Low Ph Hair Conditioner Compositions Containing Amine Oxides

Total Page:16

File Type:pdf, Size:1020Kb

Low Ph Hair Conditioner Compositions Containing Amine Oxides Europaisches Patentamt 3 European Patent Office @ Publication number: 0168 719 A? Office europeen des brevets r^Cm ® EUROPEAN PATENT APPLICATION @ Application number: 85108277.6 © Int. CI.4: A 61 K 7/075 @ Date of filing : 04.07.85 ® Priority: 20.07.84 US 632745 @ Applicant: Revlon, Inc., 767 Fifth Avenue, New York, N.Y.10022(US) @ Inventor: Gersteln, Terry, 12 Boston Post Road, East @ Date of publication of application: 22.01.86 Brunswick New Jersey (US) Bulletin 86/4 @ Representative : Schmidt-Evers, Jiirgen, Dipl.-lng. et al, Patentanwalte Dipl.-lng. H. Mitscherlich Dlpl.-lng. K. Gunschmann Dipl.-lng. Dr.rer.nat. W. Korber Dipl.-lng. J. Schmidt-Evers Dipl.-lng. W. Melzer Steinsdorf strasse 1 0, @ Designated Contracting States : CH DE FR GB IT LI D-8000 MUnchen 22 (DE) @ Low pH hair conditioner compositions containing amine oxides. The present invention relates to a cationic hair condition- ing composition comprising: (a) An amine oxide of the formula: wherein R1 and R2 are the same or different moieties and are selected from fewer (C1-C4) alkyl, alkoxy and hydroxy alkyl groups, and R3 is an alkyl group containing 8 to 22 carbon at- oms; and (b) water sufficient acid to provide pH for said composi- tion of from about 4.5 to about 2.4 or less and an amine oxide concentration from about 0.5% to about 10% based on the to- tal weight of said hair conditioning composition. This invention relates to hair conditioning compositions. More particularly, this invention relates to aqueous hair conditioning compositions that comprise relatively high molecular weight amine oxides at low pH's. After washing hair and during the subsequent management of the dry hair, the combing and brushing forces produce friction resulting in the accumulation on the hair's surface of immobile electrons or ions of the same charge. The hair is commonly referred to as containing static charge and displays the phenomenon of fly away. Such hair is unruly, will not lay flat and is considered generally unmanageable. Hair conditioning agents assist in the control and management of hair. Conditioned hair is easily untangled and combed through after shampooing, lays orderly when dry and provides a favorable feeling to the touch. The conditioning action on hair, particularly by cationic conditioning agents, is believed to be caused by the attraction of the positively charged agent to the negative sites on hair protein resulting in the deposition of the agent on to the hair fiber. Ionic depositions including positively charged cationic conditioning agents can be used to dissipate static electricity by increasing the mobility of the electrostatic charges that accumulate on hair. Furthermore, the fatty nature of the cationic conditioning agent produces lubrication on the hair's surface that reduces friction resulting in both the overall lessening of accumulated electrostatic charges and the promotion of easy combing. The process by which cationic surfactants are applied to hair is referred to as conditioning the hair, and the treatment results in hair that no longer sustains a static charge and in hair that also feels soft, silky and is highly manageable. Cationic surfactants have been used extensively as hair conditioning agents in creme rinses and shampoos, generally at pH levels below pH 7 in creme rinses and through pH 7 and above in shampoos. In the past best results in creme rinses have been obtained with cationic surfactants that are long chain high molecular weight quaternary ammonium compounds or long chain fatty amine salts. For example, stearalkonium chloride has been widely used as a component of creme rinse hair conditioning formulations. The positive charge of the quaternary surfactant is attracted to the negatively charged surface of the hair protein; the surfactant deposits on the surface and subsequently renders the hair manageable. The long chain constituent on the quaternary surfactant coats the hair fiber giving it lubricity during wet combing and a desirable texture after drying. The longer the chain length the more active the conditioning agent is said to be; the greater the residual film deposit on hair the easier the detangling effort and the less electrostatic charge build-up and subsequent hair flyaway. Quaternary ammonium compounds carry and maintain positive ionic charges from highly alkaline to highly acidic media. However, many industrial quaternary ammonium compounds are partially or totally unsuitable for cosmetic use because they can contain impurities which restrict use to specific pH ranges or restrict use completely. If trace quantities of deleterious quaternizing agents used in syntheses are present, the quaternary ammonium compound should not be used in cosmetics. Long chain fatty amines, which usually account as significant impurity in the quaternary ammonium compounds used for cosmetics, force the use of the quaternary ammonium compound, and the cosmetic itself, to pH's below 7. Below pH 7 the long chain amines exist as surface active salts which produce similar hair conditioning effects as surface active quaternary ammonium compounds. Above pH 7 the amine salts revert to their free organic amine state which cause them to lose their hair conditioning properties, to produce cosmetically unesthetic odors and appearances, and to increase irritation to the skin and eyes. On the other hand, long chain amine oxide surfactants have been freely used in acidic and alkaline cosmetics, toiletries and other consumer products. In alkaline products amine oxide surfactants behave as nonionics; they bear neither positive nor negative molecular charges. The nonionic character allows them to be compatible with anionic ingredients in shampoos. Here, amine oxides can serve as foam contributors, foam stabilizers, viscosity enhancing agents, super fatting agents, etc. In nonionic and anionic hair conditioners they can be employed as emulsifiers, thickeners and used for complementing typical fats, oils, and waxes. The diversity of use of amine oxide surfactants is exemplified by the following disclosures. In U.S. Patent No. 3,990,991 aqueous shampoo-condi- tioner formulations are described comprising amphoteric, cryptoanionic and cationic surfactants. Amine oxides having surfactant properties are mentioned as useful cationic surfactants, although in the specific examples preferred quaternary ammonium compounds are employed in combination with an amine oxide; the pH of each such formulation is above 6. In U.S. Patent No. 4,007,261 conditioner compositions are described which consist essentially of an aqueous emulsion of an alkyl dimethyl amine oxide having from 16 to 22 carbon atoms in the alkyl chain, the pH of which compositions are preferably adjusted to between about 5.0 and 6.0. Specifically the invention encompasses pearlescent effects in such hair conditioners. However, it was found that such amine oxide formulations, namely the formulations having pH values described in this patent, did not provide adequate hair conditioning properties relative to quaternary ammonium surfactants. Augmentation of the amine oxide with quaternary ammonium compounds was required to impart good conditioning properties to formulations. See also, D&Cl, July 1981, pgs. 40-42, "Amine Oxides in Cosmetic Formulations", Klein, where "slightly acid pH" amine oxides were suggested as contributing to hair manageability. U.S. Patent No. 4,229,313 employs amine oxides as viscosity builders in cleaning and bleaching compositions for fabrics; both U.S. Patent Nos. 4,048,338 and 4,033,895 use amine oxides as counter irritant ingredients in toiletry products to render them milder; U.S. Patent No. 4,179,504 uses amine oxides as pharmacologically active ingredients in insecticidal and ovacidal preparations; U.S. Patent No. 4,325,821 incorporates amine oxides into an improved froth floatation process to separate mineral ores; German Patent No. 2,748,463 employs amine oxides as solubilizing agents for vitamin B derivatives in antiseborrheic products. In acid media nonionic amine oxide surfactants acquire a positive charge through the inductive effects of hydrogen ions of the media. The amine oxides can behave cationic, however weakly catinoic, since the positive charge produces less ionicity than that of quaternary ammonium salts or fatty amine salts. The positive charge, nevertheless, permits complete compatibility in cationic preparations and allows the cationicity of the amine oxide to support the cationicity of the dominant surfactant. An examination of the ingredient content of popular creme rinses, instant conditioners and balsams for hair sold on the market show that these products do not rely solely on amine oxides for conditioning. These acidic preparations employ quaternary ammonium surfactants and/or fatty amine salts, which are both strongly cationic, to produce hair conditioning. If amine oxides are present in the ingredient content, they are used for producing conditioning ancillary to the primary cationic surfactant as well as for other specific properties such as thickening, foaming, emulsification, etc. Amine oxide surfactants are recognized as not adsorbing to hair as strongly as quaternary ammonium surfactants and, therefore, do not produce as intense hair conditioning effects as quaternary ammonium salts. Although it was known that amine oxides develop cationic properties, in other words a net positive charge, at low pH values for the reasons stated above, it has not been recognized that the cationic properties of amine oxides could be solely and usefully employed to condition hair in low pH media. It has now been found that at pH values of about the isoelectric pH of hair protein or less, the relatively high molecular weight amine oxides described herein perform advantageously as desirable conditioning agents for hair. The isoelectric point of hair, the state at which the positive and negative ionic charges of hair protein becomes balanced, occurs under acid conditions. The exact point is not exactly known and investigators differ on the range of isoelectric point pH values; pH 3.3 to 4.5 by Cook and Smith, Appl. Polym. Symp. 18, 663 (1971), and more recently pH 2.45 to 3.17 by Parreira, Journal of Colloid and Interface Science, Vol.
Recommended publications
  • C12-14 Amine Oxide
    Date: 06/06/2017 Environmental Fact Sheet (#20) C12‐14 Amine Oxide (Lauryldimethylamine oxide – C12‐14 AO) oleochemical non‐ionic surfactant Substance Identification Amines, C12‐14 (even IUPAC Name numbered)‐alkyldimethyl, N‐ CAS Number 308062‐28‐4 oxides Other Names Lauryldimethylamine oxide UVCB substance (substances Structural formula: of Unknown or Variable composition, Complex reaction products or Molecular Formula Biological materials), no univocal molecular formula available Physical/Chemical Properties [1] Molecular Weight 229.4‐257.5 g/mol Physical state Solid Appearance White powder Density 716 kg/m3 at 23 °C Melting Points 126‐136 °C Boiling point Study scientifically unjustified Flash Point Study technically not feasible Vapour Pressure 1.7*10‐06 and 7.5*10‐05 Pa at 25°C Water Solubility 409.5 g/L Flammability Non flammable Explosive Properties Study scientifically unjustified Surface Tension 34.1 mN/m at 20 °C Octanol/water Partition coefficient log KOW =1.85‐2.69 (Kow) Lauryldimethylamine oxide in a neutral aqueous solution is regarded as a non‐ionic surfactant. Amine oxides are produced by the reaction of tertiary amines such as Alkyldimethylamine with hydrogen peroxide in a two‐phase system containing a large volume of water yielding dilute products typically containing <35% active [5]. The reaction is a continuous process. In the primary step the Product and Process tertiary amine, a hydrogen peroxide solution, deionized water as well as the catalyst and its chelate Description are pumped continuously at controlled rates into a stirred reactor. This oxidation reaction is exothermic and yields approximately 95% of the desired product. To generate more product, the outflow of the first reactor is passed to a second reactor, which extends the yield of the amine oxide to approximately 99%.
    [Show full text]
  • Amine Oxide SIAR
    OECD SIDS AMINE OXIDES SIDS Initial Assessment Report For SIAM 22 Paris, France, 18-21 April 2006 Category Name: Amine Oxides CAS Numbers: 1643-20-5 1-Dodecanamine, N,N-dimethyl-, N-oxide 3332-27-2 1-Tetradecanamine, N,N-dimethyl-, N-oxide 70592-80-2 Amines, C10-16-alkyldimethyl, N-oxides 68955-55-5 Amines, C12-18-alkyldimethyl, N-oxides 2605-79-0 Decanamine, N,N-dimethyl-, N-oxide 7128-91-8 Hexadecanamine, N,N-dimethyl-, N-oxide 2571-88-2 Octadecanamine, N,N-dimethyl-, N-oxide 61788-90-7 Amine oxides, cocoalkyldimethyl 85408-48-6 Amines, C10-18-alkyldimethyl, N-oxides 85408-49-7 Amines, C12-16-alkyldimethyl, N-oxides 61791-47-7 Ethanol, 2,2'-iminobis-, N-coco alkyl derivs., N- oxides 2530-44-1 Ethanol, 2,2'-(dodecyloxidoimino)bis- 14048-77-2 Ethanol, 2,2'-(octadecyloxidoimino)bis- 61791-46-6 Ethanol, 2,2'-iminobis-, N-tallow alkyl derivs., N- oxides 93962-62-0 Ethanol, 2,2'-[(9Z)-9-octadecenyloxidoimino]bis- 3. Sponsor Country: United States 4. Shared Partnership with: Amine Oxides Consortium 5. Roles/Responsibilities of Industry was the main preparer; U.S. EPA was the main reviewer the Partners: Name of industry sponsor or Amine Oxides Consortium consortium Process used Industry coalition conducted a comprehensive literature search, including all generally accepted databases, reference books, unpublished studies and data in company files, and prepared first drafts; U.S. EPA reviewed and edited drafts to achieve a final document. 6. Sponsorship History How was the chemical or The industry coalition agreed to sponsor AOs in the SIDS-ICCA category brought into the program, with the U.S.
    [Show full text]
  • Cyclic and Acyclic Amine Oxide Alkyl Derivatives As Potential Adjuvants in Antimicrobial Chemotherapy Against Methicillin-Resist
    antibiotics Article Cyclic and Acyclic Amine Oxide Alkyl Derivatives as Potential Adjuvants in Antimicrobial Chemotherapy against Methicillin-Resistant Staphylococcus aureus with an MDR Profile Lorenza Fagnani 1, Lisaurora Nazzicone 1, Fabrizia Brisdelli 1, Luisa Giansanti 2 , Sara Battista 2, Roberto Iorio 1 , Sabrina Petricca 1 , Gianfranco Amicosante 1, Mariagrazia Perilli 1 , Giuseppe Celenza 1,* and Pierangelo Bellio 1 1 Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; [email protected] (L.F.); [email protected] (L.N.); [email protected] (F.B.); [email protected] (R.I.); [email protected] (S.P.); [email protected] (G.A.); [email protected] (M.P.); [email protected] (P.B.) 2 Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; [email protected] (L.G.); [email protected] (S.B.) * Correspondence: [email protected] Abstract: The dramatic intensification of antimicrobial resistance occurrence in pathogenic bacteria Citation: Fagnani, L.; Nazzicone, L.; concerns the global community. The revitalisation of inactive antibiotics is, at present, the only way Brisdelli, F.; Giansanti, L.; Battista, S.; to go through this health system crisis and the use of antimicrobial adjuvants is turning out the most Iorio, R.; Petricca, S.; Amicosante, G.; promising approach. Due to their low toxicity, eco-friendly characteristics and antimicrobial activity, Perilli, M.; Celenza, G.; et al. Cyclic amphoteric surfactants are good candidates. This study investigated the adjuvant potentialities of and Acyclic Amine Oxide Alkyl commercial acyclic and newly cyclic N-oxide surfactants combined with therapeutically available Derivatives as Potential Adjuvants in antibiotics against MDR methicillin-resistant Staphylococcus aureus (MRSA).
    [Show full text]
  • Amine Oxides: a Review
    JOURNAL OF OLEO SCIENCE Copyright ©2006 by Japan Oil Chemists’ Society J. Oleo Sci., Vol. 55, No. 3, 99-119 (2006) JOS REVIEW Amine Oxides: A Review * Sudhir Kumar SINGH, M. BAJPAI and V.K. TYAGI Department of Oil and Paint Technology, Harcourt Butler Technological Institute (Kanpur-208 002, INDIA) Edited by M. Iwahashi, Kitasato Univ., and accepted September 20, 2005 (received for review August 29, 2005) Abstract: Amine oxides are amine-based surfactants, represent one of the smaller classes of surfactants as compared to alcohol ethoxylates and sulfonated and sulfated anionic surfactants. However, the uniqueness of the hydrophile in such surfactants provides specific properties that are difficult, if not impossible, to replicate by the use of classic nonionic and anionic surfactants. The aim of the present paper is to survey the most important developments and understandings of the chemistry of amine oxide production, it’s physico-chemical studies, applications and environmental properties. Key words:amine oxide, amine-based surfactant, hydrophile, physico-chemical, environmental dispersant, and in deodorant bars (anti-bacterial agent), 1 Introduction due to their compatible synergistic effect and environ- Although, amine oxides were known and studied ment friendly nature. Amine oxides are exothermic, before 1900, it was not until 1939, with the issuance of second order reaction products of tertiary amines and an I.G. Farbenindustrie patent that material such as hydrogen peroxide (3). The nature of tertiary amine in dimethyldodecyl amine oxide were recognized as sur- amine oxides may be aliphatic, aromatic, heterocyclic, factant. After a further 22 years their utility in liquid alicyclic or combination thereof.
    [Show full text]
  • Preparation of Hypericin
    Europaisches Patentamt J European Patent Office © Publication number: 0 432 496 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 90121796.8r96.8 © int. CIA C07C 50/36, A61K 31 125 © Date of filing: 14.11.90 0 Priority: 15.11.89 IL 92315 © Applicant: YEDA RESEARCH AND DEVELOPMENT COMPANY LIMITED © Date of publication of application: P.O. Box 95 19.06.91 Bulletin 91/25 Rehovot 76100(IL) © Designated Contracting States: @ Inventor: Mazur, Yehuda AT BE CH DE DK ES FR GB GR IT LI LU NL SE 9 Miller Street Rehovot(IL) Inventor: Bock, Harald 37 Orberstrasse W-1000 Berlin 33(DE) Inventor: Lavie, David 6 Ruppin Street Rehovot(IL) © Representative: Vossius & Partner Siebertstrasse 4 P.O. Box 86 07 67 W-8000 Munchen 86(DE) © Preparation of hypericin. © A process for preparing hypericin comprises oxidative dimerization of emodin anthrone and conversion of the intermediate protohypericin to hypericin by irradiation with visible light. CM < CO Csl TO Xerox Copy Centre EP 0 432 496 A2 PREPARATION OF HYPERICIN This invention provides a novel process for the synthesis of the natural substance hypericin having the following formula OH 0 OH 10 15 20 Hypericin is a constituent of plants belonging to the genus Hypericum. It was isolated from this natural source in a chemically pure state by H. Brockmann et al. (Ann. 1942, 553, 1). Hypericin always appears in nature accompanied by the chemically related compound pseudo-hypericin. Hypericin has gained interest in the last few years by virtue of the discovery of its anti-viral and anti- 25 retroviral activity (cf., inter alia, European Patent Application No.
    [Show full text]
  • United States Patent (19)
    United States Patent (19) . 11, 3,943,234 Roggenkamp (45) Mar. 9, 1976 54 ACIDIC EMOLLIENT LIQUID DETERGENT 3,449,430 6/1969 Dohr............................... 252/547 X COMPOSITION 3,470,102 9/1969 Heinz.............................. 252/528 X 3496, E 10 2/1970 Shumway.......................... 252/142 75) Inventor: Charles L. Roggenkamp, Cincinnati, 3,557,006 1197. Ferrara ............................... 252f 7 Ohio 3,658,985 4/1972 Olson.................................... 424/70 73) Assignee: The Procter & Gamble Company, 3,679,611 7/972 Gerecht .............................. 252/542 3,711,44 | 1973 Hewitt.... 252/ 18 Cincinnati, Ohio 3,793,233 2/1974 Rose.... 252/547 22 Filed: Aug. 9, 1973 3,808,311 4/1974 Olson.................................... 424/70 (21) Appl. No.: 386,929 3,809,659 51974 Gerecht .............................. 252/542 Primary Examiner-Dennis E. Talbert, Jr. 52 U.S. C. ................ 424/343; 252/142; 252/43; Assistant Examiner-Dennis L. Albrecht 252/144; 252/153; 252/154; 252/173; Attorney, Agent, or Firm-Jerry J. Yetter; Richard C. 252/547; 252/DIG. 5; 252/DIG. 13; Witte; Thomas H. O Flaherty 252/DIG. 14; 424/325 (51) Int. Cl.?... C11D 1775; C1 1D 3120; C1D 3/46; C1 1D 17/08 (57) ABSTRACT 58 Field of Search ........... 252/117, 1 18, 142, 143, 252/144, 153, 173, 528,547, DIG. 5, DIG. Liquid compositions containing an amine oxide, an 13, DIG. 14, 154; 424/325, 343, 358 occlusive emollient, and a pH controlling agent exhibit enhanced adsorption of the emollient material on ke 56) References Cited ratinous substrates such as skin when employed as a UNITED STATES PATENTS detergent composition at an acid pH.
    [Show full text]
  • MINI REVIEW Synthesis of Tertiary Amine N-Oxides-A Review
    Asian Journal of Chemistry; Vol. 24, No. 9 (2012), 3781-3784 MINI REVIEW Synthesis of Tertiary Amine N-Oxides-A Review * XINGWEI CAI, MIN SHA, CHANGPING GUO and REN MING PAN School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, P.R. China *Corresponding author: E-mail: [email protected] (Received: 14 October 2011; Accepted: 4 April 2012) AJC-11239 Oxidation reactions with environmentally acceptable oxidants such as molecular oxygen and hydrogen peroxide have been intensively studied. Recently, catalytic H2O2 oxidations of aromatic N-heterocyclic compounds to their corresponding N-oxides employing a biomimetic manganese porphyrin or methyltrioxorhenium as catalyst were reported. Other oxidants employed in the oxidation of tertiary amines include peracids, magnesium monoperphthalate, 2-sulfonyloxaziridines, dioxiranes, etc. Key Words: Tertiary amine, Oxidant, Tertiary amine oxide, Catalyst, Molecular oxygen. INTRODUCTION recrystallized or chromatograpahed. The yields of the tertiary amine oxidations of triethylamine, N-methylpiperidine and 1- Amine N-oxides are synthetically important building azabicyclo[2.2.2]octane are all more than 95 %. The prepara- blocks and are extensively used as oxidants, for example in tion method of 1 are shown in Scheme-I12. osmium-catalyzed dihydroxylation of olefins1-3, in ruthenium- 4,5 catalyzed oxidation of alcohols and in a mild procedure for 150 - 180 ºC 6-8 RSO N=CHAr conversion of halides to aldehydes . Amine oxides are also RSO2 NH2 + ArCH(OEt)2 2 compounds of increasing interest as potential cytoximes which 9 O Ar are hypoxia-selective for the treatment of solid tumors . MCPBA/CHCl3 Aliphatic tert-amine N-oxides are essential and major compo- NC NaHCO3/H2O nents for ubiquitously used materials such as hair conditioners, H 0 - 5 ºC, 4-5h RSO2 shampoos, toothpaste, laundry detergent powders, fabric R= Alkyl, Aryl softeners, toilet soaps and cosmetics as well as in biomedical Scheme-I: Preparation of 2-(phenylsulfonyl)-3-phenyloxaziridine (1) applications10.
    [Show full text]
  • Organic Reactions Summary Alkenes, Alkynes and Variations for Use As A
    Alkenes, Alkynes & Variations Beauchamp 1 Organic Reactions Summary Alkenes, alkynes and variations For Use as a Study Guide Beauchamp y:\files\classes\Organic Chemistry Tool Chest\Reactions Lists\Org rxns summary, alkenes, -ynes, with mechs.doc Alkenes, Alkynes & Variations Beauchamp 2 Making alkenes and alkynes o o o a. mechanism using potassium t-butoxide, KOC(CH3)3, SN2 at and E2 at 1 , 2 and 3 RBr, H C H H C H 3 O SN2 3 C C Br O C H C Br 3 H H CH3 H H D H H E2 D C Br C C D H C 3 O H R Z E C CH3 H C C Br Ha C b H3C H3C CH 3 Ha CH3 Hb H H C 3 O C Br C H C E2 (-CH2-H) H3C H2 E2 Br CH CH3 3 Ha C E2 (-CHb-H) Hb E2 (-CHa-H) Example reactions E2 > SN2 KOC(CH3)3 anti Br elimination Br KOC(CH3)3 E2 R E2 KOC(CH3)3 Br R Br KOC(CH3)3 E2 S S H3C CH3 Br C S 2 KOC(CH3)3 O CH3 N no other option y:\files\classes\Organic Chemistry Tool Chest\Reactions Lists\Org rxns summary, alkenes, -ynes, with mechs.doc Alkenes, Alkynes & Variations Beauchamp 3 b. Double elimination from dibromoalkanes to form alkynes and terminal acetylides used in many additional reactions (SN2 with RBr, C=O addition to aldehyses and ketones, and reaction with epoxides) Br Br Br H 2 eqs. Br2 Na h H Na N N H R R N R R H rd R R 3 equivalent H most stable a anion in mixture O H a H H Na 2.
    [Show full text]
  • US5122308.Pdf
    ||||||||||||||| USOO5122308A United States Patent 19 11) Patent Number: 5,122,308 Dutta et al. 45 Date of Patent: k Jun. 16, 1992 (54) PROCESS FOR THE OXIDATION OF 3,997.578 12/1976 Sheng .................................. 260/43 ALCOHOLS TO ACIDS 4,015,060 3/1977 Karayannis et al. ................ 526/14 4,096, 196 6/1978 Boudakian ....................... 260/650 F 75 Inventors: Tamal K. Dutta; Lynn H. Slaugh, 4,207.30 6/1980 Langford ............................ 424/150 both of Houston, Tex. 4,225,694 9/1980 Dalton et al. ....................... 56.2/506 73 Assignee: Shell Oil Company, Houston, Tex. 4,996,007 2/1991 Caro et al. .......................... 562/538 * Notice: The portion of the term of this patent Primary Examiner-Jose G. Dees subsequent to Jun. 16, 2009 has been Assistant Examiner-Deborah D. Carr disclaimed. Attorney, Agent, or Firm-Pamela J. McCollough 21 Appl. No.: 552,392 57 ABS CT 22 Filed Jill, 13, 1990 The instant invention relates to a process for the oxida 18: l. 3, tion of primary alcohols to the corresponding acids, 51) int. Cl. ................................................ C09F 7/02 which comprises contacting and thereby reacting an 52 U.S. Cl. ... as - a 554/135; 562/512.2; alcohol with a tertiary amine oxide compound at ele 562/538; 562/540, 554/136; 554/207 vated temperatures in the presence of a homogeneous 58) Field of Search ................ 260/413, 406, 410.9 R; oxidation catalyst comprising a Group VIII metal and a 562/538, 512.8, 540, 560/239 promoter comprising a quaternary ammonium bromide, (56) References Cited and subsequently separating out acids from the reaction mixture product.
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 06 May 2020 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Fong, Rebecca and Squillace, Oph¡elieand Reynolds, Carl and Cooper, Joshaniel and Dalgliesh, Robert Malcolm and Tellam, James and Courchay, Florence and Thompson, Richard L. (2020) 'Segregation of amine oxide surfactants in PVA lms.', Langmuir., 36 (17). pp. 4795-4807. Further information on publisher's website: https://doi.org/10.1021/acs.langmuir.0c00084 Publisher's copyright statement: This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
    [Show full text]
  • Sturrock 2005 Synthesis and R
    SYNTHESIS AND REACTIONS OF SOM E PYRIDINES AND THIENOPYRIDINES KEITH ROBERT STURROCK BSc A thesis submitted in partial fulfilment of the requirements of the University of Abertay Dundee for the degree of Doctor of Philosophy August 2005 I certify that this thesis is the true and accurate version of the thesis approved by the examiners. Signed DECLARATION I hereby declare that the work presented in this thesis was carried out by me at the University of Abertay Dundee, except where due acknowledgement is made, and has not been submitted by me for any other degree. Signed Date o s Table of Contents Declaration i Table of Contents ii Acknowledgements x Abstract xi List of Abbreviations xii 1 Introduction 1 1.1 Pyridine N-oxides 2 1.1.1 Preparation of pyridine N-oxides 3 1.1.1.1 By direct oxidation with organic peracids 3 1.1.1.2 Side reactions with organic peracids 6 1.1.1.2.1 Oxidation of nitrogen substituents 6 1.1.1.2.2 Oxidation of sulphur substituents 9 1.1.1.2.3 Oxidation of carbon substituents 10 1.1.1.2.4 Other side reactions 11 1.1.1.2.5 Steric or electronic hindrance 11 1.1.1.3 By direct oxidation with other reagents 13 1.1.1.4 By synthesis of the heterocyclic ring 15 1.1.1.4.1 Intramolecular processes 15 1.1.1.4.2 Intermolecular processes 18 1.1.2 Reactions of pyridine N-oxides 19 1.1.2.1 Deoxygenation of pyridine N-oxides 19 1.1.3.1 Electrophilic substitution 25 1.1.3.1.1 Hydrogen/deuterium exchange 25 1.1.3.1.2 Nitration 26 ii 1.1.3.1.3 Bromination 29 1.1.3.1.4 Sulphonation 31 1.1.3.1.5 Other electrophilic substitutions 31 1.1.3.2
    [Show full text]
  • Low Residue Aqueous Hard Surface Cleaning and Desinfecting Compositions
    Europäisches Patentamt *EP000935646B1* (19) European Patent Office Office européen des brevets (11) EP 0 935 646 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C11D 3/00, C11D 1/835, of the grant of the patent: C11D 1/94, C11D 3/30 02.05.2003 Bulletin 2003/18 (86) International application number: (21) Application number: 97912764.4 PCT/US97/18774 (22) Date of filing: 15.10.1997 (87) International publication number: WO 98/017763 (30.04.1998 Gazette 1998/17) (54) LOW RESIDUE AQUEOUS HARD SURFACE CLEANING AND DESINFECTING COMPOSITIONS WÄSSRIGE REINIGUNGS- UND DESINFEKTIONSMITTEL MIT NIEDRIGEM RÜCKSTAND FÜR HARTE OBERFLÄCHEN COMPOSITIONS AQUEUSES DE NETTOYAGE ET DE DESINFECTION A FAIBLE RESIDU POUR SURFACES DURES (84) Designated Contracting States: (74) Representative: Dickson, Elizabeth Anne BE DE ES FR GB IT NL Reckitt Benckiser plc, Group Patents Department, (30) Priority: 24.10.1996 GB 9622176 Dansom Lane Hull HU8 7DS (GB) (43) Date of publication of application: 18.08.1999 Bulletin 1999/33 (56) References cited: EP-A- 0 129 980 EP-A- 0 621 335 (73) Proprietor: Reckitt Benckiser Inc. EP-A- 0 691 397 WO-A-94/22996 Wayne, New Jersey 07474 (US) WO-A-95/14757 (72) Inventor: HARRISON, Kenneth, A. Goshen, NY 10924 (US) Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid.
    [Show full text]