Astronomy and Cosmology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Robert Hinde Curriculum Vitae
CURRICULUM VITAE Robert A. Hinde Born 26 October 1923 in Norwich, England Education, Degrees, A wards, and Positions 1935-40 Oundle School 1940-45 RAF Pilot, Coastal Command 1946-48 St. John's College, Cambridge 1948 B.A., University of Cambridge; B.Sc., University of London 1948-50 Research Assistant, Edward Grey Institute, Department of Zoology, Oxford University 1950 D.Phil., Oxford University 1950-64 Curator, Ornithological Field Station, Department of Zoology, University of Cambridge (now Sub-Department of Animal Behaviour) 1951-54 Research Fellow, St. John's College, Cambridge 1956-58 Steward, St. John's College 1958-89, 1994- Fellow, St. John's College 1958-1963 Tutor, St. John's College 1989-94 Master, St. John’s College 1961 Sc.D., University of Cambridge 1961 Zoological Society's Scientific Medal 1963-1989 Royal Society Research Professor 1970-89 Honorary Director, Medical Research Council Unit on the Development & Integration of Behaviour 1974 Fellow of the Royal Society (Council member 1985-1987) 1974 Foreign Honorary Member of the American Academy of Arts and Sciences 1974 Docteur honoris causa, Universire Libre, Bruxelles 1976 Honorary Fellow of the American Ornithologists' Union 1978 Honorary Foreign Associate of the National Academy of Sciences 1 1978 Docteur honoris causa, Universire de Paris (Nanterre) 1979 Hitchcock Professor at University of California 1980 Osman Hill Medal, Primate Society of Great Britain 1980 Leonard Cammer A ward, New York Psychiatric Institute, Columbia University 1981 Honorary Fellow of British -
Stephen Hawking (1942–2018) World-Renowned Physicist Who Defied the Odds
COMMENT OBITUARY Stephen Hawking (1942–2018) World-renowned physicist who defied the odds. hen Stephen Hawking was speech synthesizer processed his words and diagnosed with motor-neuron generated the androidal accent that became disease at the age of 21, it wasn’t his trademark. In this way, he completed his Wclear that he would finish his PhD. Against best-selling book A Brief History of Time all expectations, he lived on for 55 years, (Bantam, 1988), which propelled him to becoming one of the world’s most celebrated celebrity status. IAN BERRY/MAGNUM scientists. Had Hawking achieved equal distinction Hawking, who died on 14 March 2018, was in any other branch of science besides cos- born in Oxford, UK, in 1942 to a medical- mology, it probably would not have had the researcher father and a philosophy-graduate same resonance with a worldwide public. As mother. After attending St Albans School I put it in The Telegraph newspaper in 2007, near London, he earned a first-class degree “the concept of an imprisoned mind roaming in physics from the University of Oxford. He the cosmos” grabbed people’s imagination. began his research career in 1962, enrolling In 1965, Stephen married Jane Wilde. as a graduate student in a group at the Uni- After 25 years of marriage, and three versity of Cambridge led by one of the fathers children, the strain of Stephen’s illness of modern cosmology, Dennis Sciama. and of sharing their home with a team of The general theory of relativity was at that nurses became too much and they sepa- time undergoing a renaissance, initiated in rated, divorcing in 1995. -
AHMED H. ZEWAIL 26 February 1946 . 2 August 2016
AHMED H. ZEWAIL 26 february 1946 . 2 august 2016 PROCEEDINGS OF THE AMERICAN PHILOSOPHICAL SOCIETY VOL. 162, NO. 2, JUNE 2018 biographical memoirs t is often proclaimed that a stylist is someone who does and says things in memorable ways. From an analysis of his experimental Iprowess, his written contributions, his lectures, and even from the details of the illustrations he used in his published papers or during his lectures to scientific and other audiences, Ahmed Zewail, by this or any other definition, was a stylist par excellence. For more than a quarter of a century, I interacted with Ahmed (and members of his family) very regularly. Sometimes he and I spoke several times a week during long-distance calls. Despite our totally different backgrounds we became the strongest of friends, and we got on with one another like the proverbial house on fire. We collaborated scientifi- cally and we adjudicated one another’s work, as well as that of others. We frequently exchanged culturally interesting stories. We each relished the challenge of delivering popular lectures. In common with very many others, I deem him to be unforgettable, for a variety of different reasons. He was one of the intellectually ablest persons that I have ever met. He possessed elemental energy. He executed a succession of brilliant experiments. And, almost single-handedly, he created the subject of femtochemistry, with all its magnificent manifestations and ramifications. From the time we first began to exchange ideas, I felt a growing affinity for his personality and attitude. This was reinforced when I told him that, ever since I was a teenager, I had developed a deep interest in Egyptology and a love for modern Egypt. -
Kenosis and Nature
from John Polkinghorne, ed., The Work of Love: Creation as Kenosis. Grand Rapids, MI: Wm. Eeerdmans Publishing Co., and London: SPCK, 2001, pp. 43-65. Kenosis and Nature HOLMES ROLSTON, III Every commonplace detail of nature, every stone and tree, includes an immense richness and variety of lesser detail: in every fragment of it a thousand million lesser fragments cohere and interact. Loves Endeavour, Love's Expense, p. 84 Unless a grain of wheat falls into the earth and dies, it remains alone; but if it dies, it bears much fruit. John 12:24 1. Selfish Genes, Selfish Organisms, and Survival of the Fittest If one compares the general worldview of biology with that of theology, it first seems that there is only stark contrast. To move from Darwinian na- ture to Christian theology, one will have to change the sign of natural his- tory, from selfish genes to suffering love. Theologians also hold that, in regeneration, humans with their sinful natures must be reformed to lives that are more altruistic, also requiring a change of sign. But the problem lies deeper; all of biological nature can seem to run counter to what Jesus teaches: that one ought to lay down one s life for others. In nature, there is no altruism, much less kenosis. 43 HOLMES ROLSTON, III Life, coded by the genes, is always encapsulated in particular organ- isms. In biology we find, at once and pervasively, the organism as a bounded somatic "self" — something quite unknown in physics, chemis- try, astronomy, meteorology, or geology. The general Darwinian interpre- tive framework moves from the coding genes to the coping organisms and sees organisms so constituted genetically that self-interested (typically la- beled "selfish") behavior is inevitable. -
Antony Hewish
PULSARS AND HIGH DENSITY PHYSICS Nobel Lecture, December 12, 1974 by A NTONY H E W I S H University of Cambridge, Cavendish Laboratory, Cambridge, England D ISCOVERY OF P U L S A R S The trail which ultimately led to the first pulsar began in 1948 when I joined Ryle’s small research team and became interested in the general problem of the propagation of radiation through irregular transparent media. We are all familiar with the twinkling of visible stars and my task was to understand why radio stars also twinkled. I was fortunate to have been taught by Ratcliffe, who first showed me the power of Fourier techniques in dealing with such diffraction phenomena. By a modest extension of existing theory I was able to show that our radio stars twinkled because of plasma clouds in the ionosphere at heights around 300 km, and I was also able to measure the speed of ionospheric winds in this region (1) . My fascination in using extra-terrestrial radio sources for studying the intervening plasma next brought me to the solar corona. From observations of the angular scattering of radiation passing through the corona, using simple radio interferometers, I was eventually able to trace the solar atmo- sphere out to one half the radius of the Earth’s orbit (2). In my notebook for 1954 there is a comment that, if radio sources were of small enough angular size, they would illuminate the solar atmosphere with sufficient coherence to produce interference patterns at the Earth which would be detectable as a very rapid fluctuation of intensity. -
The Past Decade and the Future of Cosmology and Astrophysics
Towards a New Enlightenment? A Transcendent Decade The Past Decade and the Future of Cosmology and Astrophysics Martin Rees Martin Rees is a cosmologist and space scientist. After studying at Cambridge University, he held various posts in the UK and elsewhere, before returning to Cambridge, where he has been a professor, Head of the Institute of Astronomy, and Master of Trinity College. He has contributed to our understanding of galaxy formation, black holes, high-energy phenomena in the cosmos, and the concept of the multiverse. He has received substantial international recognition for his research. He has been much involved in science-related policy, being a member of the UK’s House of Lords and (during 2005–10) President of the Royal Society, the independent scientific academy of the UK Martin Rees and the Commonwealth. Apart from his research publications, he writes and University of Cambridge lectures widely for general audiences, and is the author of eight books, the most recent being On the Future (2018). Recommended books: Universe, Martin Rees, Dorling Kindersley, 2012; On the Future, Martin Rees, Princeton University Press, 2018. In the last decade, there has been dramatic progress in exploring the cosmos. Highlights include close-up studies of the planets and moons of our Solar System; and (even more dramatic) the realization that most stars are orbited by planets, and that there may be millions of Earth-like planets in our Galaxy. On a still larger scale, we have achieved a better understanding of how galaxies have developed, over 13.8 billion years of cosmic history, from primordial fluctuations. -
TRINITY COLLEGE Cambridge Trinity College Cambridge College Trinity Annual Record Annual
2016 TRINITY COLLEGE cambridge trinity college cambridge annual record annual record 2016 Trinity College Cambridge Annual Record 2015–2016 Trinity College Cambridge CB2 1TQ Telephone: 01223 338400 e-mail: [email protected] website: www.trin.cam.ac.uk Contents 5 Editorial 11 Commemoration 12 Chapel Address 15 The Health of the College 18 The Master’s Response on Behalf of the College 25 Alumni Relations & Development 26 Alumni Relations and Associations 37 Dining Privileges 38 Annual Gatherings 39 Alumni Achievements CONTENTS 44 Donations to the College Library 47 College Activities 48 First & Third Trinity Boat Club 53 Field Clubs 71 Students’ Union and Societies 80 College Choir 83 Features 84 Hermes 86 Inside a Pirate’s Cookbook 93 “… Through a Glass Darkly…” 102 Robert Smith, John Harrison, and a College Clock 109 ‘We need to talk about Erskine’ 117 My time as advisor to the BBC’s War and Peace TRINITY ANNUAL RECORD 2016 | 3 123 Fellows, Staff, and Students 124 The Master and Fellows 139 Appointments and Distinctions 141 In Memoriam 155 A Ninetieth Birthday Speech 158 An Eightieth Birthday Speech 167 College Notes 181 The Register 182 In Memoriam 186 Addresses wanted CONTENTS TRINITY ANNUAL RECORD 2016 | 4 Editorial It is with some trepidation that I step into Boyd Hilton’s shoes and take on the editorship of this journal. He managed the transition to ‘glossy’ with flair and panache. As historian of the College and sometime holder of many of its working offices, he also brought a knowledge of its past and an understanding of its mysteries that I am unable to match. -
Human Origins
HUMAN ORIGINS Methodology and History in Anthropology Series Editors: David Parkin, Fellow of All Souls College, University of Oxford David Gellner, Fellow of All Souls College, University of Oxford Volume 1 Volume 17 Marcel Mauss: A Centenary Tribute Learning Religion: Anthropological Approaches Edited by Wendy James and N.J. Allen Edited by David Berliner and Ramon Sarró Volume 2 Volume 18 Franz Baerman Steiner: Selected Writings Ways of Knowing: New Approaches in the Anthropology of Volume I: Taboo, Truth and Religion. Knowledge and Learning Franz B. Steiner Edited by Mark Harris Edited by Jeremy Adler and Richard Fardon Volume 19 Volume 3 Difficult Folk? A Political History of Social Anthropology Franz Baerman Steiner. Selected Writings By David Mills Volume II: Orientpolitik, Value, and Civilisation. Volume 20 Franz B. Steiner Human Nature as Capacity: Transcending Discourse and Edited by Jeremy Adler and Richard Fardon Classification Volume 4 Edited by Nigel Rapport The Problem of Context Volume 21 Edited by Roy Dilley The Life of Property: House, Family and Inheritance in Volume 5 Béarn, South-West France Religion in English Everyday Life By Timothy Jenkins By Timothy Jenkins Volume 22 Volume 6 Out of the Study and Into the Field: Ethnographic Theory Hunting the Gatherers: Ethnographic Collectors, Agents and Practice in French Anthropology and Agency in Melanesia, 1870s–1930s Edited by Robert Parkin and Anna de Sales Edited by Michael O’Hanlon and Robert L. Welsh Volume 23 Volume 7 The Scope of Anthropology: Maurice Godelier’s Work in Anthropologists in a Wider World: Essays on Field Context Research Edited by Laurent Dousset and Serge Tcherkézoff Edited by Paul Dresch, Wendy James, and David Parkin Volume 24 Volume 8 Anyone: The Cosmopolitan Subject of Anthropology Categories and Classifications: Maussian Reflections on By Nigel Rapport the Social Volume 25 By N.J. -
A Brief Look at Mathematics and Theology Philip J
Humanistic Mathematics Network Journal Issue 27 Article 14 Winter 1-1-2004 A Brief Look at Mathematics and Theology Philip J. Davis Brown University Follow this and additional works at: http://scholarship.claremont.edu/hmnj Part of the Logic and Foundations of Mathematics Commons, Mathematics Commons, and the Religious Thought, Theology and Philosophy of Religion Commons Recommended Citation Davis, Philip J. (2004) "A Brief Look at Mathematics and Theology," Humanistic Mathematics Network Journal: Iss. 27, Article 14. Available at: http://scholarship.claremont.edu/hmnj/vol1/iss27/14 This Article is brought to you for free and open access by the Journals at Claremont at Scholarship @ Claremont. It has been accepted for inclusion in Humanistic Mathematics Network Journal by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. 1 A Brief Look at Mathematics and Theology Philip J. Davis "Such a really remarkable discovery. I wanted your opinion on it. You know the formula m over naught equals infinity, m being any positive number? [m/0 = ]. Well, why not reduce the equation to a simpler form by multiplying both sides by naught? In which case you have m equals infinity times naught [m = x 0]. That is to say, a positive number is the product of zero and infinity. Doesn't that demonstrate the creation of the Universe by an infinite power out of nothing? Doesn't it?" Aldous Huxley, Point Counter Point, (1928), Chapter XI. I Introduction We are living in a mathematical age. Our lives, from the personal to the communal, from the communal to the international, from the biological and physical to the economic and even to the ethical, are increasingly mathematicized. -
The Emergent, Self-Explaining Universe of Paul Davies – a Summary and Christian Response
S & CB (2012), 24, 33–53 0954–4194 PAUL HIMES The Emergent, Self-explaining Universe of Paul Davies – a Summary and christian Response Physicist Paul Davies has emerged as one of the most popular scientists of the twenty-first century, despite his critique of the scientific establishment and its perceived failure to account for the origins and rational nature of the universe. Davies argues that the scientific consensus on cosmology rests on faith, both in its failure to provide an ultimate explanation for the origin of the universe and in its blind acceptance of its rational laws. As an alternative, Davies postulates an ‘emergent’ universe which contains the cause of its own existence and which renders unnecessary any sort of a personal deity. Yet Davies’s alternative falls short of providing a satisfactory cosmic explanation. Davies himself cannot adequately account for the principle of backward causation which creates his universe, and thus his paradigm still relies on a transcendent principle that remains unexplained. Furthermore, Davies’s objections against a personal god can be answered on philosophical grounds. Thus Davies’s hypothesis does not provide a superior alternative to the Christian view of God. key words: Paul Davies, physics, universe, emergent, self-causation, quantum mechanics, cosmology, time, teleology, cosmological argument, fine-tuning introduction Douglas Adams’ classic Hitchhiker’s Guide to the Galaxy tells the story of an advanced civilisation that builds a magnificent supercomputer for the sole purpose of providing the ultimate answer to the meaning of ‘life, the universe, and everything’. After millions of years of calculation, the an- swer, much to the confusion and frustration of the advanced civilisation, turns out to be ‘42’.1 Physicist Paul C. -
Debating Design from Darwin to DNA
P1: IRK 0521829496agg.xml CY335B/Dembski 0 521 82949 6 April 13, 2004 10:0 Debating Design From Darwin to DNA Edited by WILLIAM A. DEMBSKI Baylor University MICHAEL RUSE Florida State University iii P1: IRK 0521829496agg.xml CY335B/Dembski 0 521 82949 6 April 13, 2004 10:0 published by the press syndicate of the university of cambridge The Pitt Building, Trumpington Street, Cambridge, United Kingdom cambridge university press The Edinburgh Building, Cambridge CB22RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcon´ 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org C Cambridge University Press 2004 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2004 Printed in the United States of America Typeface ITC New Baskerville 10/12 pt. System LATEX2ε [TB] A catalog record for this book is available from the British Library. Library of Congress Cataloging in Publication data available ISBN 0 521 82949 6 hardback iv P1: IRK 0521829496agg.xml CY335B/Dembski 0 521 82949 6 April 13, 2004 10:0 Contents Notes on Contributors page vii introduction 1. General Introduction 3 William A. Dembski and Michael Ruse 2. The Argument from Design: A Brief History 13 Michael Ruse 3. Who’s Afraid of ID? A Survey of the Intelligent Design Movement 32 Angus Menuge part i: darwinism 4. -
The Exploration of the Unknown
The exploration of the unknown K. I. Kellermann1 National Radio Astronomy Observatory Charlottesville, VA, U.S.A. E-mail: [email protected] J. M. Cordes Cornell University Ithaca, NY E-mail: [email protected] R.D. Ekers CSIRO Sydney, Australia E-mail: [email protected] J. Lazio Naval Research Lab Washington, D.C., USA E-mail: [email protected] Peter Wilkinson Jodrell Bank Center for Astrophsyics Manchester, UK E-mail: [email protected] Accelerating the Rate of Astronomical Discovery - sps5 Rio de Janeiro, Brazil August 11–14 2009 1 Speaker Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it Summary The discovery of cosmic radio emission by Karl Jansky in the course of searching for the source of interference to telephone communications and the instrumental advances which followed, have led to a series of new paradigm changing astronomical discoveries. These include the non-thermal emission from stars and galaxies, electrical storms on the Sun and Jupiter, radio galaxies, AGN, quasars and black holes, pulsars and neutron stars, the CMB, interstellar molecules and giant molecular clouds; the anomalous rotation of Venus and Mercury, cosmic masers, extra-solar planets, precise tests of gravitational bending, gravitational lensing, the first experimental evidence for gravitational radiation, and the first observational evidence for cosmic evolution. These discoveries, which to a large extent define much of modern astrophysical research, have resulted in eight Nobel Prize winners. They were the result of the right people being in the right place at the right time using powerful new instruments, which in many cases they had designed and built.