Divisibility, Smoothness and Cryptographic Applications David Naccache Equipe¶ de cryptographie Ecole¶ normale sup¶erieure 45 rue d'Ulm, F-75230 Paris, Cedex 05, France
[email protected] Igor E. Shparlinski Department of Computing Macquarie University Sydney, NSW 2109, Australia
[email protected] October 17, 2008 Abstract This paper deals with products of moderate-size primes, familiarly known as smooth numbers. Smooth numbers play an crucial role in information theory, signal processing and cryptography. We present various properties of smooth numbers relating to their enumeration, distribution and occurrence in various integer sequences. We then turn our attention to cryptographic applications in which smooth numbers play a pivotal role. 1 1 Introduction The goal of this paper is to shed light on the prominent role played by di- visibility and smoothness in cryptography and related areas of mathematics. This work intends to survey a wide range of results while steering away from too well-known examples. For doing so, we concentrate on some recently discovered applications of results about the arithmetic structure of integers. We intend to convey to the reader a general comprehension of the state of the art, allow the devising of correct heuristics when problems cannot be tackled theoretically and help assessing the plausibility of new results. In Section 3 we overview on a number of number-theoretic results com- monly used for studying the multiplicative structure of integers. Most of the elementary results which we use are readily available from [83]; more ad- vanced results can be found, often in much more precise forms, in [44, 80, 85, 92, 144] and in many other standard analytic number theory manuals.