Climate Changes and Emerging Wildlife-Borne Viruses in Norway

Total Page:16

File Type:pdf, Size:1020Kb

Climate Changes and Emerging Wildlife-Borne Viruses in Norway Climate Changes and Emerging Wildlife-Borne Viruses in Norway: Facts, Uncertainty and Precaution Biosafety Report 2014/01 Biosafety Report 2014/01 GenØk - Centre for Biosafety, Tromsø, Norway February 2014 Climate Changes and Emerging Wildlife-Borne Viruses in Norway: Facts, Uncertainty and Precaution Terje Traavik, Dr. philos. 1GenØk-Centre for Biosafety, Norway 2Institute of Pharmacy, UiT - The Arctic University of Norway “The words of Dr. Gro Harlem Brundtland, former director of the World Health Organization (WHO), were indeed prophetic. In her speech at the United Nations Global Leadership Awards on April 19, 2001, she stated that in a modern world, bacteria and viruses travel almost as fast as money. With globalization, a single microbial sea washes over all humankind and there are no health sanctions. In actuality, that sea washes not over just all humankind, but also across all animal and environmental domains” (AMVA 2008). GenØk - Centre for Biosafety, Forskningsparken i Breivika, Postboks 6418, 9294 Tromsø, Norway Tel.: (+47) 77 64 66 20 - [email protected] – www.genok.com Cover photo credits: Andrew Howe/Andrew Howe/RolfAasa (all istockphoto.com)/J. Gathany (Center for Disease Control) 1 I. Preface Globally spoken, some of the most burdening diseases of wildlife animals, livestock and human populations are caused by viruses with hosts and reservoirs in wildlife vertebrates like small rodents and bats. Many of these viruses are transmitted within and between vertebrate species by blood- sucking invertebrates such as mosquitoes, ticks and midges. Until now, the occurrence and distribution of such viruses have, in a relative sense, been restricted to areas within the tropical, subtropical and temperate lower latitude regions of the planet. Through its impacts on competent virus hosts, reservoirs and vectors climate is a decisively important determinant for the distribution of a given virus. Suboptimal temperature is probably the most important single barrier to northwards spread of viruses that may have substantial influence on ecosystem as well as society health and resilience. Through the ongoing global warming, and a diverse set of climate changes, the ecosystems and societies of northern Europe will most certainly be confronted with invading, potentially harmful, vertebrate- and invertebrate-vectored viruses. The human, livestock and wildlife populations in our part of the world will have no former evolutionary experience with, and may lack immunological protection against, the invading viruses. The scenarios and prospects that are presented in this report call for risk assessment, governance and prevention according to a precautionary strategy. The approaches must be based on increased epi- disciplinary research efforts, including participants from all relevant scientific fields within the biological, medical and veterinary areas. Furthermore, the hosts, vectors and viruses do not respect any national or political borders. Accordingly, international cooperation within research, surveillance and monitoring will be totally essential for protection of biological diversity as well as ecosystem, animal and human health. There are huge knowledge gaps with regard to the effects of climate changes on local, regional and global virus-host-vector interactions and adaptations. This report was made possible by a commission from the Norwegian Environment Agency (formerly the Directorate for Nature Management). It took substantially more time than stipulated to finalize the report, and I wish to thank our coworkers in the Agency for their support as well as their patience. I am grateful to my close friend and colleague Reidar Mehl for photos and valuable inputs. Likewise, my friend and colleague Thomas Bøhn has delivered substantial inputs and support. Finally, I gratefully acknowledge the contributions of Anne Myhr and Katrine Jaklin, which have resulted in the attractive design of the final report. 2 Contents I. Preface ........................................................................................................................................................ 2 II. Abstract ...................................................................................................................................................... 8 III. Executive Summary .............................................................................................................................. 11 1. General Introduction ........................................................................................................................... 15 1.1. Purpose and goals ............................................................................................................................................ 15 1.2. Climate change and wildlife infectious agents ..................................................................................... 15 1.3. Transmission and impacts of viruses with wildlife reservoirs and hosts ................................ 17 1.3.1. Transmission ................................................................................................................................................ 17 1.3.2. Hosts ................................................................................................................................................................ 18 1.3.3. Beneficial viruses? ...................................................................................................................................... 18 1.3.4. Reservoirs ...................................................................................................................................................... 18 1.3.5. Co-infections with different vector-borne viruses ....................................................................... 19 1.3.6. Do we know the viruses already circulating in Norway? ........................................................... 20 1.3.7. Conclusion ..................................................................................................................................................... 20 1.3.8. General questions ....................................................................................................................................... 20 2. Viruses are not microorganisms or cells, they are viruses! .................................................. 22 3. Lifecycles of vector-borne viruses: participants and complexity........................................ 25 3.1. The ecological episystem .............................................................................................................................. 25 3.1.1. Virulence ........................................................................................................................................................ 26 3.1.2. Interactions between viruses circulating within the same episystems? ............................. 26 3.2. Arthropod vectors ........................................................................................................................................... 26 3.2.1. Mosquitoes .................................................................................................................................................... 26 3.2.2. Ticks ................................................................................................................................................................. 27 3 3.2.3. Midges ............................................................................................................................................................. 30 3.2.4. Transovarial, transstadial and venereal virus transmission .................................................... 30 3.2.5. Climate change impacts on arthropods ............................................................................................. 30 3.3. Vertebrate vectors and hosts ...................................................................................................................... 31 3.3.1. Birds ................................................................................................................................................................. 31 3.3.2. Mammals ........................................................................................................................................................ 32 3.3.3. Reptiles and amphibians ......................................................................................................................... 33 3.4. Direct and indirect impacts of climate change on vector-borne viruses: relevant variables and effect parameters .................................................................................................................................................... 33 4. Arboviruses ............................................................................................................................................. 35 4.1. Definitions ........................................................................................................................................................... 35 4.2. Nomenclature and taxonomy...................................................................................................................... 35 4.3. Lack of reliable disease and distribution data ..................................................................................... 35 4.4. Natural life history and ecology ................................................................................................................
Recommended publications
  • Influence of Parasites on Fitness Parameters of the European Hedgehog (Erinaceus Europaeus)
    Influence of parasites on fitness parameters of the European hedgehog (Erinaceus europaeus ) Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) – Universitätsbereich vorgelegte DISSERTATION von Miriam Pamina Pfäffle aus Heilbronn Dekan: Prof. Dr. Stefan Bräse Referent: Prof. Dr. Horst Taraschewski Korreferent: Prof. Dr. Agustin Estrada-Peña Tag der mündlichen Prüfung: 19.10.2010 For my mother and my sister – the strongest influences in my life “Nose-to-nose with a hedgehog, you get a chance to look into its eyes and glimpse a spark of truly wildlife.” (H UGH WARWICK , 2008) „Madame Michel besitzt die Eleganz des Igels: außen mit Stacheln gepanzert, eine echte Festung, aber ich ahne vage, dass sie innen auf genauso einfache Art raffiniert ist wie die Igel, diese kleinen Tiere, die nur scheinbar träge, entschieden ungesellig und schrecklich elegant sind.“ (M URIEL BARBERY , 2008) Index of contents Index of contents ABSTRACT 13 ZUSAMMENFASSUNG 15 I. INTRODUCTION 17 1. Parasitism 17 2. The European hedgehog ( Erinaceus europaeus LINNAEUS 1758) 19 2.1 Taxonomy and distribution 19 2.2 Ecology 22 2.3 Hedgehog populations 25 2.4 Parasites of the hedgehog 27 2.4.1 Ectoparasites 27 2.4.2 Endoparasites 32 3. Study aims 39 II. MATERIALS , ANIMALS AND METHODS 41 1. The experimental hedgehog population 41 1.1 Hedgehogs 41 1.2 Ticks 43 1.3 Blood sampling 43 1.4 Blood parameters 45 1.5 Regeneration 47 1.6 Climate parameters 47 2. Hedgehog dissections 48 2.1 Hedgehog samples 48 2.2 Biometrical data 48 2.3 Organs 49 2.4 Parasites 50 3.
    [Show full text]
  • Identification Key for Mosquito Species
    ‘Reverse’ identification key for mosquito species More and more people are getting involved in the surveillance of invasive mosquito species Species name used Synonyms Common name in the EU/EEA, not just professionals with formal training in entomology. There are many in the key taxonomic keys available for identifying mosquitoes of medical and veterinary importance, but they are almost all designed for professionally trained entomologists. Aedes aegypti Stegomyia aegypti Yellow fever mosquito The current identification key aims to provide non-specialists with a simple mosquito recog- Aedes albopictus Stegomyia albopicta Tiger mosquito nition tool for distinguishing between invasive mosquito species and native ones. On the Hulecoeteomyia japonica Asian bush or rock pool Aedes japonicus japonicus ‘female’ illustration page (p. 4) you can select the species that best resembles the specimen. On japonica mosquito the species-specific pages you will find additional information on those species that can easily be confused with that selected, so you can check these additional pages as well. Aedes koreicus Hulecoeteomyia koreica American Eastern tree hole Aedes triseriatus Ochlerotatus triseriatus This key provides the non-specialist with reference material to help recognise an invasive mosquito mosquito species and gives details on the morphology (in the species-specific pages) to help with verification and the compiling of a final list of candidates. The key displays six invasive Aedes atropalpus Georgecraigius atropalpus American rock pool mosquito mosquito species that are present in the EU/EEA or have been intercepted in the past. It also contains nine native species. The native species have been selected based on their morpho- Aedes cretinus Stegomyia cretina logical similarity with the invasive species, the likelihood of encountering them, whether they Aedes geniculatus Dahliana geniculata bite humans and how common they are.
    [Show full text]
  • Sindbis Virus Infection in Resident Birds, Migratory Birds, and Humans, Finland Satu Kurkela,*† Osmo Rätti,‡ Eili Huhtamo,* Nathalie Y
    Sindbis Virus Infection in Resident Birds, Migratory Birds, and Humans, Finland Satu Kurkela,*† Osmo Rätti,‡ Eili Huhtamo,* Nathalie Y. Uzcátegui,* J. Pekka Nuorti,§ Juha Laakkonen,*¶ Tytti Manni,* Pekka Helle,# Antti Vaheri,*† and Olli Vapalahti*†** Sindbis virus (SINV), a mosquito-borne virus that (the Americas). SINV seropositivity in humans has been causes rash and arthritis, has been causing outbreaks in reported in various areas, and antibodies to SINV have also humans every seventh year in northern Europe. To gain a been found from various bird (3–5) and mammal (6,7) spe- better understanding of SINV epidemiology in Finland, we cies. The virus has been isolated from several mosquito searched for SINV antibodies in 621 resident grouse, whose species, frogs (8), reed warblers (9), bats (10), ticks (11), population declines have coincided with human SINV out- and humans (12–14). breaks, and in 836 migratory birds. We used hemagglutina- tion-inhibition and neutralization tests for the bird samples Despite the wide distribution of SINV, symptomatic and enzyme immunoassays and hemagglutination-inhibition infections in humans have been reported in only a few for the human samples. SINV antibodies were fi rst found in geographically restricted areas, such as northern Europe, 3 birds (red-backed shrike, robin, song thrush) during their and occasionally in South Africa (12), Australia (15–18), spring migration to northern Europe. Of the grouse, 27.4% and China (13). In the early 1980s in Finland, serologic were seropositive in 2003 (1 year after a human outbreak), evidence associated SINV with rash and arthritis, known but only 1.4% were seropositive in 2004.
    [Show full text]
  • Potential Arbovirus Emergence and Implications for the United Kingdom Ernest Andrew Gould,* Stephen Higgs,† Alan Buckley,* and Tamara Sergeevna Gritsun*
    Potential Arbovirus Emergence and Implications for the United Kingdom Ernest Andrew Gould,* Stephen Higgs,† Alan Buckley,* and Tamara Sergeevna Gritsun* Arboviruses have evolved a number of strategies to Chikungunya virus and in the family Bunyaviridae, sand- survive environmental challenges. This review examines fly fever Naples virus (often referred to as Toscana virus), the factors that may determine arbovirus emergence, pro- sandfly fever Sicilian virus, Crimean-Congo hemorrhagic vides examples of arboviruses that have emerged into new fever virus (CCHFV), Inkoo virus, and Tahyna virus, habitats, reviews the arbovirus situation in western Europe which is widespread throughout Europe. Rift Valley fever in detail, discusses potential arthropod vectors, and attempts to predict the risk for arbovirus emergence in the virus (RVFV) and Nairobi sheep disease virus (NSDV) United Kingdom. We conclude that climate change is prob- could be introduced to Europe from Africa through animal ably the most important requirement for the emergence of transportation. Finally, the family Reoviridae contains a arthropodborne diseases such as dengue fever, yellow variety of animal arbovirus pathogens, including blue- fever, Rift Valley fever, Japanese encephalitis, Crimean- tongue virus and African horse sickness virus, both known Congo hemorrhagic fever, bluetongue, and African horse to be circulating in Europe. This review considers whether sickness in the United Kingdom. While other arboviruses, any of these pathogenic arboviruses are likely to emerge such as West Nile virus, Sindbis virus, Tahyna virus, and and cause disease in the United Kingdom in the foresee- Louping ill virus, apparently circulate in the United able future. Kingdom, they do not appear to present an imminent threat to humans or animals.
    [Show full text]
  • First Detection of Tick-Borne Encephalitis Virus in Ixodes Ricinus
    Ticks and Tick-borne Diseases 10 (2019) 101265 Contents lists available at ScienceDirect Ticks and Tick-borne Diseases journal homepage: www.elsevier.com/locate/ttbdis Original article First detection of tick-borne encephalitis virus in Ixodes ricinus ticks and T their rodent hosts in Moscow, Russia ⁎ Marat Makenova, , Lyudmila Karana, Natalia Shashinab, Marina Akhmetshinab, Olga Zhurenkovaa, Ivan Kholodilovc, Galina Karganovac,d, Nina Smirnovaa,e, Yana Grigorevaa, Yanina Yankovskayaf, Marina Fyodorovaa a Central Research Institute of Epidemiology, Novogireevskaya st 3-A, 415, Moscow, 111123, Russia b Sсiеntifiс Rеsеarсh Disinfесtology Institutе, Nauchniy proezd st. 18, Moscow, 117246, Russia c Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), prem. 8, k.17, pos. Institut Poliomyelita, poselenie Moskovskiy, Moscow, 108819, Russia d Institute for Translational Medicine and Biotechnology, Sechenov University, Bolshaya Pirogovskaya st, 2, page 4, room 106, Moscow, 119991, Russia e Lomonosov Moscow State University, Leninskie Gory st. 1-12, MSU, Faculty of Biology, Moscow, 119991, Russia f Pirogov Russian National Research Medical University, Ostrovityanova st. 1, Moscow, 117997, Russia ARTICLE INFO ABSTRACT Keywords: Here, we report the first confirmed autochthonous tick-borne encephalitis case diagnosed in Moscow in2016 Tick-borne encephalitis virus and describe the detection of tick-borne encephalitis virus (TBEV) in ticks and small mammals in a Moscow park. Ixodes ricinus The paper includes data from two patients who were bitten by TBEV-infected ticks in Moscow city; one of Borrelia burgdorferi sensu lato these cases led to the development of the meningeal form of TBE. Both TBEV-infected ticks attacked patients in Vector-borne diseases the same area.
    [Show full text]
  • The Mosquitoes of Alaska
    LIBRAR Y ■JRD FEBE- Î961 THE U. s. DtPÁ¡<,,>^iMl OF AGidCÜLl-yí MOSQUITOES OF ALASKA Agriculture Handbook No. 182 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE U < The purpose of this handbook is to present information on the biology, distribu- tion, identification, and control of the species of mosquitoes known to occur in Alaska. Much of this information has been published in short papers in various journals and is not readily available to those who need a comprehensive treatise on this subject ; some of the material has not been published before. The information l)r()UKlit together here will serve as a guide for individuals and communities that have an interest and responsibility in mosquito problems in Alaska. In addition, the military services will have considerable use for this publication at their various installations in Alaska. CuUseta alaskaensis, one of the large "snow mosquitoes" that overwinter as adults and emerge from hiber- nation while much of the winter snow is on the ground. In some localities this species is suJBBciently abundant to cause serious annoy- ance. THE MOSQUITOES OF ALASKA By C. M. GJULLIN, R. I. SAILER, ALAN STONE, and B. V. TRAVIS Agriculture Handbook No. 182 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D.C. Issued January 1961 For «ale by the Superintendent of Document«. U.S. Government Printing Office Washington 25, D.C. - Price 45 cent» Contents Page Page History of mosquito abundance Biology—Continued and control 1 Oviposition 25 Mosquito literature 3 Hibernation 25 Economic losses 4 Surveys of the mosquito problem. 25 Mosquito-control organizations 5 Mosquito surveys 25 Life history 5 Engineering surveys 29 Eggs_".
    [Show full text]
  • Geospatial Risk Analysis of Mosquito-Borne Disease Vectors in the Netherlands
    Geospatial risk analysis of mosquito-borne disease vectors in the Netherlands Adolfo Ibáñez-Justicia Thesis committee Promotor Prof. Dr W. Takken Personal chair at the Laboratory of Entomology Wageningen University & Research Co-promotors Dr C.J.M. Koenraadt Associate professor, Laboratory of Entomology Wageningen University & Research Dr R.J.A. van Lammeren Associate professor, Laboratory of Geo-information Science and Remote Sensing Wageningen University & Research Other members Prof. Dr G.M.J. Mohren, Wageningen University & Research Prof. Dr N. Becker, Heidelberg University, Germany Prof. Dr J.A. Kortekaas, Wageningen University & Research Dr C.B.E.M. Reusken, National Institute for Public Health and the Environment, Bilthoven, The Netherlands This research was conducted under the auspices of the C.T. de Wit Graduate School for Production Ecology & Resource Conservation Geospatial risk analysis of mosquito-borne disease vectors in the Netherlands Adolfo Ibáñez-Justicia Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 1 February 2019 at 4 p.m. in the Aula. Adolfo Ibáñez-Justicia Geospatial risk analysis of mosquito-borne disease vectors in the Netherlands, 254 pages. PhD thesis, Wageningen University, Wageningen, the Netherlands (2019) With references, with summary in English ISBN 978-94-6343-831-5 DOI https://doi.org/10.18174/465838
    [Show full text]
  • Competition Between Usutu Virus and West Nile Virus During Simultaneous and Sequential Infection of Culex Pipiens Mosquitoes
    Emerging Microbes & Infections ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/temi20 Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culex pipiens mosquitoes Haidong Wang , Sandra R. Abbo , Tessa M. Visser , Marcel Westenberg , Corinne Geertsema , Jelke J. Fros , Constantianus J. M. Koenraadt & Gorben P. Pijlman To cite this article: Haidong Wang , Sandra R. Abbo , Tessa M. Visser , Marcel Westenberg , Corinne Geertsema , Jelke J. Fros , Constantianus J. M. Koenraadt & Gorben P. Pijlman (2020) Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culexpipiens mosquitoes, Emerging Microbes & Infections, 9:1, 2642-2652, DOI: 10.1080/22221751.2020.1854623 To link to this article: https://doi.org/10.1080/22221751.2020.1854623 © 2020 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd Published online: 14 Dec 2020. Submit your article to this journal Article views: 356 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=temi20 Emerging Microbes & Infections 2020, VOL. 9 https://doi.org/10.1080/22221751.2020.1854623 ORIGINAL ARTICLE Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culex pipiens mosquitoes Haidong Wanga, Sandra R. Abboa,
    [Show full text]
  • Molecular Studies of Piscine Orthoreovirus Proteins
    Piscine orthoreovirus Series of dissertations at the Norwegian University of Life Sciences Thesis number 79 Viruses, not lions, tigers or bears, sit masterfully above us on the food chain of life, occupying a role as alpha predators who prey on everything and are preyed upon by nothing Claus Wilke and Sara Sawyer, 2016 1.1. Background............................................................................................................................................... 1 1.2. Piscine orthoreovirus................................................................................................................................ 2 1.3. Replication of orthoreoviruses................................................................................................................ 10 1.4. Orthoreoviruses and effects on host cells ............................................................................................... 18 1.5. PRV distribution and disease associations ............................................................................................. 24 1.6. Vaccine against HSMI ............................................................................................................................ 29 4.1. The non ......................................................37 4.2. PRV causes an acute infection in blood cells ..........................................................................................40 4.3. DNA
    [Show full text]
  • Borne Pathogens Tim R
    Hofmeester et al. Parasites & Vectors (2018) 11:600 https://doi.org/10.1186/s13071-018-3126-8 RESEARCH Open Access Role of mustelids in the life-cycle of ixodid ticks and transmission cycles of four tick- borne pathogens Tim R. Hofmeester1,2*, Aleksandra I. Krawczyk3, Arieke Docters van Leeuwen3, Manoj Fonville3, Margriet G. E. Montizaan4, Koen van den Berge5, Jan Gouwy5, Sanne C. Ruyts6, Kris Verheyen6 and Hein Sprong3* Abstract Background: Elucidating which wildlife species significantly contribute to the maintenance of Ixodes ricinus populations and the enzootic cycles of the pathogens they transmit is imperative in understanding the driving forces behind the emergence of tick-borne diseases. Here, we aimed to quantify the relative contribution of four mustelid species in the life-cycles of I. ricinus and Borrelia burgdorferi (sensu lato) in forested areas and to investigate their role in the transmission of other tick-borne pathogens. Road-killed badgers, pine martens, stone martens and polecats were collected in Belgium and the Netherlands. Their organs and feeding ticks were tested for the presence of tick-borne pathogens. Results: Ixodes hexagonus and I. ricinus were found on half of the screened animals (n = 637). Pine martens had the highest I. ricinus burden, whereas polecats had the highest I. hexagonus burden. We detected DNA from B. burgdorferi (s.l.)andAnaplasma phagocytophilum in organs of all four mustelid species (n = 789), and Neoehrlichia mikurensis DNA was detected in all species, except badgers. DNA from B. miyamotoi was not detected in any of the investigated mustelids. From the 15 larvae of I. ricinus feeding on pine martens (n = 44), only one was positive for B.
    [Show full text]
  • Erinaceus Europaeus) in Urmia City, Iran: First Report
    ORIGINAL Veterinary ARTICLE Veterinary Research Forum. 2013; 4 (3) 191 - 194 Research Forum Journal Homepage: vrf.iranjournals.ir Ectoparasitic infestations of the European hedgehog (Erinaceus europaeus) in Urmia city, Iran: First report Tahmineh Gorgani-Firouzjaee1, Behzad Pour-Reza2, Soraya Naem1*, Mousa Tavassoli1 1Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran; 2 Resident in Veterinary Surgery, Department of Surgery and Radiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran. Article Info Abstract Article history: Hedgehogs are small, nocturnal mammals that become popular in the world and have significant role in transmission of zoonotic agents. Some of the agents are transmitted by ticks Received: 01 September 2012 and fleas such as rickettsial agents. For these reason, a survey on ectoparasites in European Accepted: 02 March 2013 hedgehog (Erinaceus europaeus) carried out between April 2006 and December 2007 from Available online: 15 September 2013 different parts of Urmia city, west Azerbaijan, Iran. After being euthanized external surface of body of animals was precisely considered for ectoparasites, and arthropods were collected and Key words: stored in 70% ethanol solution. Out of 34 hedgehogs 23 hedgehogs (67.70%) were infested with ticks (Rhipicephalus turanicus). Fleas of the species Archaeopsylla erinacei were found on Ectoparasite 19 hedgehogs of 34 hedgehogs (55.90%). There was no significant differences between sex of Hedgehog ticks (p > 0.05) but found in fleas (p < 0.05). The prevalence of infestation in sexes and the body Iran condition of hedgehogs (small, medium and large) with ticks and fleas did not show significant Urmia differences (p > 0.05). Highest occurrence of infestation in both tick and flea was in June.
    [Show full text]
  • Canisuga, I. (Ph.) Kaiseri, I
    Hornok et al. Parasites & Vectors (2017) 10:545 DOI 10.1186/s13071-017-2424-x RESEARCH Open Access Contributions to the phylogeny of Ixodes (Pholeoixodes) canisuga, I. (Ph.) kaiseri, I. (Ph.) hexagonus and a simple pictorial key for the identification of their females Sándor Hornok1* , Attila D. Sándor2, Relja Beck3, Róbert Farkas1, Lorenza Beati4, Jenő Kontschán5, Nóra Takács1, Gábor Földvári1, Cornelia Silaghi6, Elisabeth Meyer-Kayser7, Adnan Hodžić8, Snežana Tomanović9, Swaid Abdullah10, Richard Wall10, Agustín Estrada-Peña11, Georg Gerhard Duscher8 and Olivier Plantard12 Abstract Background: In Europe, hard ticks of the subgenus Pholeoixodes (Ixodidae: Ixodes) are usually associated with burrow-dwelling mammals and terrestrial birds. Reports of Pholeoixodes spp. from carnivores are frequently contradictory, and their identification is not based on key diagnostic characters. Therefore, the aims of the present study were to identify ticks collected from dogs, foxes and badgers in several European countries, and to reassess their systematic status with molecular analyses using two mitochondrial markers. Results: Between 2003 and 2017, 144 Pholeoixodes spp. ticks were collected in nine European countries. From accurate descriptions and comparison with type-materials, a simple illustrated identification key was compiled for adult females, by focusing on the shape of the anterior surface of basis capituli. Based on this key, 71 female ticks were identified as I. canisuga,21asI. kaiseri and 21 as I. hexagonus. DNA was extracted from these 113 female ticks, and from further 31 specimens. Fragments of two mitochondrial genes, cox1 (cytochrome c oxidase subunit 1) and 16S rRNA, were amplified and sequenced. Ixodes kaiseri had nine unique cox1 haplotypes, which showed 99.2–100% sequence identity, whereas I.
    [Show full text]