The Roles of the Drosophila JAK/STAT Pathway

Total Page:16

File Type:pdf, Size:1020Kb

The Roles of the Drosophila JAK/STAT Pathway Oncogene (2000) 19, 2598 ± 2606 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc The roles of the Drosophila JAK/STAT pathway Martin P Zeidler1, Erika A Bach1 and Norbert Perrimon*,1 1Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts, MA 02115, USA The JAK/STAT signal transduction pathway has been to nuclear translocation. Once in the nucleus activated conserved throughout evolution such that true structural STAT dimers bind to consensus DNA target sites and functional homologues of components originally where they act as activators of transcription (Figure 1a identi®ed in vertebrate systems are also present in the and other reviews in this issues). model genetic system Drosophila melanogaster.In Interestingly the JAK/STAT pathway and STAT- addition to roles during larval hematopoiesis reminis- like molecules in particular are present throughout cent of the requirement for this pathway in mammalian evolution. To date one (or possibly two) STATs have systems, the JAK/STAT pathway in Drosophila is also been found in the nematode C. elegans (Lui et al., involved in a number of other developmental events. 1999), and three STAT-like molecules have been Recent data has demonstrated further roles for the identi®ed in the slime mould Dictyostelium (M JAK/STAT pathway in the establishment of sexual Fukazawa and JG Williams, unpublished data reported identity via the early embryonic expression of Sex in Williams, 1999). However, neither organism appears lethal, the segmentation of the embryo via the control to have JAK-like protein kinases. of pair rule genes including even skipped and the In the Drosophila system a `complete' JAK/STAT establishment of polarity within the adult compound pathway that consists of one JAK (called hopscotch) eye via a mechanism that includes the four jointed and one STAT (called stat92E) has been identi®ed, in gene. Use of the powerful genetics in the model stark contrast to the multitude of JAK and STAT organism Drosophila may identify new components of homologues present in mammals. The presence of a the JAK/STAT pathway, de®ne new roles for this relatively simple JAK/STAT pathway, together with pathway, and provide insights into the function of this the wealth of sequence data and genetic techniques signal transduction system. Here we review the roles of available, make Drosophila a very powerful system with STAT and its associated signaling pathway during both which to study this pathway. These advantages, embryonic and adult stages of Drosophila development especially with respect to developmental requirements and discuss future prospects for the identi®cation and for JAK/STAT signaling, are particularly relevant for characterization of novel pathway components and the ¯y model system and hold much promise for the targets. Oncogene (2000) 19, 2598 ± 2606. future elucidation of interactions between the JAK/ STAT pathway and other signal transduction cascades Keywords: hopscotch; unpaired; stat92E; ommatidia; involved in developmental decisions. segmentation; polarity In this review we discuss recent developments into our understanding of the components and roles of the JAK/STAT pathway during Drosophila development Introduction and address potential future directions in the ®eld. The JAK/STAT signal transduction cascade was ®rst Characterization of Drosophila JAK/STAT pathway identi®ed in mammalian systems because of its role in components the transduction of a variety of cytokines and growth factor signals (reviewed in Darnell, 1997). Extensive With the recent cloning of unpaired (upd) and its studies in mammalian systems have led to the identi®cation as a potential ligand for the Drosophila development of a canonical model in which the non- JAK/STAT pathway (Harrison et al., 1998), three receptor tyrosine kinase JAK is associated with the pathway components have been identi®ed on the intracellular portion of transmembrane cytokine recep- basis of their biochemical, genetic and mutant tors (Figure 1a). Following ligand binding, receptors phenotypes. dimerize bringing two JAK molecules into juxtaposi- The hopscotch (hop) locus encodes a 1177 amino acid tion where they trans-phosphorylate one another. protein that shares all the characteristics of mammalian JAKs activated in this manner then tyrosine phosphor- JAK family non-receptor tyrosine kinases. Hop is most ylate their associated receptors causing normally similar to human JAK2 (27% identity), with higher cytosolic STAT molecules to bind to the receptor levels of homology in kinase and kinase-like domains complex via their SRC homology 2 (SH2) domains. (Figure 1b, Binari and Perrimon, 1994). The Drosophila The STAT molecules recruited in this manner are STAT homologue Stat92E is also highly homologous themselves activated by JAK-mediated phosphoryla- to human STAT5 (37% identity). Stat92E includes a tion of an invariant tyrosine residue in their C-terminal SH2 domain, DNA binding domain and the single region and then either homo- or hetero-dimerize prior tyrosine residue around position 700 found in all STAT-like genes (Figure 1b, Hou et al., 1996; Yan et al., 1996a). Indeed this residue in Stat92E (Y711) has *Correspondence: N Perrimon been shown to be phosphorylated in response to Roles of the Drosophila JAK/STAT pathway MP Zeidler et al 2599 pathway activation in tissue culture systems (Yan et al., examples of canonical JAK- and STAT-like proteins 1996a). present in ¯ies. It has previously been reported that a second, non- While mutations in the unpaired locus have been Stat92E derived STAT-like activity is detectable in known for over 75 years, only recently has the Drosophila cell extracts (Yan et al., 1996a; Sweitzer et associated gene been identi®ed as a ligand for the al., 1995). A series of searches of the Drosophila Drosophila JAK/STAT pathway (Venderosa and genome sequencing project data were therefore con- Muller, 1954; Harrison et al., 1998). The unpaired ducted on a complete 106 coverage database to locus encodes a predicted 47 kDa secreted protein with address this question. Using Stat92E protein sequences an N-terminal signal sequence and several potential N- as `probes' for tblastn search programs no candidate linked glycosylation sites (Figure 1b). While a protein STAT-like molecules, other than stat92E itself, were similar to Upd called Om1E has been identi®ed in the identi®ed (E Spana, personal communication). While, closely related fruit ¯y Drosophila ananassae, no known it remains possible that a STAT-like protein, which has vertebrate homologues have been found in publicly diverged suciently far from Stat92E to be undetect- available databases to date (Harrison et al., 1998; Juni able with sequence based searches, is in fact present, it et al., 1996). Biochemical analysis of Upd revealed that seems that the complex situation in vertebrate model the protein has an apparent molecular weight of systems is not mirrored in Drosophila. Therefore both 65 kDa, is indeed glycosylated and is localized in the Hopscotch and Stat92E probably represent the sole extracellular matrix. Furthermore, tissue culture experi- s s Figure 1 (a) The JAK/STAT pathway in which receptor/JAK (red) complexes dimerize on binding of ligand (blue) (1). Following receptor and JAK phosphorylation (2) cytosolic STATs (green) are recruited to the complex (3). Phosphorylated STAT molecules dimerize (4) and translocate to the nucleus where they bind DNA and activate transcription (5). (b) Schematic representation of the Drosophila Unpaired (blue), Hopscotch (red) and Stat92E (green) proteins. Gray bars in Unpaired represent potential amino-linked glycosylation sites. The activating mutations in Hopscotch are indicated (see text for details) as is the invariant tyrosine residue in Stat92E. SS=signal sequence, DB=DNA binding domain and SH2=Src Homology 2 domain. Each protein is drawn to scale (scale bar is 100 amino acids) and numbers represent amino acid position Oncogene Roles of the Drosophila JAK/STAT pathway MP Zeidler et al 2600 ments have shown that Upd is capable of inducing Sex determination Hop phosphorylation and activation in Clone 8 tissue culture cells. Furthermore, activation of the JAK/ The sisterless C (sisC) gene has been known for some STAT pathway by Upd does not require co-expression time as a component of the Drosophila sex determina- of Upd in the signaling cell as Upd supplied by either a tion system (Cline, 1993) and the recent identi®cation physically separate, but co-cultured, (S2) cell type, or of sisC as an allele of Upd has implicated the JAK/ even from previously conditioned media, is sucient to STAT pathway in one of the earliest processes of activate Hop (Harrison et al., 1998). Taken together embryonic development. with in vivo evidence showing that Upd functions as an The process of sexual identity determination in activator of JAK/STAT signaling in the eye (Zeidler et Drosophila is based on very early mechanisms which al., 1999b), it is clear that Unpaired represents a bona detect the X chromosome to autosome ratio of the ®de JAK/STAT pathway ligand. newly fertilized embryo (with XY individuals becoming Although the identity of Drosophila JAK and STAT males and XX developing into females). The cellular homologues and a pathway ligand are now known, mechanism which determines the number of X the identity of a pathway receptor(s) remains unclear. chromosomes establishes the expression state of the Vertebrate studies have shown that the JAK/STAT Sex lethal gene which acts as a `master switch' to pathway is downstream of cytokine receptors and determine sexual identity and X chromosome dosage receptor tyrosine kinases such as EGFR and PDGFR compensation. The dose of X chromosomes present in (Darnell, 1997). While a similar situation may also be a newly fertilized embryo is relayed into this sexual the case in Drosophila no evidence had emerged to determination machinery via the activity of a number date regarding the nature of a potential pathway of X-linked signal element (XSE) genes which are receptor.
Recommended publications
  • Mom Identifies a Receptor for the Drosophila JAK/STAT Signal Transduction Pathway and Encodes a Protein Distantly Related to the Mammalian Cytokine Receptor Family
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press mom identifies a receptor for the Drosophila JAK/STAT signal transduction pathway and encodes a protein distantly related to the mammalian cytokine receptor family Hua-Wei Chen,1,3 Xiu Chen,1,3 Su-Wan Oh,1 Maria J. Marinissen,2 J. Silvio Gutkind,2 and Steven X. Hou1,4 1The Laboratory of Immunobiology, National Institutes of Health, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA; 2Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA The JAK/STAT signal transduction pathway controls numerous events in Drosophila melanogaster development. Receptors for the pathway have yet to be identified. Here we have identified a Drosophila gene that shows embryonic mutant phenotypes identical to those in the hopscotch (hop)/JAK kinase and marelle (mrl)/Stat92e mutations. We named this gene master of marelle (mom). Genetic analyses place mom’s function between upd (the ligand) and hop. We further show that cultured cells transfected with the mom gene bind UPD and activate the HOP/STAT92E signal transduction pathway. mom encodes a protein distantly related to the mammalian cytokine receptor family. These data show that mom functions as a receptor of the Drosophila JAK/STAT signal transduction pathway. [Key Words: Drosophila; JAK/STAT; signal transduction; cytokine receptor] Received October 19, 2001; revised version accepted December 6, 2001. The JAK/STAT signal transduction pathway was identi- (upd) secreted glycoprotein identifies an in vivo ligand fied through studies of the transcriptional activation re- activating the HOP/STAT92E pathway (Harrison et al.
    [Show full text]
  • Heat Shock Protein 70 (HSP70) Induction: Chaperonotherapy for Neuroprotection After Brain Injury
    cells Review Heat Shock Protein 70 (HSP70) Induction: Chaperonotherapy for Neuroprotection after Brain Injury Jong Youl Kim 1, Sumit Barua 1, Mei Ying Huang 1,2, Joohyun Park 1,2, Midori A. Yenari 3,* and Jong Eun Lee 1,2,* 1 Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] (J.Y.K.); [email protected] (S.B.); [email protected] (M.Y.H.); [email protected] (J.P.) 2 BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea 3 Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, Neurology (127) VAMC 4150 Clement St., San Francisco, CA 94121, USA * Correspondence: [email protected] (M.A.Y.); [email protected] (J.E.L.); Tel.: +1-415-750-2011 (M.A.Y.); +82-2-2228-1646 (ext. 1659) (J.E.L.); Fax: +1-415-750-2273 (M.A.Y.); +82-2-365-0700 (J.E.L.) Received: 17 July 2020; Accepted: 26 August 2020; Published: 2 September 2020 Abstract: The 70 kDa heat shock protein (HSP70) is a stress-inducible protein that has been shown to protect the brain from various nervous system injuries. It allows cells to withstand potentially lethal insults through its chaperone functions. Its chaperone properties can assist in protein folding and prevent protein aggregation following several of these insults. Although its neuroprotective properties have been largely attributed to its chaperone functions, HSP70 may interact directly with proteins involved in cell death and inflammatory pathways following injury.
    [Show full text]
  • Rnai Knockdown of Hop (Hsp70/Hsp90 Organising Protein)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DCU Online Research Access Service RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation Naomi Walsh1*, AnneMarie Larkin1, Niall Swan3, Kevin Conlon3, Paul Dowling1, Ray McDermott3 and Martin Clynes1,2 1 National Institute for Cellular Biotechnology and 2 Molecular Therapeutics for Cancer Ireland, Dublin City University, Glasnevin, Dublin 9, Ireland. 3 The Centre for Pancreaticobiliary disease, The Adelaide and Meath Hospital, Dublin incorporating the National Children’s Hospital, Tallaght, Dublin 24, Ireland. *Corresponding author: Naomi Walsh, National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland. E-mail: [email protected] Ph: +353 (0) 17006263 Fax: +353 (0) 17005484 AnneMarie Larkin, Email: [email protected] Niall Swan, Email: [email protected] Kevin Conlon, Email: [email protected] Paul Dowling, Email: [email protected] Ray McDermott, Email: [email protected] Martin Clynes, Email: [email protected] 1 Abstract We previously identified Hop as over expressed in invasive pancreatic cancer cell lines and malignant tissues of pancreatic cancer patients, suggesting an important role for Hop in the biology of invasive pancreatic cancer. Hop is a co-chaperone protein that binds to both Hsp70/Hsp90. We hypothesised that by targeting Hop, signalling pathways modulating invasion and client protein stabilisation involving Hsp90- dependent complexes may be altered. In this study, we show that Hop knockdown by small interfering (si)RNA reduces the invasion of pancreatic cancer cells, resulting in decreased expression of the downstream target gene, matrix metalloproteinases-2 (MMP-2).
    [Show full text]
  • The Role of Heat Shock Proteins in Regulating Receptor Signal Transduction
    Molecular Pharmacology Fast Forward. Published on January 22, 2019 as DOI: 10.1124/mol.118.114652 This article has not been copyedited and formatted. The final version may differ from this version. MOL # 114652 The Role of Heat Shock Proteins in Regulating Receptor Signal Transduction John M. Streicher, Ph.D. Department of Pharmacology, College of Medicine, University of Arizona, Tucson AZ USA Downloaded from molpharm.aspetjournals.org at ASPET Journals on October 2, 2021 1 Molecular Pharmacology Fast Forward. Published on January 22, 2019 as DOI: 10.1124/mol.118.114652 This article has not been copyedited and formatted. The final version may differ from this version. MOL # 114652 Running Title: Heat Shock Protein Regulation of Receptor Signaling Corresponding Author: Dr. John M. Streicher, Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson AZ 85724. Phone: (520)-626-7495. Email: [email protected] Text Pages: 28 Downloaded from Tables: 1 Figures: 1 References: 113 molpharm.aspetjournals.org Abstract: 233 Introduction: 348 Main Text: 3,427 at ASPET Journals on October 2, 2021 Abbreviations: alpha-GDP Dissociation Inhibitor (alpha-GDI); Central Nervous System (CNS); Cyclic Adenosine Monophosphate (cAMP); Cyclin Dependent Kinase (CDK); Extracellular Signal-Regulated Kinase (ERK); Focal Adhesion Kinase (FAK); G Protein-Coupled Receptor (GPCR); G Protein-Coupled Receptor Kinase (GRK); Glycogen Synthase Kinase-3 (GSK-3); Guanosine Di/Triphosphate (GDP/GTP); Heat Shock Factor-1 (HSF-1); Heat shock protein (Hsp); c-Jun N-Terminal Kinase (JNK); Mitogen Activated Protein Kinase (MAPK); MAPK/ERK Kinase (MEK); Protein Kinase A (PKA); Protein Kinase C (PKC); Stress-Induced Phosphoprotein-1 (STIP1); Vascular Endothelial Growth Factor Receptor (VEGFR) 2 Molecular Pharmacology Fast Forward.
    [Show full text]
  • Mechanisms of Hsp90 Regulation Chrisostomos Prodromou*1 *Genome Damage and Stability Centre, Science Park Road, Falmer, Brighton, East Sussex BN1 9RQ, U.K
    Biochem. J. (2016) 473, 2439–2452 doi:10.1042/BCJ20160005 2439 REVIEW ARTICLE Mechanisms of Hsp90 regulation Chrisostomos Prodromou*1 *Genome Damage and Stability Centre, Science Park Road, Falmer, Brighton, East Sussex BN1 9RQ, U.K. Heat shock protein 90 (Hsp90) is a molecular chaperone that diverse clientele of Hsp90 a whole variety of co-chaperones is involved in the activation of disparate client proteins. This also regulate its activity and some are directly responsible implicates Hsp90 in diverse biological processes that require for delivery of client protein. Consequently, co-chaperones a variety of co-ordinated regulatory mechanisms to control its themselves, like Hsp90, are also subject to regulatory mechanisms activity. Perhaps the most important regulator is heat shock factor such as post translational modification. This review, looks at Downloaded from http://portlandpress.com/biochemj/article-pdf/473/16/2439/686530/bj4732439.pdf by guest on 29 September 2021 1 (HSF1), which is primarily responsible for upregulating Hsp90 the many different levels by which Hsp90 activity is ultimately by binding heat shock elements (HSEs) within Hsp90 promoters. regulated. HSF1 is itself subject to a variety of regulatory processes and can directly respond to stress. HSF1 also interacts with a variety of transcriptional factors that help integrate biological signals, Key words: chaperones, co-chaperones, heat-shock response, which in turn regulate Hsp90 appropriately. Because of the HSF1, Hsp90, post-translational modification. INTRODUCTION STRUCTURE OF Hsp90 The structure and chaperone cycle of Hsp90 has been extensively Hsp90 (heat-shock protein 90) accounts for 1–2% of the reviewed elsewhere [22,23] and, consequently, only a basic cellular protein and rises to 4–6% in stressed cells [1–4].
    [Show full text]
  • Oakland Hosts DOE Genome Program Contractor-Grantee Meeting
    LOGY P BIO H YS IC Y S R T S I E T M H E I H C C S E N S G IC IN T E A ER RM ING INFO ISSN: 1050–6101, Issue No. 45 Vol. 10, Nos. 3–4, October 1999 In This Issue HGP Leaders Confirm Accelerated DOE ’99 Oakland Highlights Timetable for Draft Sequence New Sequencing Resources Aid Effort DOE Genome Program Contractors and Grantees Present Progress at the Seventh n September, international leaders be closed and accuracy improved over Meeting, held in January 1999. Iof Human Genome Project (HGP) the following 3 years to achieve a com- Reported by Denise Casey, HGMIS sequencing confirmed a plan to com- plete, high-quality human DNA refer- Introduction ........................1 plete a rough draft of the human ence sequence by 2003 [see HGN Reports on Progress, Challenges .......3 genome by next spring, a year ahead 10(1–2), 1 (www.ornl.gov/hgmis/ Joint Genome Institute .............3 of schedule. This accelerated pace is Sequencing at Other Institutions ......4 publicat/hgn/v10n1/01goals.html)]. So Functional Genomics ..............6 made possible by the commercializa- far, about 13% of human sequence has Informatics.......................8 tion of a new generation of automated been finished, and another 12% is Education and Bioethics ............9 capillary DNA sequencing machines available in draft form (genome.ornl. Microbial Genome Explorations ......9 and by BAC mapping resources gener- gov/GCat; www.ncbi.nlm.nih.gov/ Genome Project ated from DOE-sponsored clone genome/seq). HGP Accelerated Timetable ...........1 projects. HGP Sequencing Progress .........2 Sequencing Allocation Refitting at JGI’s Sequencing Facility .
    [Show full text]
  • INFERRING SIGNAL TRANSDUCTION PATHWAYS by G
    ANALYZING AND MODELING LARGE BIOLOGICAL NETWORKS: INFERRING SIGNAL TRANSDUCTION PATHWAYS by GURKAN¨ BEBEK Submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Electrical Engineering And Computer Science Department CASE WESTERN RESERVE UNIVERSITY January 2007 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Gürkan Bebek ______________________________________________________ candidate for the Ph.D. degree *. Jiong Yang (signed)_______________________________________________ (chair of the committee) S. Cenk Sahinalp ________________________________________________ Tekin Ozsoyoglu ________________________________________________ Mark Adams ________________________________________________ Jing Li ________________________________________________ ________________________________________________ January 12, 2007 (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. to Gamze... Contents List of Tables iii List of Figures iv 1 Introduction 1 1.1 Background ............................. 5 1.1.1 GraphTheoreticDefinitions . 5 1.1.2 SignalTransductionPathways . 7 1.1.3 Protein-ProteinInteractions. 10 1.1.4 Discovery of Protein-Protein Interactions . 11 1.2 Contributions ............................ 15 2 Evolutionary Models of Proteome Networks 18 2.1 BiologicalNetworks ........................ 24 2.1.1 The Evolutionof Protein-Protein Interactions . .. 26 2.1.2 RandomNetworkModels. 28
    [Show full text]
  • The Amazing Multi-Valency of the Hsp70 Chaperones
    Central JSM Cell & Developmental Biology Bringing Excellence in Open Access Review Article *Corresponding author Erik RP Zuiderweg, Department of Biological Chemistry, The University of Michigan Medical School, 1500 The Amazing Multi-Valency of Medical Center Drive, Ann Arbor, MI 48109, USA, Tel: 734-276-4463; Email: Submitted: 04 November 2016 the Hsp70 Chaperones Accepted: 20 November 2016 Erik RP Zuiderweg1* and Jason E. Gestwicki2 Published: 22 November 2016 1Department of Biological Chemistry, The University of Michigan Medical School, USA ISSN: 2379-061X 2Institute for Neurodegenerative Disease, University of California at San Francisco, Copyright USA © 2016 Zuiderweg et al. OPEN ACCESS Abstract Hsp70 proteins are keys to maintaining intra-cellular protein homeostasis. To carry Keywords out this task, they employ a large number of co-chaperones and adapter proteins. Here • Hsp70 proteins we review what is known about the interaction between the chaperones and partners, • Protein chaperones with a strong slant towards structural biology. Hsp70s in general and Hsc70 (HSPA8) in particular, display an amazing array of interfaces with their protein co-factors. We also reviewed the known interactions between Hsp70s and active compounds that may become leads towards Hsp70 modulation for treatment of a variety of diseases. INTRODUCTION misfolded proteins to favor protein (re)folding cycles [6]; (ii) transporting unfolded proteins through membranes to enable Hsp70 chaperones are highly conserved in all kingdoms; delivery of cargo to organelles [7]; (iii) recruiting proteins to in animals, they are an important member of the collection of the proteasome for turnover [8] and (iv) bringing proteins to protein chaperones including Hsp60, Hsp70, Hsp90 and small Hsps [1].
    [Show full text]
  • Hop/Sti1 FACTS & LITERATURE
    Picard, 08/2021 Hop/Sti1 FACTS & LITERATURE (necessarily incomplete!) Hop = p60 = Sti1 = Stip1 = Stress-inducible protein 1 General: ¨ Reviews: o General: Frydman and Höhfeld, 1997; Odunuga et al., 2004; Smith, 2004; da Fonseca et al., 2021 o In neurodegeneration: Bohush et al., 2019. o For stress response, notably in plants: Toribio et al., 2020 ¨ yeast Sti1 and mammalian Hop are 42% identical. ¨ upregulated by viral transformation (Honoré et al., 1992), in colon cancer (Kubota et al., 2010), HCC (Chen et al., 2017; Su et al., 2018), and pancreatic cancer (Jing et al., 2019). ¨ primarily cytoplasmic by IF (Lässle et al., 1997), but also in Golgi and vesicles (Honoré et al., 1992), and about 6% even on the cell surface (Martins et al., 1997; Zanata et al., 2002) or in the membrane fraction (Sakudo et al., 2005). Certain treatments including G1/S arrest (Longshaw et al., 2004) and heat-shock or treatment with leptomycin B promote more nuclear localization (Daniel et al., 2008). Recruited to stress granules along with Hsp90 and several other co-chaperones (Pare et al., 2009). Accumulates in the nucleus upon overexpression of PIAS1 and partially in PML bodies, and increased PIAS1 expression in glioblastoma cells correlates with that too (Soares et al., 2013). ¨ Plants have Hop, too (Zhang et al., 2003). ¨ By global analysis in yeast, the Hsp90 complex including Sti1 can be classified as a stress-inducible chaperone complex as opposed to a chaperone linked to protein synthesis (CLIPs) which also associates with nascent polypeptides (Albanèse et al., 2006). Part of chaperone supercomplex with Hsp90 and Hsp70, based on integrated analysis of genetic and physical interactions (Rizzolo et al., 2017).
    [Show full text]
  • Dual Roles for Yeast Sti1/Hop in Regulating the Hsp90 Chaperone Cycle
    Genetics: Early Online, published on June 21, 2018 as 10.1534/genetics.118.301178 Dual roles for yeast Sti1/Hop in regulating the Hsp90 chaperone cycle Michael Reidy, Shailesh Kumar, D. Eric Anderson, and *Daniel C. Masison Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA Copyright 2018. Dual roles for Sti1/Hop Running title: Dual roles for Sti1/Hop Key words: Sti1, Hop, Hsp90 Correspondence: Daniel C. Masison, Building 8, Room 324, 8 Center Drive, National Institutes of Health, Bethesda, MD 20892-0830 e-mail: [email protected] telephone: (301) 594-1316 2 Dual roles for Sti1/Hop ABSTRACT The Hsp90 chaperone is regulated by many co-chaperones that tune its activities, but how they act to coordinate various steps in the reaction cycle is unclear. The primary role of Saccharomyces cerevisiae Hsp70/Hsp90 co-chaperone Sti1 (Hop in mammals) is to bridge Hsp70 and Hsp90 to facilitate client transfer. Sti1 is not essential, so Hsp90 can interact with Hsp70 in vivo without Sti1. Nevertheless, many Hsp90 mutations make Sti1 necessary for viability, which points to sites of Hsp90 as important for Hsp70 interaction. We such noted Sti1- dependent mutations cluster in NTD-proximal (SdN) or CTD-proximal (SdC) regions, important for interaction with Hsp70 or clients, respectively. To uncover mechanistic details of Sti1-Hsp90 cooperation, we identified intramolecular suppressors of the Hsp90 mutants and assessed their physical, functional and genetic interactions with Hsp70, Sti1 and other co-chaperones. Our findings suggest Hsp90 SdN and SdC mutants depend on the same interaction with Sti1, but for different reasons.
    [Show full text]
  • Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders
    applied sciences Review Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders Giusi Alberti 1, Letizia Paladino 1 , Alessandra Maria Vitale 1 , Celeste Caruso Bavisotto 1 , Everly Conway de Macario 2, Claudia Campanella 1, Alberto J. L. Macario 2,3 and Antonella Marino Gammazza 1,* 1 Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; [email protected] (G.A.); [email protected] (L.P.); [email protected] (A.M.V.); [email protected] (C.C.B.); [email protected] (C.C.) 2 Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA; [email protected] (E.C.d.M.); [email protected] or [email protected] (A.J.L.M.) 3 Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy * Correspondence: [email protected] Abstract: Neuroinflammation is implicated in central nervous system (CNS) diseases, but the molec- ular mechanisms involved are poorly understood. Progress may be accelerated by developing a comprehensive view of the pathogenesis of CNS disorders, including the immune and the chaperone systems (IS and CS). The latter consists of the molecular chaperones; cochaperones; and chaperone cofactors, interactors, and receptors of an organism and its main collaborators in maintaining protein homeostasis (canonical function) are the ubiquitin–proteasome system and chaperone-mediated Citation: Alberti, G.; Paladino, L.; autophagy. The CS has also noncanonical functions, for instance, modulation of the IS with induction Vitale, A.M.; Caruso Bavisotto, C.; of proinflammatory cytokines.
    [Show full text]
  • The Role of Tyrosine Phosphorylation in Regulation of Signal Transduction Pathways in Unicellular Eukaryotes
    Curr. Issues Mol. Biol. 8: 27–50. Online journal at www.cimb.org The Role of Tyrosine Phosphorylation in Regulation of Signal Transduction Pathways in Unicellular Eukaryotes Irina V. Schemarova transducer and activator of transcription) proteins located in the cytoplasm. This transmission is also provided by Sechenov Institute of Evolutionary Physiology and the SH2 domain contacts responsible for coupling of Biochemistry, Russian Academy of Sciences, St. phosphotyrosine-containing proteins (Darnell, 1997). Petersburg 194223, Russia The structural-functional organization of Ras-MAPK and STAT signaling pathways in vertebrate cells has Abstract been intensively studied for more than 20 years. By The review summarizes for the frst time the current the present time an extensive experimental material concepts of the role of tyrosine phosphorylation in has been accumulated, which allows judging about the regulation of signal transduction pathways in unicellular events in cells of the higher eukaryotes at each stage of eukaryotes. Evolutionary concepts are developed about transmission of proliferative signal. Much less is known the origin of protein tyrosine kinases (PTK)-signaling. about mechanisms of transmission of growth signals in cells of primitive eukaryotes. There are practically no data Introduction in the literature about the existence of their STAT and Ras- At the end of the last century, in mammalian cells a multi- MAPK pathways of the signal transmission; meanwhile, it cascade pathway was discovered to be responsible for is obvious that RTKs exist not only in mammals, but in transmission of proliferative signals into genome. The multicellular invertebrates, including the most primitive key role in the signal transmission through this pathway — sponges and coelenterates (Schartl, Barnekow, 1982; is played by processes of phosphorylation of protein Schartl et al., 1989; Kruse et al., 1997).
    [Show full text]