(1) Hash Functions (2) MAC MDC OWHF CRHF UOWHF
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Security of VSH in the Real World
Security of VSH in the Real World Markku-Juhani O. Saarinen Information Security Group Royal Holloway, University of London Egham, Surrey TW20 0EX, UK. [email protected] Abstract. In Eurocrypt 2006, Contini, Lenstra, and Steinfeld proposed a new hash function primitive, VSH, very smooth hash. In this brief paper we offer com- mentary on the resistance of VSH against some standard cryptanalytic attacks, in- cluding preimage attacks and collision search for a truncated VSH. Although the authors of VSH claim only collision resistance, we show why one must be very careful when using VSH in cryptographic engineering, where additional security properties are often required. 1 Introduction Many existing cryptographic hash functions were originally designed to be message di- gests for use in digital signature schemes. However, they are also often used as building blocks for other cryptographic primitives, such as pseudorandom number generators (PRNGs), message authentication codes, password security schemes, and for deriving keying material in cryptographic protocols such as SSL, TLS, and IPSec. These applications may use truncated versions of the hashes with an implicit as- sumption that the security of such a variant against attacks is directly proportional to the amount of entropy (bits) used from the hash result. An example of this is the HMAC−n construction in IPSec [1]. Some signature schemes also use truncated hashes. Hence we are driven to the following slightly nonstandard definition of security goals for a hash function usable in practice: 1. Preimage resistance. For essentially all pre-specified outputs X, it is difficult to find a message Y such that H(Y ) = X. -
The First Cryptographic Hash Workshop
Workshop Report The First Cryptographic Hash Workshop Gaithersburg, MD Oct. 31-Nov. 1, 2005 Report prepared by Shu-jen Chang and Morris Dworkin Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 Available online: http://csrc.nist.gov/groups/ST/hash/documents/HashWshop_2005_Report.pdf 1. Introduction On Oct. 31-Nov. 1, 2005, 180 members of the global cryptographic community gathered in Gaithersburg, MD to attend the first Cryptographic Hash Workshop. The workshop was organized in response to a recent attack on the NIST-approved Secure Hash Algorithm SHA-1. The purpose of the workshop was to discuss this attack, assess the status of other NIST-approved hash algorithms, and discuss possible near-and long-term options. 2. Workshop Program The workshop program consisted of two days of presentations of papers that were submitted to the workshop and panel discussion sessions that NIST organized. The main topics for the discussions included the SHA-1 and SHA-2 hash functions, future research of hash functions, and NIST’s strategy. The program is available at http://csrc.nist.gov/groups/ST/hash/first_workshop.html. This report only briefly summarizes the presentations, because the above web site for the program includes links to the speakers' slides and papers. The main ideas of the discussion sessions, however, are described in considerable detail; in fact, the panelists and attendees are often paraphrased very closely, to minimize misinterpretation. Their statements are not necessarily presented in the order that they occurred, in order to organize them according to NIST's questions for each session. 3. -
Implementaç˜Ao Em Software De Algoritmos De Resumo Criptográfico
Instituto de Computa¸c~ao Universidade Estadual de Campinas Implementa¸c~aoem software de algoritmos de resumo criptogr´afico Thomaz Eduardo de Figueiredo Oliveira i FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DO IMECC DA UNICAMP Bibliotecária: Maria Fabiana Bezerra Müller – CRB8 / 6162 Oliveira, Thomaz Eduardo de Figueiredo OL4i Implementação em software de algoritmos de resumo criptográfico/Thomaz Eduardo de Figueiredo Oliveira-- Campinas, [S.P. : s.n.], 2011. Orientador : Julio César López Hernández. Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação. 1.Criptografia. 2.Hashing (Computação). 3.Arquitetura de computadores. I. López Hernández, Julio César. II. Universidade Estadual de Campinas. Instituto de Computação. III. Título. Título em inglês: Software implementation of cryptographic hash algorithms Palavras-chave em inglês (Keywords): Cryptography Hashing (Computer science) Computer architecture Área de concentração: Teoria da Computação Titulação: Mestre em Ciência da Computação Banca examinadora: Prof. Dr. Julio César López Hernández (IC – UNICAMP) Prof. Dr. Ricardo Dahab (IC – UNICAMP) Dr. José Antônio Carrijo Barbosa (CEPESC-ABIN) Data da defesa: 16/06/2011 Programa de Pós-Graduação: Mestrado em Ciência da Computação ii Instituto de Computa¸c~ao Universidade Estadual de Campinas Implementa¸c~aoem software de algoritmos de resumo criptogr´afico Thomaz Eduardo de Figueiredo Oliveira1 16 de junho de 2011 Banca Examinadora: • Prof. Dr. Julio C´esarL´opez Hern´andez IC/Universidade Estadual de Campinas (Orientador) • Prof. Dr. Ricardo Dahab IC/Universidade Estadual de Campinas • Dr. Jos´eAnt^onioCarrijo Barbosa CEPESC/Ag^enciaBrasileira de Intelig^encia • Prof. Dr. Paulo L´ıciode Geus (Suplente) IC/Universidade Estadual de Campinas • Prof. Dr. Routo Terada (Suplente) IME/Universidade de S~aoPaulo 1Suporte financeiro de: CNPq (processo 133033/2009-0) 2009{2011. -
Design and Analysis of Hash Functions What Is a Hash Function?
Design and analysis of hash functions Coding and Crypto Course October 20, 2011 Benne de Weger, TU/e what is a hash function? • h : {0,1}* {0,1}n (general: h : S {{,}0,1}n for some set S) • input: bit string m of arbitrary length – length may be 0 – in practice a very large bound on the length is imposed, such as 264 (≈ 2.1 million TB) – input often called the message • output: bit string h(m) of fixed length n – e.g. n = 128, 160, 224, 256, 384, 512 – compression – output often called hash value, message digest, fingerprint • h(m) is easy to compute from m • no secret information, no key October 20, 2011 1 1 non-cryptographic hash functions • hash table – index on database keys – use: efficient storage and lookup of data • checksum – Example: CRC – Cyclic Redundancy Check • CRC32 uses polynomial division with remainder • initialize: – p = 1 0000 0100 1100 0001 0001 1101 1011 0111 – append 32 zeroes to m • repeat until length (counting from first 1-bit) ≤ 32: – left-align p to leftmost nonzero bit of m – XOR p into m – use: error detection • but only of unintended errors! • non-cryptographic – extremely fast – not secure at all October 20, 2011 2 hash collision • m1, m2 are a collision for h if h(m1) = h(m2) while m1 ≠ m2 I owe you € 100 I owe you € 5000 different documents • there exist a lot of identical hash collisions = – pigeonhole principle collision (a.k.a. Schubladensatz) October 20, 2011 3 2 preimage • given h0, then m is a preimage of h0 if h(m) = h0 X October 20, 2011 4 second preimage • given m0, then m is a second preimage of m0 if h(m) = h(m0 ) while m ≠ m0 ? X October 20, 2011 5 3 cryptographic hash function requirements • collision resistance: it should be computationally infeasible to find a collision m1, m2 for h – i.e. -
Cryptographic Hash Functions in Groups and Provable Properties
Cryptographic Hash Functions in Groups and Provable Properties THÈSE NO 5250 (2011) PRÉSENTÉE LE 16 DÉCEMBRE 2011 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS LABORATOIRE DE CRYPTOLOGIE ALGORITHMIQUE PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Juraj Šarinay acceptée sur proposition du jury: Prof. J.-P. Hubaux, président du jury Prof. A. Lenstra, directeur de thèse Prof. A. May, rapporteur Dr M. Stam, rapporteur Prof. S. Vaudenay, rapporteur Suisse 2011 Svetlane R´esum´e Nous consid´eronsplusieurs fonctions de hachage \prouvablement s^ures"cal- culant de simples sommes dans un groupe bien choisi (G; ∗). Les propri´et´es de s´ecurit´ede telles fonctions se traduisent prouvablement et de mani`ere naturelle en des probl`emescalculatoires sur G, qui sont simples `ad´efinir et ´egalement potentiellement difficiles `ar´esoudre. Etant´ donn´es k listes dis- jointes Li d'´el´ements du groupe, le probl`emede la k-somme consiste `atrou- ver un gi 2 Li tel que g1 ∗ g2 ∗ ::: ∗ gk = 1G. La difficult´ede ce probl`eme dans divers groupes respectifs d´ecoulede certaines suppositions \standard" en cryptologie `aclef publique, telles que la difficult´ede la factorisation des entiers, du logarithme discret, de la r´eductionde r´eseaux, ou du d´ecodage par syndrome. Nous exposons des indices montrant que le probl`emede la k-somme puisse ^etreencore plus difficile que ceux susmentionn´es. Deux fonctions de hachage bas´ees sur le probl`emede la k-somme, FSB et SWIFFTX, ont ´et´esoumises au NIST comme candidates pour le futur stan- dard SHA-3. -
Hash Functions Part II
Cryptographic Hash Functions Part II Cryptography 1 Andreas Hülsing, TU/e Some slides by Sebastiaan de Hoogh, TU/e Hash function design • Create fixed input size building block • Use building block to build compression function • Use „mode“ for length extension Engineering Generic transforms Permutation / Compression Hash function Block cipher function Cryptanalysis / Reductionist proofs best practices 1 (LENGTH-EXTENSION) MODES 2 Merkle-Damgård construction Given: • compression function: CF : {0,1}n x {0,1}r {0,1}n Goal: • Hash function: H : {0,1}* {0,1}n 3 Merkle-Damgård - iterated compression 4 Merkle-Damgård construction • assume that message m can be split up into blocks m1, …, ms of equal block length r – most popular block length is r = 512 • compression function: CF : {0,1}n x {0,1}r {0,1}n • intermediate hash values (length n) as CF input and output • message blocks as second input of CF • start with fixed initial IHV0 (a.k.a. IV = initialization vector) • iterate CF : IHV1 = CF(IHV0,m1), IHV2 = CF(IHV1,m2), …, IHVs = CF(IHVs-1,ms), • take h(m) = IHVs as hash value • advantages: – this design makes streaming possible – hash function analysis becomes compression function analysis – analysis easier because domain of CF is finite 5 padding • padding: add dummy bits to satisfy block length requirement • non-ambiguous padding: add one 1-bit and as many 0-bits as necessary to fill the final block – when original message length is a multiple of the block length, apply padding anyway, adding an extra dummy block – any other non-ambiguous -
Hash Functions with Proofs of Security for H : {0, 1}∗ →{0, 1}N and H : {0, 1}M →{0, 1}N, M > N
Introduction Based on number-theoretic problems VSH Dakota Introduction Based on number-theoretic problems VSH Dakota Generic attacks Hash Functions With Proofs of Security For H : {0, 1}∗ →{0, 1}n and h : {0, 1}m →{0, 1}n, m > n attack rough complexity Lars R. Knudsen √ collisions 2n =2n/2 2nd preimages 2n preimage 2n April 21, 2008 Goal: generic attacks are best (known) attacks 1/30 3/30 Introduction Based on number-theoretic problems VSH Dakota Introduction Based on number-theoretic problems VSH Dakota Number-theoretic, difficult problems 1 Introduction Factoring: given N = pq, find p and q, where p, q big, (odd) prime numbers, p = q 2 Based on number-theoretic problems Recommended that N ≥ 21024 forhighlevelofsecurity 3 VSH A 1024-bit N: 1350664108659952233496032162788059699388814756056670 4 Dakota 2752448514385152651060485953383394028715057190944179 8207282164471551373680419703964191743046496589274256 2393410208643832021103729587257623585096431105640735 0150818751067659462920556368552947521350085287941637 7328533906109750544334999811150056977236890927563 2/30 4/30 Introduction Based on number-theoretic problems VSH Dakota Introduction Based on number-theoretic problems VSH Dakota Number-theoretic, difficult problems (2) Hash based on discrete log (Pfitzmann, Van Heijst) Discrete logarithm: p−1 Public primes: p, q = 2 ,s.t.DLP(p)ishard given β = αa mod p, find a, Public primitive elements of Zp: α, β (randomly chosen) ∗ where p prime, a chosen random from Zp−1, α ∈ Zp ∗ h : Zq × Zq → Z primitive p Recommended that p > 21024 forhighlevelofsecurity h(x, y)=αx βy mod p But not all instances of these problems are hard, e.g., if p q, then factoring N = pq is easy if p − 1 has only small prime factores then finding discrete logs Find a collision for h ⇒ compute logα(β) modulo p is easy 5/30 7/30 Introduction Based on number-theoretic problems VSH Dakota Introduction Based on number-theoretic problems VSH Dakota Hash based on factoring (Shamir) Number-theoretic hash functions N = pq, p = q,largeoddprimes,α fixed, large order mod N. -
VSH, an Efficient and Provable Collision Resistant Hash Function
VSH, an efficient and provable collision resistant hash function Scott Contini1, Arjen K. Lenstra2, Ron Steinfeld1 1 Macquarie University 2 Lucent Technologies Bell Laboratories, Technical Univ. Eindhoven Outline • Factoring background • Our new hardness assumption: NMSRVS • Very Smooth Hash: VSH • Security argument • Variants • Efficiency in practice • Conclusion Factoring background • To factor n: collect ‘relations’ 2 e(i,v) v ≡∏0≤i≤u pi mod n (pi’s could be primes; most non-zero e(i,v)’s are odd) • In practice: more than u relations ⇒ factorization • Best method so far (NFS): factoring takes time L[n, 1.923…] = exp((1.923…+o(1))(logn)1/3(loglogn)2/3) asymptotically, for n →∞ Finding a single relation • For NFS: optimal u = L[n, 0.96…], finding a single relation takes time L[n, 0.96…], asymptotically, for n →∞ • For suboptimal u = O((logn)constant), finding a relation takes time > L[n, 1.923…], asymptotically for n →∞, unless factoring can be done faster: ⇒ asymptotically the same as the full factoring time Non-asymptotic estimate • For suboptimal u = O((logn)constant), finding a relation takes time > L[n, 1.923…], asymptotically for n →∞, unless factoring can be done faster: ⇒ asymptotically the same as the full factoring time • Non-asymptotic estimate for suboptimal u: finding a single relation at least as hard as factoring n’, where L[n’, 1.923 without o(1)] = L[n, 1.923 without o(1)]/u, unless faster factoring… (note: n’ smaller than n) Hardness assumption: NMSRVS (Nontrivial modular square root of very smooth number) Hard to factor -
Hash Function Security : Cryptanalysis of the Very Smooth Hash
C433etukansi.kesken.fm Page 1 Tuesday, October 16, 2012 3:19 PM C 433 OULU 2012 C 433 UNIVERSITY OF OULU P.O.B. 7500 FI-90014 UNIVERSITY OF OULU FINLAND ACTA UNIVERSITATISUNIVERSITATIS OULUENSISOULUENSIS ACTA UNIVERSITATIS OULUENSIS ACTAACTA SERIES EDITORS TECHNICATECHNICACC Kimmo Halunen ASCIENTIAE RERUM NATURALIUM Kimmo Halunen Senior Assistant Jorma Arhippainen HASH FUNCTION SECURITY BHUMANIORA University Lecturer Santeri Palviainen CRYPTANALYSIS OF THE VERY SMOOTH HASH AND MULTICOLLISIONS IN GENERALISED CTECHNICA ITERATED HASH FUNCTIONS Professor Hannu Heusala DMEDICA Professor Olli Vuolteenaho ESCIENTIAE RERUM SOCIALIUM University Lecturer Hannu Heikkinen FSCRIPTA ACADEMICA Director Sinikka Eskelinen GOECONOMICA Professor Jari Juga EDITOR IN CHIEF Professor Olli Vuolteenaho PUBLICATIONS EDITOR Publications Editor Kirsti Nurkkala UNIVERSITY OF OULU GRADUATE SCHOOL; UNIVERSITY OF OULU, FACULTY OF TECHNOLOGY, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING; ISBN 978-951-42-9965-0 (Paperback) INFOTECH OULU ISBN 978-951-42-9966-7 (PDF) ISSN 0355-3213 (Print) ISSN 1796-2226 (Online) ACTA UNIVERSITATIS OULUENSIS C Technica 433 KIMMO HALUNEN HASH FUNCTION SECURITY Cryptanalysis of the Very Smooth Hash and multicollisions in generalised iterated hash functions Academic dissertation to be presented with the assent of the Doctoral Training Committee of Technology and Natural Sciences of the University of Oulu for public defence in Auditorium TS101, Linnanmaa, on 16 November 2012, at 9 a.m. UNIVERSITY OF OULU, OULU 2012 Copyright © 2012 Acta Univ. Oul. C 433, 2012 Supervised by Professor Juha Röning Reviewed by Professor Bart Preneel Doctor Martijn Stam ISBN 978-951-42-9965-0 (Paperback) ISBN 978-951-42-9966-7 (PDF) ISSN 0355-3213 (Printed) ISSN 1796-2226 (Online) Cover Design Raimo Ahonen JUVENES PRINT TAMPERE 2012 Halunen, Kimmo, Hash function security. -
Divisibility, Smoothness and Cryptographic Applications
Divisibility, Smoothness and Cryptographic Applications David Naccache Equipe¶ de cryptographie Ecole¶ normale sup¶erieure 45 rue d'Ulm, F-75230 Paris, Cedex 05, France [email protected] Igor E. Shparlinski Department of Computing Macquarie University Sydney, NSW 2109, Australia [email protected] October 17, 2008 Abstract This paper deals with products of moderate-size primes, familiarly known as smooth numbers. Smooth numbers play an crucial role in information theory, signal processing and cryptography. We present various properties of smooth numbers relating to their enumeration, distribution and occurrence in various integer sequences. We then turn our attention to cryptographic applications in which smooth numbers play a pivotal role. 1 1 Introduction The goal of this paper is to shed light on the prominent role played by di- visibility and smoothness in cryptography and related areas of mathematics. This work intends to survey a wide range of results while steering away from too well-known examples. For doing so, we concentrate on some recently discovered applications of results about the arithmetic structure of integers. We intend to convey to the reader a general comprehension of the state of the art, allow the devising of correct heuristics when problems cannot be tackled theoretically and help assessing the plausibility of new results. In Section 3 we overview on a number of number-theoretic results com- monly used for studying the multiplicative structure of integers. Most of the elementary results which we use are readily available from [83]; more ad- vanced results can be found, often in much more precise forms, in [44, 80, 85, 92, 144] and in many other standard analytic number theory manuals. -
Design and Analysis of Hash Functions
Cryptographic Hash Functions Part II Cryptography 1 Andreas Hülsing, TU/e Most slides by Sebastiaan de Hoogh, TU/e hash function design - iterated compression 1 Merkle-Damgård construction • assume that message m can be split up into blocks m1, …, ms of equal block length r – most popular block length is r = 512 • compression function: CF : {0,1}n x {0,1}r {0,1}n • intermediate hash values (length n) as CF input and output • message blocks as second input of CF • start with fixed initial IHV0 (a.k.a. IV = initialization vector) • iterate CF : IHV1 = CF(IHV0,m1), IHV2 = CF(IHV1,m2), …, IHVs = CF(IHVs-1,ms), • take h(m) = IHVs as hash value • advantages: – this design makes streaming possible – hash function analysis becomes compression function analysis – analysis easier because domain of CF is finite 2 padding • padding: add dummy bits to satisfy block length requirement • non-ambiguous padding: add one 1-bit and as many 0-bits as necessary to fill the final block – when original message length is a multiple of the block length, apply padding anyway, adding an extra dummy block – any other non-ambiguous padding will work as well 3 Merkle-Damgård strengthening • let padding leave final 64 bits open • encode in those 64 bits the original message length – that’s why messages of length ≥ 264 are not supported • reasons: – needed in the proof of the Merkle-Damgård theorem – prevents some attacks such as • trivial collisions for random IV – now h(IHV0,m1||m2) = h(IHV1,m2) • see next slide for more 4 continued • fixpoint attack fixpoint: IHV, m such that CF(IHV,m) = IHV • long message attack 5 compression function collisions • collision for a compression function: m1, m2, IHV such that CF(IHV,m1) = CF(IHV,m2) • pseudo-collision for a compression function: m1, m2, IHV1, IHV2 such that CF(IHV1,m1) = CF(IHV2,m2) • Theorem (Merkle-Damgård): If the compression function CF is pseudo-collision resistant, then a hash function h derived by Merkle-Damgård iterated compression is collision resistant. -
Design and Analysis of Hash Functions
Cryptographic Hash Functions Part II Cryptography 1 Andreas Hülsing, TU/e Most slides by Sebastiaan de Hoogh, TU/e hash function design - iterated compression 1 Merkle-Damgård construction • assume that message m can be split up into blocks m1, …, ms of equal block length r – most popular block length is r = 512 • compression function: CF : {0,1}n x {0,1}r {0,1}n • intermediate hash values (length n) as CF input and output • message blocks as second input of CF • start with fixed initial IHV0 (a.k.a. IV = initialization vector) • iterate CF : IHV1 = CF(IHV0,m1), IHV2 = CF(IHV1,m2), …, IHVs = CF(IHVs-1,ms), • take h(m) = IHVs as hash value • advantages: – this design makes streaming possible – hash function analysis becomes compression function analysis – analysis easier because domain of CF is finite 2 padding • padding: add dummy bits to satisfy block length requirement • non-ambiguous padding: add one 1-bit and as many 0-bits as necessary to fill the final block – when original message length is a multiple of the block length, apply padding anyway, adding an extra dummy block – any other non-ambiguous padding will work as well 3 Merkle-Damgård strengthening • let padding leave final 64 bits open • encode in those 64 bits the original message length – that’s why messages of length ≥ 264 are not supported • reasons: – needed in the proof of the Merkle-Damgård theorem – prevents some attacks such as • trivial collisions for random IV – now h(IHV0,m1||m2) = h(IHV1,m2) • see next slide for more 4 continued • fixpoint attack fixpoint: IHV, m such that CF(IHV,m) = IHV • long message attack 5 compression function collisions • collision for a compression function: m1, m2, IHV such that CF(IHV,m1) = CF(IHV,m2) • pseudo-collision for a compression function: m1, m2, IHV1, IHV2 such that CF(IHV1,m1) = CF(IHV2,m2) • Theorem (Merkle-Damgård): If the compression function CF is pseudo-collision resistant, then a hash function h derived by Merkle-Damgård iterated compression is collision resistant.