Creating and Characterizing a Single Molecule Device for Quantitative Surface Science Matthew Felix Blishen Green

Total Page:16

File Type:pdf, Size:1020Kb

Creating and Characterizing a Single Molecule Device for Quantitative Surface Science Matthew Felix Blishen Green ey Technologies ey K Schlüsseltechnologien Creating and characterizing an SMD and characterizing Creating 181 Creating and characterizing a single molecule device for quantitative surface science Matthew Felix Blishen Green Schlüsseltechnologien / Key Technologies Schlüsseltechnologien / Key Technologies Band / Volume 181 Band / Volume 181 ISBN 978-3-95806-352-5 ISBN 978-3-95806-352-5 Matthew Felix Blishen Green Felix Matthew Schriften des Forschungszentrums Jülich Reihe Schlüsseltechnologien / Key Technologies Band / Volume 181 Forschungszentrum Jülich GmbH Peter Grünberg Institut (PGI) Functional Nanostructures at Surfaces (PGI-3) Creating and characterizing a single molecule device for quantitative surface science Matthew Felix Blishen Green Schriften des Forschungszentrums Jülich Reihe Schlüsseltechnologien / Key Technologies Band / Volume 181 ISSN 1866-1807 ISBN 978-3-95806-352-5 Bibliografische Information der Deutschen Nationalbibliothek. Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte Bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. Herausgeber Forschungszentrum Jülich GmbH und Vertrieb: Zentralbibliothek, Verlag 52425 Jülich Tel.: +49 2461 61-5368 Fax: +49 2461 61-6103 [email protected] www.fz-juelich.de/zb Umschlaggestaltung: Grafische Medien, Forschungszentrum Jülich GmbH Druck: Grafische Medien, Forschungszentrum Jülich GmbH Copyright: Forschungszentrum Jülich 2018 Schriften des Forschungszentrums Jülich Reihe Schlüsseltechnologien / Key Technologies, Band / Volume 181 D 82 (Diss., RWTH Aachen University, 2018) ISSN 1866-1807 ISBN 978-3-95806-352-5 Vollständig frei verfügbar über das Publikationsportal des Forschungszentrums Jülich (JuSER) unter www.fz-juelich.de/zb/openaccess. This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. It is fair to state that we are not going to experiment with single particles any more than we will raise dinosaurs in the zoo. —Erwin Schrödinger iv Acknowledgments There are many people without whom this dissertation would have been impossible to complete. For this reason I would like to thank • Prof. Dr. Stefan Tautz for the opportunity to perform exciting research at PGI-3. When discussing the nature of our work, he once said ‘the molecules will do what they have to do’, and this rigour, respect but mostly love of his for physics and science helped me greatly during my time in Jülich. His enthusiasm for an enormous range of topics led to many lively lunchtime conversations, which however after the 23rd of June 2016 often revolved around one topic in particular. • Dr. Ruslan Temirov for his excellent scientific supervision. His relentless search for the truth inspired me and he can often be found saying ‘there are no miracles’, a sentiment which gave me the impetus to look at many problems in a different way. I am very grateful for the countless discussions on science and beyond that we shared and the stimulating working environment he created. • Dr. Christian Wagner for all his support but also the good times we enjoyed together in the lab. Without his advice and contributions this work would certainly have been less successful. • Philipp Leinen and Dr. Taner Esat for our fruitful collaboration throughout the years. They were always around for interesting discussions, to help out in the lab or just to kick a football around the office. • Dr. Norman Fournier for showing me the ropes, not only in the LT-STM/AFM lab but in Cologne-Ehrenfeld too. v • Alexander Grötsch for our collaboration with the motion tracking system and for speaking so much German with me in the lab; this certainly contributed to us not having to speak much English later on! • All the members of PGI-3/ICS-7 who contributed to the very enjoyable work- ing atmosphere in the institute. • The many great friends I made while travelling to the research centre with the Rurtalbahn. No matter how delayed the RE1 was, the quality time spent with them provided me with a joyful start and end to the working day. • My parents and step-parents Jo, Russ, Stuart and Isobel and my sisters Anna and Sasha for everything they do for me. Knowing that they are there for me makes life’s challenges seem a little less insurmountable. • Last but most importantly, my closest companion in life Sonja for her love, patience and support through all the highs and lows of the last several years. In fact, I couldn’t imagine it without her. vi Contents Introduction 1 1. Theoretical background and experimental techniques 5 1.1. Introduction to scanning tunnelling microscopy . 6 1.2. Introduction to atomic force microscopy . 10 1.3. Experimental details . 13 1.3.1. Experimental setup . 13 1.3.2. Sample and tip preparation . 17 2. Patterning a hydrogen-bonded molecular monolayer with a hand-controlled SPM 19 Introduction . 20 2.1. Patterning a hydrogen-bonded molecular monolayer with a hand- controlled SPM . 22 3. Scanning Quantum Dot Microscopy 31 Introduction . 32 3.1. Scanning Quantum Dot Microscopy . 33 3.2. Scanning Quantum Dot Microscopy: Supplemental Information . 39 3.3. A quantitative method to measure local electrostatic potential near surfaces . 47 4. Quantitative modelling of single electron charging events 55 Introduction . 56 4.1. Single electron box model . 57 4.1.1. Experimental data . 59 4.1.2. Free energy of the system . 64 vii Contents 4.1.3. Charging events of the QD . 66 4.1.4. Charging force . 73 4.1.5. Applying the theory to experimental data . 76 4.2. Point charge model . 81 4.2.1. Predictions of the point charge model . 81 4.2.2. Discrepancy in α ......................... 86 4.2.3. Energy level position and Coulomb repulsion . 92 4.3. Discussion . 95 Conclusion and outlook . 100 4.A. Appendix . 102 4.A.1. Interplay of frequency shift and tunnelling current . 102 4.A.2. Determining the electronic coupling between tip and QD . 104 5. Accurate work function changes measured with scanning quantum dot microscopy 109 Introduction . 110 5.1. Point charge model to obtain change in work function . 112 5.1.1. An expression for local potential . 112 5.1.2. Removing the influence of the tip’s properties . 115 5.2. Change in work function of Ag(111) after PTCDA adsorption . 117 5.2.1. Constant height KPFM results . 117 5.2.2. SQDM results . 119 5.2.3. Discussion . 120 Conclusion and outlook . 126 Summary 129 Bibliography 133 List of Figures 141 viii Introduction As the technological needs of today’s global society continue to increase, the pres- sure to develop more powerful, more efficient and above all more compact electronic devices increases simultaneously. In 1965 Moore [1] exhibited a correlation between the number of transistors on an integrated circuit and the number of years following the invention of the integrated circuit in 1958 — the transistor count seemed to be roughly doubling every year. This prediction was modified to doubling every two years, which until several years ago had been fulfilled rather exactly. However the miniaturization limit of the current field effect transistor technology is gradually be- ing reached [2], and a shift in the electronics paradigm will soon be required. There are several promising avenues currently at the focus of research for next-generation information technology; 2D materials, multiferroics and spin- and valleytronics form several examples [3–6]. A further example is the exciting field of molecular-scale elec- tronics, where single molecules forming functional electronic devices is the ultimate goal [7, 8]. Aviram and Ratner’s calculation of electronic transport through a single molecule [9] is often heralded as the beginning of modern molecular electronics. Their idea was that a single, polar molecule could act as a rectifier, which converts an alternat- ing current into a direct current. However they were ahead of their time; the lack of appropriate technology prevented their ideas from being built upon in experiment. The advent of scanning tunnelling microscopy (STM) in the early 1980s [10] was the stimulus that molecular-scale electronics needed. Several seminal STM as well as mechanically controllable break junction experiments were the first to demonstrate transport through single molecules [11, 12]. In the years since then, a wide variety of functions have been demonstrated using single molecules, including transistor func- tionality [13–15] and rectification [16, 17], but also electromechanical amplification [18], switching [19, 20], memristance [21] and directional, mechanical motion [22]. 1 Introduction The central challenges, besides economic considerations, that the integration of molecular electronic components into real world applications faces can be summa- rized into two general categories: control of electronic properties and control of geo- metrical properties. The understanding of electron transport through molecules is a key point where much research effort has been focused in the last decade [23]. How- ever as Ratner [7] stated, with the estimated number of possible molecular structures at ∼1060 for small organic molecules, there is still much to be discovered in this area. As far as control over the geometry of a molecular system is concerned, bottom-up rather than top-down fabrication processes must be employed in order to allow for the tuning of of the properties of individual molecules. Here there are two main approaches: allowing molecules to arrange themselves into a pre-designed structure, known as self-assembly, or building a structure with the molecules as the ‘building blocks’. Both approaches can in principle lead to extended structures defined at the molecular scale, and can even be employed in conjunction as will be displayed in this thesis. Seminal works, where single CO as well as C60 molecules were individually positioned on surfaces, demonstrated the feasibility of STM for molecular manipu- lation [24, 25]. However deterministic control over complex molecules at all stages of the manipulation procedure, vital for molecular-scale construction, has not yet been presented.
Recommended publications
  • Quantum Nanoscience: Atoms on Surfaces
    FLEET RESEARCH SEMINAR Quantum Nanoscience: Atoms on Surfaces ANDREAS HEINRICH Center for Quantum Nanoscience Ewha Womans University About the Speaker: Heinrich is a world-leading researcher in the field of quantum measurements on Abstract: The scanning tunneling microscope is the atomic-scale in solids. He pioneered spin excitation an amazing tool because of its atomic-scale spatial and single-atom spin resonance spectroscopy with resolution. This can be combined with the use of scanning tunneling microscopes – methods that have low temperatures, culminating in precise atom provided high-resolution access to the quantum states manipulation and spectroscopy with microvolt of atoms and nanostructures on surfaces. Heinrich is energy resolution. In this talk we will apply these fascinated by the world of atoms and nanostructures, techniques to the investigation of the quantum built with atomic-scale precision, and educates the spin properties of magnetic atoms sitting on thin public on nanoscience as demonstrated by the 2013 insulating films. electronic properties by tuning release of the movie “A Boy and his Atom”. A native of interlayer interaction. Germany, Heinrich received his PhD in 1998 from the University of Goettingen and then joined the research group of Dr. Donald Eigler’s as a postdoc. Heinrich We have recently demonstrated the use of electron spent 18 years in IBM Research, which uniquely spin resonance on single Fe atoms on MgO. This positioned him to bridge the needs of industrial technique combines the power of STM of atomic- research and the academic world. scale spectroscopy with the unprecedented energy resolution of spin resonance techniques, which is about 10,000 times better than normal spectroscopy.
    [Show full text]
  • Conceptual Design of a Pick-And-Place 3D Nanoprinter for Materials Synthesis
    Conceptual Design of a Pick-and-Place 3D Nanoprinter for Materials Synthesis The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Carlson, Max B. et al. “Conceptual Design of a Pick-and-Place 3D Nanoprinter for Materials Synthesis.” 3D Printing and Additive Manufacturing 2.3 (2015): 123–130. As Published http://dx.doi.org/10.1089/3dp.2015.0023 Publisher Mary Ann Liebert Version Final published version Citable link http://hdl.handle.net/1721.1/105200 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. 3D PRINTING AND ADDITIVE MANUFACTURING Volume 2, Number 3, 2015 DOI: 10.1089/3dp.2015.0023 ORIGINAL ARTICLE Conceptual Design of a Pick-and-Place 3D Nanoprinter for Materials Synthesis Max B. Carlson,1 Kayen K. Yau,1 Robert E. Simpson,2 and Michael P. Short1 Abstract The past decade has seen revolutionary advances in three-dimensional (3D) printing and additive manufacturing. However, a technique to create 3D material microstructures of arbitrary complexity has not yet been developed. We present the conceptual design of a 3D material microprinter as a concrete step toward an eventual 3D material nano- printer. Such a device would enable the use of heterogeneous starting materials with printing resolution on the order of tens of nanometers. By combining a pick-and-place particle transfer method with a custom-built laser sintering optical microscope, the core components of the 3D printer are once again reimagined.
    [Show full text]
  • Nanotechnology, Nanoparticles and Nanoscience: a New Approach in Chemistry and Life Sciences
    Soft Nanoscience Letters, 2020, 10, 17-26 https://www.scirp.org/journal/snl ISSN Online: 2160-0740 ISSN Print: 2160-0600 Nanotechnology, Nanoparticles and Nanoscience: A New Approach in Chemistry and Life Sciences Dan Tshiswaka Dan Zhejiang Normal University, Jinhua, China How to cite this paper: Dan, D.T. (2020) Abstract Nanotechnology, Nanoparticles and Na- noscience: A New Approach in Chemistry Nanotechnologies, nanoparticles and nanomaterials, which are part of every- and Life Sciences. Soft Nanoscience Letters, day life today, are the subject of intense research activities and a certain 10, 17-26. amount of media coverage. In this article, the concepts of nanotechnologies, https://doi.org/10.4236/snl.2020.102002 nanoparticles and nanosciences are defined and the interest in this scale of Received: March 1, 2020 the matter is explained by specifying in particular the particular properties of Accepted: April 27, 2020 nanoobjects. Large-scale applications of nanoparticles, particularly in the field Published: April 30, 2020 of chemicals, everyday life and catalysis are presented. Copyright © 2020 by author(s) and Scientific Research Publishing Inc. Keywords This work is licensed under the Creative Nanoscience and Nanoparticles Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Open Access 1. Introduction Nano sciences and nanotechnologies have been the subject of numerous works for more than twenty years, within and at the interface of multiple scientific dis- ciplines, such as physics, chemistry, biology, engineering sciences or human sciences and social. Nanotechnology research is raising high hopes because of the particular properties of matter at the nanoscale that allow new functions unimagined to be envisaged [1].
    [Show full text]
  • Art on the Nanoscale and Beyond
    Art on the Nanoscale and Beyond Yetisen, Ali; Coskun, Ahmet F.; England, Grant; Cho, Sangyeon; Butt, Haider; Hurwitz, Jonty; Kolle, Mathias; Khademhosseini, Ali; Hart, A. John; Folch, Albert; Yun, Seok Hyun DOI: 10.1002/adma.201502382 License: Unspecified Document Version Peer reviewed version Citation for published version (Harvard): Yetisen, AK, Coskun, AF, England, G, Cho, S, Butt, H, Hurwitz, J, Kolle, M, Khademhosseini, A, Hart, AJ, Folch, A & Yun, SH 2016, 'Art on the Nanoscale and Beyond', Advanced Materials, vol. 28, no. 9, pp. 1724–1742. https://doi.org/10.1002/adma.201502382 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version.
    [Show full text]
  • Art on the Nanoscale and Beyond
    University of Birmingham Art on the Nanoscale and Beyond Yetisen, Ali K.; Coskun, Ahmet F.; England, Grant; Cho, Sangyeon; Butt, Haider; Hurwitz, Jonty; Kolle, Mathias; Khademhosseini, Ali; Hart, A. John; Folch, Albert; Yun, Seok Hyun DOI: 10.1002/adma.201502382 License: Unspecified Document Version Peer reviewed version Citation for published version (Harvard): Yetisen, AK, Coskun, AF, England, G, Cho, S, Butt, H, Hurwitz, J, Kolle, M, Khademhosseini, A, Hart, AJ, Folch, A & Yun, SH 2016, 'Art on the Nanoscale and Beyond', Advanced Materials, vol. 28, no. 9, pp. 1724–1742. https://doi.org/10.1002/adma.201502382 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version.
    [Show full text]
  • Interview with J. Harold Wayland
    J. HAROLD WAYLAND (1901 - 2000) INTERVIEWED BY JOHN L. GREENBERG AND ANN PETERS December 9 and 30, 1983 January 16, 1984 January 3, 5, and 7, 1985 J. Harold Wayland, 1979 ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Engineering and applied science Abstract An interview in six sessions, December 1983–January 1985, with J. Harold Wayland, professor emeritus of engineering science in the Division of Engineering and Applied Science. Dr. Wayland received a BS in physics and mathematics from the University of Idaho, 1931, and became a graduate student at Caltech in 1933, earning his PhD in 1937. After graduation he taught at the University of Redlands while working at Caltech as a research fellow with H. Bateman until 1941. Joins Naval Ordnance Laboratory as head of the magnetic model section for degaussing ships; War Research Fellow at Caltech 1944-45; heads Navy’s Underwater Ordnance Division. In 1949, joins Caltech’s faculty as associate professor of applied mechanics, becoming professor of engineering science in 1963; emeritus in 1979. He describes his early education and graduate work at Caltech under R. A. Millikan; courses with W. R. Smythe, F. Zwicky, M. Ward, and W. V. Houston; http://resolver.caltech.edu/CaltechOH:OH_Wayland_J teaching mathematics; research with O. Beeck. Fellowship, Niels Bohr Institute, Copenhagen; work with G. Placzek and M. Knisely; interest in rheology. On return, teaches physics at the University of Redlands meanwhile working with Bateman. Recalls his work at the Naval Ordnance Laboratory and torpedo development for the Navy. Discusses streaming birefringence; microcirculation and its application to various fields; Japan’s contribution; evolution of Caltech’s engineering division and the Institute as a whole; his invention of the precision animal table and intravital microscope.
    [Show full text]
  • Patterning a Hydrogen-Bonded Molecular Monolayer with a Hand-Controlled Scanning Probe Microscope
    Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope Matthew F. B. Green1,2, Taner Esat1,2, Christian Wagner1,2,3, Philipp Leinen1,2, Alexander Grötsch1,2,4, F. Stefan Tautz1,2 and Ruslan Temirov*1,2 Full Research Paper Open Access Address: Beilstein J. Nanotechnol. 2014, 5, 1926–1932. 1Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 doi:10.3762/bjnano.5.203 Jülich, Germany, 2Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425 Received: 09 July 2014 Jülich, Germany, 3Leiden Institute of Physics, Universiteit Leiden, Accepted: 10 October 2014 Niels Bohrweg 2, 2333 CA Leiden, The Netherlands and 4Unit Human Published: 31 October 2014 Factors, Ergonomics, Federal Institute for Occupational Safety and Health (BAuA), 44149 Dortmund, Germany Associate Editor: S. R. Cohen Email: © 2014 Green et al; licensee Beilstein-Institut. Ruslan Temirov* - [email protected] License and terms: see end of document. * Corresponding author Keywords: atomic force microscopy (AFM); scanning tunneling microscopy (STM); single-molecule manipulation; 3,4,9,10-perylene tetracarboxylic acid dianhydride (PTCDA) Abstract One of the paramount goals in nanotechnology is molecular-scale functional design, which includes arranging molecules into com- plex structures at will. The first steps towards this goal were made through the invention of the scanning probe microscope (SPM), which put single-atom and single-molecule manipulation into practice for the first time. Extending the controlled manipulation to larger molecules is expected to multiply the potential of engineered nanostructures. Here we report an enhancement of the SPM technique that makes the manipulation of large molecular adsorbates much more effective.
    [Show full text]
  • Andreas J. Heinrich
    CENTER FOR QUANTUM NANOSCIENCE, INSTITUTE FOR BASIC SCIENCE, EWHA WOMANS UNIVERSITY Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea Curriculum Vitae: Andreas J. Heinrich Heinrich is a world-leading researcher in the field of quantum measurements on the atomic-scale in solids. He pioneered spin excitation and single-atom spin resonance spectroscopy with scanning tunneling microscopes – methods that have provided high-resolution access to the quantum states of atoms and nanostructures on surfaces. He has a track record of outstanding publications and invited talks and has established a strong network of global collaborations. As a consequence, Heinrich’s work has received extensive media coverage worldwide. Heinrich spent 18 years in IBM Research, which uniquely positioned him to bridge the needs of industrial research and the academic world. This unique environment gave Heinrich extensive experience in presenting to corporate and political leaders, including the president of Israel and the IBM Board of Directors. Heinrich became a distinguished professor of Ewha Womans University in August 2016 and started the Center for Quantum Nanoscience (QNS) of the Institute for Basic Science (IBS) in January 2017. Under his leadership, QNS focuses on exploring the quantum properties of atoms and molecules on clean surfaces and interfaces with a long-term goal of quantum sensing and quantum computation in such systems. Heinrich is a member of the Korean and German Physical Societies as well as a fellow of the American Physical
    [Show full text]
  • Writing, Medium, Machine: Modern Technographies Editor(S) Pryor, Sean Trotter, David
    UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks! Title Writing, medium, machine: Modern technographies Editor(s) Pryor, Sean Trotter, David Publication date 2016 Original citation Pryor, S. and Trotter, D. (eds.) (2016). Writing, Medium, Machine: Modern Technographies. London: Open Humanities Press. DOI: 10.26530/oapen_618513 Type of publication Book Link to publisher's https://openhumanitiespress.org/ version http://dx.doi.org/10.26530/oapen_618513 Access to the full text of the published version may require a subscription. Rights © 2016, Sean Pryor and David Trotter, chapters by respective authors. This is an open access book, licensed under Creative Commons By Attribution Share Alike license. Under this license, authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy their work so long as the authors and source are cited and resulting derivative works are licensed under the same or similar license. No permission is required from the authors or the publisher. Statutory fair use and other rights are in no way affected by the above. Read more about the license at creativecommons.org/licenses/by-sa/4.0 https://creativecommons.org/licenses/by-sa/4.0/ Item downloaded http://hdl.handle.net/10468/5664 from Downloaded on 2021-10-04T07:11:19Z WRITING, MEDIUM, MACHINE MODERN TECHNOGRAPHIES EDITED BY SEAN PRYOR AND DAVID TROTTER Writing, Medium, Machine Modern Technographies Technographies Series Editors: Steven Connor, David Trotter and James Purdon How was it that technology and writing came to inform each other so exten- sively that today there is only information? Technographies seeks to answer that question by putting the emphasis on writing as an answer to the large question of ‘through what?’.
    [Show full text]
  • Copyright Acknowledgement Booklet
    Copyright Acknowledgement Booklet For the June 2015 exam series This booklet contains the acknowledgements for third-party copyright material used in OCR assessment materials for GCE & GCSE Qualifications. www.ocr.org.uk About the Copyright Acknowledgement Booklet Prior to the June 2009 examination series, acknowledgements for third-party copyright material were printed on the back page of the relevant exam papers and associated assessment materials. For security purposes, from that series onwards, OCR has created this separate booklet to include all of the acknowledgements, rather than including them in the exam papers or associated assessment materials. The booklet is published after each examination series, as soon as the assessment materials become available to the public. It is available online from the OCR website at: http://www.ocr.org.uk/i-want-to/download-past-papers/conditions-of-use/ The Assessment Material Production Team can be contacted by post at 1 Hills Road, Cambridge, CB1 2EU, or by email at [email protected]. Where possible, OCR has sought and cleared permission to reproduce items of third-party owned copyright material. Every reasonable effort has been made by OCR to trace copyright holders, but if any items requiring clearance have unwittingly been included, please contact the Assessment Material Production Team at the addresses above and OCR will be pleased to make amends at the earliest possible opportunity. How to find an acknowledgement Each acknowledgement is filed firstly by subject and then under the unit number of the exam paper in which the copyright material appears. Where an exam paper has more than one document associated with it, each document is identified with its separate acknowledgements.
    [Show full text]
  • Ibm Starting Salary Software Engineering
    Ibm starting salary software engineering The typical IBM Software Engineer salary is $87, Software Engineer salaries at IBM can range from $51, - $, This estimate is. Average salaries for IBM Entry Level Software Engineer: $ IBM salary trends based on salaries posted anonymously by IBM employees. As of Sep , the average pay for a Software Engineer is $ annually. Entry-Level Software Engineer at International Business Machines (IBM) Corp. Salary. The average pay Salary, $68, - $, Employers: Start Here». Just like most other companies, IBM doesn't have a set salary amount for new hires. Even if you don't have any prior experience, your starting salary will depend. The average Base Salary for IBM Software Engineer is $K per year, ranging from $K to $K. Salaries calculated from K profiles. Men outnumber. Average salaries for IBM Software Developer: $ IBM salary trends based on salaries posted anonymously by IBM employees. “3 weeks vacation a year to start, up to 5 weeks a year at 20 years. Vacation time is paid. Overtime can be . Software Development Engineer salaries ($82k) · Intern jobs. Average salaries for IBM Associate Software Engineer: ₹5, IBM salary trends based on salaries posted anonymously by IBM employees. Average salaries for IBM Systems Engineer: ₹5, IBM salary trends based on salaries posted anonymously by IBM employees. Average salaries for IBM Software Test Engineer: ₹4, IBM salary trends based on salaries posted anonymously by IBM employees. A free inside look at IBM salary trends. salaries Salaries posted anonymously by IBM employees. Advisory Software Engineer (Band 8). If you talk to a software engineer, they're probably most interested in among engineers and developers also pay the best, according to salary.
    [Show full text]
  • Transition Metal Nitride and Metal Carbide Based Nanostructures
    Aus dem Max-Planck-Institut für Kolloid- und Grenzflächenforschung A neglected World: Transition Metal Nitride and Metal Carbide Based Nanostructures Novel Synthesis and Future Perspectives Habilitationsschrift Zur Erlangung des akademischen Grades Doktor rerum naturalium habilitatus (Dr. rer. nat. habil.) in der Wissenschaftsdisziplin Physikalische Chemie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Dr. Cristina Giordano geboren am 07.05.1974 in Palermo Potsdam, im März 2014 Published online at the Institutional Repository of the University of Potsdam: URN urn:nbn:de:kobv:517-opus4-75375 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-75375 Alla mia famiglia, per l´infinito amore… TABLE OF CONTENTS 1. Introduction ............................................................................................................. 1 2. Nanosized Materials: into the World of Discontinuity ........................................ 4 2.1 The Importance of Materials ...................................................................... 4 2.2 What is a Nanomaterial? ............................................................................. 5 3. Transition Metal Nitrides and Carbides ............................................................... 8 3.1 Properties ................................................................................................. 11 3.2. Applications ............................................................................................. 20 3.3. Synthesis ................................................................................................
    [Show full text]