciences. Different cells adhere to their surrounding surfaces which help them to survive. It also helps in other vital cellular processes such as embryo- genesis,The study cell oforientation, single-cell adhesion morphogenesis, is one of the mostcell importantmotility, and immune complicated responses, aspects development, to understand in life sciences. Different cells adhere to their surrounding surfaces which helpand themreorganization. to survive. It alsoThe helps process in other involves vital cellular a multitude processes of such factors as embryogenesis, present both intrinsic and cellextrinsic orientation, to the morphogenesis, cell membrane, cell motility, such as immune the cytoskeleton responses, development, [15], membrane and reorga--bound adhesion nization.proteins The [16] process and involvesglycocalyx a multitude elements of factors [17]. present The transmembrane both intrinsic and extrinsicproteins, to e.g., integrins, theform cell adhesion membrane, sites such asto the anchor cytoskeleton between [15], membrane-boundthe cell and matrix adhesion or proteinsthe other [16] cell's adhesion andmolecule glycocalyx. These elements adhesion [17]. The molecules transmembrane are attached proteins, e.g., to the integrins, cytoskeleton, form adhesion the actin filament sites to anchor between the cell and matrix or the other cell’s adhesion molecule. These adhesionthrough molecules the focal are adhesion attached (FA) to the complex, cytoskeleton, which the actin is highly filament organized through the with focal a cluster of mol- adhesionecules (Figure (FA) complex, 1). which is highly organized with a cluster of molecules (Figure1). FigureFigure 1. 1.Cell Cell adhesion adhesion process: process the ligand: the onligand the artificially on the artificially tailored surface tailored binds tosurface the integrin binds to the integrin receptorsreceptors found found on the on cell the membrane. cell membrane Throughout. Throughout the adhesion the process, adhesion the actin process filament, structurethe actin filament struc- ofture the of cell the is reorganized,cell is reorganized, and a traction and forcea traction is generated force is in generated the substrate. in Externalthe substrate. stimuli External also stimuli also regulateregulate the the reorganization reorganization of cytoskeletal. of cytoskeletal. After surface After adhesion, surface the cell adhesion can interact, the with cell other can cells interact with other throughcells through membrane membrane proteins such proteins as cadherins, such selectinsas cadherins, and the selectins Immunoglobulin and the (Ig) Immunoglobulin superfamily. (Ig) super- In tissues, cell junctions, a variety of multiprotein complexes (e.g., tight junctions), can form between family. In tissues, cell junctions, a variety of multiprotein complexes (e.g., tight junctions), can form cells to promote intercellular communication and mechanical stability. (F—Force applied by cell on between cells to promote intercellular communication and mechanical stability. (F—Force applied its surrounding) (Reproduced with permission from [18]). by cell on its surrounding) (Reproduced with permission from [18]). The passive cell adhesion process is an in vitro process in static medium culture (e.g., cultureThe flasks passive or petri cell dishes), adhesion where process cells undergo is an in morphologic vitro process alterations in static driven medium by culture (e.g., passiveculture deformation flasks or petri and dynamic dishes), reorganization where cells of undergo the cytoskeleton. morphologic In in vitro alterationsconditions, driven by pas- cell adhesion progresses using passive adsorption to the surface, where the initial contact issive made deformation by the cell glycocalyx and dynamic coat, followedreorganization by attachment, of the thecytoskeleton. spreading of In the in cell vitro conditions, andcell theadhesion formation progresses of focal adhesions. using passive A recent adsorption study by Kanyo to t ethe al. surface, discovered where that thethe initial contact componentsis made by of the the cell glycocalyx glycocalyx could coat, regulate followed the speed by and attachment, magnitude ofthe adhesion spreading [19]. of the cell and Moreover,the formation an increase of focal and decreaseadhesions. in adhesion A recent can study be achieved by Kanyo by using et theiral. discovered technique. that the com- This is further modulated by the signalization process [20], flow circulation [21] or the cell- extracellularponents of matrixthe gly (ECM)cocalyx under could blood regulat flow
Recommended publications
  • 1. Introduction to Cell Biology Me239 Statistics
    1. introduction to cell biology me239 statistics some information about yourself • 41.7% undergrad • average year: 3.7 • 58.3% grad student • average year: 1.3 • 58.3% ME • 41.7% BME + 1 BioE i am taking this class because • I am interested in cells • I am interested in mechanics • I want to learn how to describe cells mechanically • I want to learn how the mechanical environment influences the cell cell mechanics is primarily part of my... • 29.2% research • 87.5% coursework the inner life of a cell, viel & lue, harvard [2006] me239 mechanics of the cell 1 me239 mechanics of the cell 2 me239 statistics me239 statistics background in cell biology and mechanics what particular cells are you interested in and why... • cells mostly undergrad coursework (75.0%), high school classes. some have • cardiomyocytes ... clinical implications, prevalence of cardiac disease taken graduate level classes (12.5%) and done research related to cell biology • stem cells ... potential benefit for patients suffering from numerous conditions • mechanics almost all have a solid mechanics background from either under- • read blood cells ... i think they are cool graduate degrees (75.0%) or graduate classes (25.0%). • neural cells ... i love the brain • skin cells, bone cells, cartilage cells three equations that you consider most important in mechanics • hooks law / more generally constitutive equations which scales are you most interested in? • 12.5% cellular scale and smaller • newton’s second law – more generally equilibrium equations • 45.8% cellular scale
    [Show full text]
  • Quantitative Methodologies to Dissect Immune Cell Mechanobiology
    cells Review Quantitative Methodologies to Dissect Immune Cell Mechanobiology Veronika Pfannenstill 1 , Aurélien Barbotin 1 , Huw Colin-York 1,* and Marco Fritzsche 1,2,* 1 Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK; [email protected] (V.P.); [email protected] (A.B.) 2 Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK * Correspondence: [email protected] (H.C.-Y.); [email protected] (M.F.) Abstract: Mechanobiology seeks to understand how cells integrate their biomechanics into their function and behavior. Unravelling the mechanisms underlying these mechanobiological processes is particularly important for immune cells in the context of the dynamic and complex tissue microen- vironment. However, it remains largely unknown how cellular mechanical force generation and mechanical properties are regulated and integrated by immune cells, primarily due to a profound lack of technologies with sufficient sensitivity to quantify immune cell mechanics. In this review, we discuss the biological significance of mechanics for immune cells across length and time scales, and highlight several experimental methodologies for quantifying the mechanics of immune cells. Finally, we discuss the importance of quantifying the appropriate mechanical readout to accelerate insights into the mechanobiology of the immune response. Keywords: mechanobiology; biomechanics; force; immune response; quantitative technology Citation: Pfannenstill, V.; Barbotin, A.; Colin-York, H.; Fritzsche, M. Quantitative Methodologies to Dissect 1. Introduction Immune Cell Mechanobiology. Cells The development of novel quantitative technologies and their application to out- 2021, 10, 851. https://doi.org/ standing scientific problems has often paved the way towards ground-breaking biological 10.3390/cells10040851 findings.
    [Show full text]
  • Cell Mechanics: from Cytoskeletal Dynamics to Tissue-Scale Mechanical Phenomena
    Syracuse University SURFACE Physics - Dissertations College of Arts and Sciences 5-2013 Cell Mechanics: From Cytoskeletal Dynamics to Tissue-Scale Mechanical Phenomena Shiladitya Banerjee Follow this and additional works at: https://surface.syr.edu/phy_etd Recommended Citation Banerjee, Shiladitya, "Cell Mechanics: From Cytoskeletal Dynamics to Tissue-Scale Mechanical Phenomena" (2013). Physics - Dissertations. 131. https://surface.syr.edu/phy_etd/131 This Dissertation is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in Physics - Dissertations by an authorized administrator of SURFACE. For more information, please contact [email protected]. Syracuse University SUrface Physics - Dissertations College of Arts and Sciences 5-1-2013 Cell Mechanics: From Cytoskeletal Dynamics to Tissue-Scale Mechanical Phenomena Shiladitya Banerjee [email protected] Follow this and additional works at: http://surface.syr.edu/phy_etd Recommended Citation Banerjee, Shiladitya, "Cell Mechanics: From Cytoskeletal Dynamics to Tissue-Scale Mechanical Phenomena" (2013). Physics - Dissertations. Paper 131. This Dissertation is brought to you for free and open access by the College of Arts and Sciences at SUrface. It has been accepted for inclusion in Physics - Dissertations by an authorized administrator of SUrface. For more information, please contact [email protected]. Abstract This dissertation explores the mechanics of living cells, integrating the role of intracellular activity to capture the emergent mechanical behav- ior of cells. The topics covered in this dissertation fall into three broad categories : (a) intracellular mechanics, (b) interaction of cells with the extracellular matrix and (c) collective mechanics of multicellular colonies. In part (a) I propose theoretical models for motor-filament interactions in the cell cytoskeleton, which is the site for mechanical force generation in cells.
    [Show full text]
  • 1 Introduction to Cell Biology
    1 Introduction to cell biology 1.1 Motivation Why is the understanding of cell mechancis important? cells need to move and interact with their environment ◦ cells have components that are highly dependent on mechanics, e.g., structural proteins ◦ cells need to reproduce / divide ◦ to improve the control/function of cells ◦ to improve cell growth/cell production ◦ medical appli- cations ◦ mechanical signals regulate cell metabolism ◦ treatment of certain diseases needs understanding of cell mechanics ◦ cells live in a mechanical environment ◦ it determines the mechanics of organisms that consist of cells ◦ directly applicable to single cell analysis research ◦ to understand how mechanical loading affects cells, e.g. stem cell differentation, cell morphology ◦ to understand how mechanically gated ion channels work ◦ an understanding of the loading in cells could aid in developing struc- tures to grow cells or organization of cells more efficiently ◦ can help us to understand macrostructured behavior better ◦ can help us to build machines/sensors similar to cells ◦ can help us understand the biology of the cell ◦ cell growth is affected by stress and mechanical properties of the substrate the cells are in ◦ understanding mechan- ics is important for knowing how cells move and for figuring out how to change cell motion ◦ when building/engineering tissues, the tissue must have the necessary me- chanical properties ◦ understand how cells is affected by and affects its environment ◦ understand how mechanical factors alter cell behavior (gene expression)
    [Show full text]
  • Emerging Views of the Nucleus As a Cellular Mechanosensor Tyler J
    Emerging views of the nucleus as a cellular mechanosensor Tyler J. Kirby1,2 and Jan Lammerding1,2 1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 2 Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York Correspondence to: Jan Lammerding, PhD Cornell University Weill Institute for Cell and Molecular Biology Nancy E. and Peter C. Meinig School of Biomedical Engineering Weill Hall, Room 235 Ithaca, NY 14853 USA Abstract The ability of cells to respond to mechanical forces is critical for numerous biological processes. Emerging evidence indicates that external mechanical forces trigger changes in nuclear envelope structure and composition, chromatin organization, and gene expression. However, it remains unclear if these processes originate in the nucleus or are downstream of cytoplasmic signals. This review discusses recent findings supporting a direct role of the nucleus in cellular mechanosensing and highlights novel tools to study nuclear mechanotransduction. 1 Introduction Cells are constantly being exposed to mechanical forces, such as shear forces on endothelial cells1, compressive forces on chondrocytes2, and tensile forces in myocytes3. The cells’ ability to sense and respond to these mechanical cues are critical for numerous biological processes, including embryogenesis4, 5, development4, 5, and tissue homeostasis6, 7. While it has long been recognized that mechanical forces can influence cell morphology and behavior8, 9, the understanding of the
    [Show full text]
  • Mitotic Cells Contract Actomyosin Cortex and Generate Pressure to Round Against Or Escape Epithelial Confinement
    ARTICLE Received 28 Feb 2015 | Accepted 12 Oct 2015 | Published 25 Nov 2015 DOI: 10.1038/ncomms9872 OPEN Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement Barbara Sorce1, Carlos Escobedo1,2, Yusuke Toyoda3, Martin P. Stewart1,4,5, Cedric J. Cattin1, Richard Newton1, Indranil Banerjee6, Alexander Stettler1, Botond Roska6, Suzanne Eaton3, Anthony A. Hyman3, Andreas Hierlemann1 & Daniel J. Mu¨ller1 Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells. 1 Department of Biosystems Science and Engineering, Eidgeno¨ssische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, Basel 4058, Switzerland. 2 Department of Chemical Engineering, Queen’s University, 19 Division Street, Kingston, Ontario, Canada K7L 3N6. 3 Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
    [Show full text]
  • A Comparison of Methods to Assess Cell Mechanical Properties
    ANALYSIS https://doi.org/10.1038/s41592-018-0015-1 A comparison of methods to assess cell mechanical properties Pei-Hsun Wu1*, Dikla Raz-Ben Aroush2, Atef Asnacios 3*, Wei-Chiang Chen1, Maxim E. Dokukin4, Bryant L. Doss5, Pauline Durand-Smet3, Andrew Ekpenyong6, Jochen Guck 6*, Nataliia V. Guz7, Paul A. Janmey2*, Jerry S. H. Lee1,8, Nicole M. Moore9, Albrecht Ott10*, Yeh-Chuin Poh9, Robert Ros5*, Mathias Sander10, Igor Sokolov 4*, Jack R. Staunton 5, Ning Wang9*, Graeme Whyte6 and Denis Wirtz 1* The mechanical properties of cells influence their cellular and subcellular functions, including cell adhesion, migration, polar- ization, and differentiation, as well as organelle organization and trafficking inside the cytoplasm. Yet reported values of cell stiffness and viscosity vary substantially, which suggests differences in how the results of different methods are obtained or analyzed by different groups. To address this issue and illustrate the complementarity of certain approaches, here we present, analyze, and critically compare measurements obtained by means of some of the most widely used methods for cell mechanics: atomic force microscopy, magnetic twisting cytometry, particle-tracking microrheology, parallel-plate rheom- etry, cell monolayer rheology, and optical stretching. These measurements highlight how elastic and viscous moduli of MCF-7 breast cancer cells can vary 1,000-fold and 100-fold, respectively. We discuss the sources of these variations, including the level of applied mechanical stress, the rate of deformation, the geometry of the probe, the location probed in the cell, and the extracellular microenvironment. ells in vivo are continuously subjected to mechanical forces, seven different technologies, including atomic force microscopy including shear, compressive, and extensional forces (Fig.
    [Show full text]
  • Microtubule Disruption Changes Endothelial Cell Mechanics and Adhesion Andreas Weber1*, Jagoba Iturri1, Rafael Benitez2, Spela Zemljic-Jokhadar3 & José L
    www.nature.com/scientificreports OPEN Microtubule disruption changes endothelial cell mechanics and adhesion Andreas Weber1*, Jagoba Iturri1, Rafael Benitez2, Spela Zemljic-Jokhadar3 & José L. Toca-Herrera1* The interest in studying the mechanical and adhesive properties of cells has increased in recent years. The cytoskeleton is known to play a key role in cell mechanics. However, the role of the microtubules in shaping cell mechanics is not yet well understood. We have employed Atomic Force Microscopy (AFM) together with confocal fuorescence microscopy to determine the role of microtubules in cytomechanics of Human Umbilical Vein Endothelial Cells (HUVECs). Additionally, the time variation of the adhesion between tip and cell surface was studied. The disruption of microtubules by exposing the cells to two colchicine concentrations was monitored as a function of time. Already, after 30 min of incubation the cells stifened, their relaxation times increased (lower fuidity) and the adhesion between tip and cell decreased. This was accompanied by cytoskeletal rearrangements, a reduction in cell area and changes in cell shape. Over the whole experimental time, diferent behavior for the two used concentrations was found while for the control the values remained stable. This study underlines the role of microtubules in shaping endothelial cell mechanics. Eukaryotic cells are complex biological systems featuring high hierarchical order with respect to their structure, function and form. Cells are known to interact with their surroundings not only via chemical or biochemical sig- nals, but also through their ability to sense, transduce and exert (mechanical) forces1. In recent years, studying cell mechanical properties has gained an increasing interest.
    [Show full text]
  • Mechanical Properties of the Cytoskeleton and Cells
    Downloaded from http://cshperspectives.cshlp.org/ at NYU MED CTR LIBRARY on November 1, 2017 - Published by Cold Spring Harbor Laboratory Press Mechanical Properties of the Cytoskeleton and Cells Adrian F. Pegoraro,1 Paul Janmey,2 and David A. Weitz1 1Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 2Institute for Medicine and Engineering and Department of Physiology, Perelman School of Medicine, and Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Correspondence: [email protected] SUMMARY The cytoskeleton is the major mechanical structure of the cell; it is a complex, dynamic biopolymer network comprising microtubules, actin, and intermediate filaments. Both the individual filaments and the entire network are not simple elastic solids but are instead highly nonlinear structures. Appreciating the mechanics of biopolymer networks is key to under- standing the mechanics of cells. Here, we review the mechanical properties of cytoskeletal polymers and discuss the implications for the behavior of cells. Outline 1 Introduction 5 Rheology of networks alone 2 Mechanical properties of the three classes 6 Measuring cell stiffness and cautionary notes of polymers 7 Conclusion 3 Single-filament mechanics References 4 Network mechanics Editors: Thomas D. Pollard and Robert D. Goldman Additional Perspectives on The Cytoskeleton available at www.cshperspectives.org Copyright # 2017 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a022038 Cite this article as Cold Spring Harb Perspect Biol 2017;9:a022038 1 Downloaded from http://cshperspectives.cshlp.org/ at NYU MED CTR LIBRARY on November 1, 2017 - Published by Cold Spring Harbor Laboratory Press A.F.
    [Show full text]
  • Mechanics and Dynamics of Living Mammalian Cytoplasm JUN 2 12017
    Mechanics and Dynamics of Living Mammalian Cytoplasm by Satish Kumar Gupta Bachelor of Technology in Mechanical Engineering National Institute of Technology, Durgapur, 2014 Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology June 2017 2017 Massachusetts Institute of Technology. All rights reserved. Signature of Author... Signature red.acredacted Department of Mechanical Engineering May 12, 2017 Certifiedby......................... Signature redacted Ming Guo Professor of Mechanical Engineering -- A Thesis Supervisor Signature redacted A ccepted b y ................................................ --- -- -- ----- - -14 - - Rohan Abeyaratne Chairman, Department Committee on Graduate Students M S INSTITUTE OF TECHNOLOGY JUN 2 12017 LIBRARIES ARCHIVES 2 Mechanics and Dynamics of Living Mammalian Cytoplasm by Satish Kumar Gupta Submitted to the Department of Mechanical Engineering on May 1 2 th, 2017 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering ABSTRACT Passive microrheology, a method of calculating the frequency dependent complex moduli of a viscoelastic material has been widely accepted for systems at thermal equilibrium. However, cytoplasm of a living cell operates far from equilibrium and thus, the applicability of passive microrheology in living cells is often questioned. Active microrheology methods have been successfully used to measure mechanics of living cells however, they involve complicated experimentation and are highly invasive as they rely on application of an external force. In the first part of this thesis, we propose a high throughput, non-invasive method of extracting the mechanics of the cytoplasm using the fluctuations of tracer particles.
    [Show full text]
  • Scaling up Single-Cell Mechanics to Multicellular Tissues – the Role of the Intermediate Filament–Desmosome Network Joshua A
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs228031. doi:10.1242/jcs.228031 REVIEW SUBJECT COLLECTION: MECHANOTRANSDUCTION Scaling up single-cell mechanics to multicellular tissues – the role of the intermediate filament–desmosome network Joshua A. Broussard1,2,7,*, Avinash Jaiganesh2, Hoda Zarkoob2, Daniel E. Conway3, Alexander R. Dunn4, Horacio D. Espinosa5, Paul A. Janmey6 and Kathleen J. Green1,2,7,* ABSTRACT and cardiomyopathies (Mammoto et al., 2013; Jaalouk and Cells and tissues sense, respond to and translate mechanical forces Lammerding, 2009; Barnes et al., 2017; Lampi and Reinhart- into biochemical signals through mechanotransduction, which King, 2018). governs individual cell responses that drive gene expression, Cells and tissues both sense and respond to mechanical forces metabolic pathways and cell motility, and determines how cells through a process called mechanotransduction, whereby work together in tissues. Mechanotransduction often depends on mechanical forces are translated into biochemical signals. This cytoskeletal networks and their attachment sites that physically process depends on cytoskeletal networks that physically couple couple cells to each other and to the extracellular matrix. One way that cells to their extracellular environment and to other cells within cells associate with each other is through Ca2+-dependent adhesion tissues through adhesive junctions. The cytoskeleton of animal cells molecules called cadherins, which mediate cell–cell interactions comprises three main filamentous networks: filamentous actin through adherens junctions, thereby anchoring and organizing the (F-actin), microtubules and intermediate filaments (IFs) (Fig. 1A). cortical actin cytoskeleton. This actin-based network confers dynamic These cytoskeletal networks are in continuous communication properties to cell sheets and developing organisms.
    [Show full text]
  • Generation and Regulation of Microtubule Network Asymmetry to Drive Cell Polarity Joyce C
    Available online at www.sciencedirect.com ScienceDirect Generation and regulation of microtubule network asymmetry to drive cell polarity Joyce C. M. Meiring, Boris I. Shneyer and Anna Akhmanova Abstract are associated with the generation of cellular asymme- Microtubules control cell architecture by serving as a scaffold tries. Microtubule networks participate in these pro- for intracellular transport, signaling, and organelle positioning. cesses by responding and contributing to cell polarity. Microtubules are intrinsically polarized, and their orientation, Microtubules themselves are intrinsically polarized density, and post-translational modifications both respond and because they are built of directionally aligned polarized contribute to cell polarity. Animal cells that can rapidly reorient subunits, ab-tubulin dimers. Microtubules thus have their polarity axis, such as fibroblasts, immune cells, and two distinct ends, the minus end and the plus end. The cancer cells, contain radially organized microtubule arrays minus ends exhibit slow dynamics and can be stably anchored at the centrosome and the Golgi apparatus, whereas anchored at a variety of microtubule-organizing centers stably polarized cells often acquire non-centrosomal microtu- (MTOCs), whereas the plus ends can grow and shrink bule networks attached to the cell cortex, nucleus, or other rapidly and interact with different intracellular struc- structures. Microtubule density, longevity, and post- tures [1e3]. Motors that carry cargos along microtu- translational modifications strongly depend on the dynamics of bules, kinesins, and dyneins can typically only move in their plus ends. Factors controlling microtubule plus-end dy- one direction [4], and microtubule orientation thus namics are often part of cortical assemblies that integrate strongly determines the logistics of intracellular cytoskeletal organization, cell adhesion, and secretion and are transport.
    [Show full text]