N-Butanol/Butyl Acrylate/ Water

Total Page:16

File Type:pdf, Size:1020Kb

N-Butanol/Butyl Acrylate/ Water Faculdade de Engenharia da Universidade do Porto Process Intensification for Butyl Acrylate Synthesis based on Sorption-Enhanced Reaction and Pervaporation-based Hybrid Processes Dissertation presented to Faculdade de Engenharia da Universidade do Porto for the degree of PhD in Chemical and Biological Engineering by Dânia Sofia Martins Constantino Supervisor: Professor Alírio E. Rodrigues Co-supervisors: Dr. Ana M. Ribeiro and Dr. Rui P. Faria Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM Department of Chemical engineering, Faculty of Engineering, University of Porto 2019 FEUP-LSRE/LCM - Universidade do Porto © Dânia Sofia Martins Constantino, 2019 All rights reserved This thesis was financially supported by Project POCI-01-0145-FEDER-006984 – Associate Laboratory LSRE-LCM funded by FEDER through COMPETE2020 Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT – Fundação para a Ciência e Tecnologia, Associate Laboratory LSRE- LCM - UID/EQU/50020/2019 - funded by national funds through FCT/MCTES (PIDDAC), and Project NORTE-01-0145-FEDER-000006, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Acknowledgements Some people were essential to accomplish this project, so my deepest acknowledgements are for them. First of all, I want to thank to Associate Laboratory of Separation and Reaction Engineering and Catalysis and Materials, namely to its Director, Professora Madalena Dias, for giving me this great opportunity that contributed for my personal and professional grow up, as well as all her availability and support to solve any bureaucratic issue, every time it was required. Now, I would like to express my sincere gratitude to my supervisor, Professor Alírio Rodrigues, for the continuous support, guidance, motivation to do always more and better, and for his immense shared knowledge. His long and successful journey is impressive being an inspiration for all who worked or dealt with him, so I am privileged to be part of his work-team. Then, I would like to thank to my co-supervisors, Dr Ana Mafalda Ribeiro and Dr Rui Pedro Faria, for all the support, guidance, friendship and availability for productive discussions about the main challenges that were emerging during this project, which were an asset to make important decisions when required. Their knowledge and abilities were crucial along this journey. Thank you for all comments and advices. I cannot forget that I had the pleasure to start this project with Dr Carla Pereira, who impressed me by her great abilities and the way she faces each challenge. I am very grateful for her advices, motivation and friendship and I wish her the best of luck, mainly at this stage of her life. I am deeply thankful to my dear friends, namely, Filipa, Vanessa, Raquel, Manuela and Mariana (the girl’s team of the twelve o’clock), with whom I shared doubts, fears and laughs. Thank you girls for your patience and for your friendship. My last acknowledgements, but not less important, go to my parents, by their dedication and patience, my brother, Luis Constantino and my husband, Wesley Souza, for all the emotional support and, finally, to the love of my life, my son, Santiago, who challenges me every day to be a better person. “New ways of thinking—an integrated multidimensional approach to the problems of global sustainability—have long been needed, and it is up to us to decide whether the especially difficult challenges that we are facing today will jolt us into finding and accepting them.” by Peter H. Raven Former president of the American Association for the Advancement of Science, 2002. Resumo A síntese de acrilato de butilo obtido através da esterificação do ácido acrílico e do n- butanol apresenta algumas limitações devido ao equilíbrio da reação e sobretudo à complexidade termodinâmica do sistema. Para além disso, existe um elevado risco de polimerização do ácido acrílico e do acrilato de butilo quando submetidos a elevadas temperaturas. Estas limitações fazem deste sistema um tema muito desafiante entre a comunidade científica no sentido de encontrar um processo capaz de ultrapassar estes inconvenientes, melhorando o processo convencional em termos ambientais e económicos. Nesse sentido, o objetivo deste trabalho consistiu no estudo de diferentes estratégias de intensificação de processos para a síntese de acrilato de butilo com base na integração do processo de reação e separação numa só unidade por forma a ultrapassar a conversão de equilíbrio por remoção contínua da água (subproduto) recorrendo a técnicas cromatográficas (adsorção) e de pervaporação. Deste modo, as diferentes estratégias adotadas nesta investigação contemplaram: reatores cromatográficos de leito fixo, reatores cromatográficos de leito fixo com membranas integradas e, numa fase posterior, processos cíclicos de adsorção/ pervaporação, nomeadamente reatores cromatográficos de leito móvel simulado. Em todos os casos optou-se por usar a mesma fase estacionária, a resina de permuta iónica Amberlyst-15, de modo a facilitar a comparação dos diferentes processos estudados. Assim, numa primeira fase, foram realizados experimentalmente estudos dinâmicos de adsorção e pervaporação, na ausência de reação, a fim de estimar os respetivos parâmetros de cada componente e de forma a ser possível prever e comparar o desempenho dos reatores de leito fixo e de leito fixo com membranas hidrofílicas integradas. Para isso, modelos matemáticos foram desenvolvidos para cada tecnologia, considerando fenómenos de transferência de massa, reação, adsorção e pervaporação, os quais foram posteriormente estendidos para implementação de tecnologias de processos cíclicos, como o reator de leito móvel simulado e o reator de membranas de leito móvel simulado. Os modelos matemáticos previamente desenvolvidos permitiram o estudo da otimização dos respetivos processos abordados neste trabalho e o dimensionamento dos mesmos à escala industrial. A síntese experimental de acrilato de butilo foi também realizada no reator de leito móvel simulado à escala piloto disponível no laboratório (LICOSEP), variando alguns parâmetros de operação no sentido de validar o modelo matemático previamente desenvolvido no qual foram usados os parâmetros de adsorção multicomponente previamente determinados numa unidade de leito fixo na ausência de reação. Numa fase final, foi realizada uma breve análise aos fatores energéticos e económicos envolvidos nos diferentes processos cíclicos à escala industrial de forma a avaliar a viabilidade e competitividade das estratégias de intensificação do processo propostas neste trabalho para a síntese de acrilato de butilo comparativamente aos diferentes processos apresentados na literatura. Abstract The butyl acrylate synthesis obtained from the esterification reaction between acrylic acid and n-butanol presents some limitations due to the reaction equilibrium and mainly due to the thermodynamic complex behaviour of the system. Furthermore, there is a high risk of polymerisation of acrylic acid and butyl acrylate when they are submitted to high temperatures. All these limitations make this system a very challenging subject among the scientific community towards finding a process that is able to overcome these drawbacks improving the conventional process regarding economic and environmental issues. The main objective of this work was to study different process intensification strategies for the butyl acrylate synthesis based on the integration of reaction and separation in a single unit in order to overcome the equilibrium conversion by the continuous removal of water (by-product) using chromatographic (adsorption) and pervaporation techniques. Thus, the different strategies adopted in this research involved: fixed-bed chromatographic reactors, fixed-bed chromatographic reactors with integrated membranes and, at a later stage, cyclic adsorption/ pervaporation processes, namely simulated moving bed chromatographic reactors. In all cases, the same stationary phase was used, the Amberlyst-15 ion exchange resin, in order to perform a fair comparison between the different studied processes. Thus, in a first stage, dynamic studies of adsorption and pervaporation were accomplished, in the absence of reaction, in order to estimate the respective parameters for each compound and to enable the prediction and comparison of the performance between the fixed-bed adsorptive reactor and the fixed-bed adsorptive reactor with integrated hydrophilic membranes. For that, mathematical models were developed for each technology, considering phenomena like mass transfer, reaction, adsorption and pervaporation, which were then extended to model the other continuous processes, such as the simulated moving bed reactor and the simulating moving bed membrane reactor. The mathematical models previously defined allowed to study the optimisation of the processes addressed in this work and to perform the respective scaling up to industrial scale. The experimental butyl acrylate synthesis was also carried out in the simulate moving bed reactor pilot scale unit (LICOSEP) available in the laboratory, by changing some operating parameters in order to validate the mathematical model developed earlier using the multicomponent adsorption equilibrium parameters previously determined in a fixed- bed unit in absence of reaction. Finally, a brief analysis to the energetic and
Recommended publications
  • MSDS Butyl Acrylate
    MATERIAL SAFETY DATA SHEET — Butyl Acrylate SECTION 1 — CHEMICAL PRODUCT AND COMPANY IDENTIFICATION Product Identifier [WHMIS Classification] Butyl Acrylate Product Use Manufacturer’s Name Supplier’s Name Ayers International Corp. Street Address Street Address P.O. Box 4312 City State City State Greenwich New York Postal Code Emergency Telephone Postal Code Emergency Telephone 06831 (800) 424 - 9300 Date MSDS Prepared MSDS Prepared By Phone Number 07/01/2010 J. Miller (203) 329 - 8919 SECTION 2 — COMPOSITION/INFORMATION ON INGREDIENTS Ingredients (specific) % CAS Number LD 50 of Ingredient LC 50 of Ingredient (specify (specify species and route species) Butyl Acrylate 99 141-32-2 Methyl Ether of Hydroquinone 10-20ppm 150-76-5 Hazardous Ingredients (specific) SECTION 3 — HAZARDS IDENTIFICATION Route of Entry Inhalation, Skin Absorption, Eye Contact, Skin Contact [Emergency Overview] WHMIS Symbols] Potential Health Effects Inhalation: Causes irritation of the respiratory tract, experienced as nasal discomfort and discharge, with chest pain, coughing, headache, nausea, vomiting, dizziness, drowsiness, disturbed vision and unconsciousness Eye Contact: Liquid or vapor causes irritation, experienced as stinging, excess blinking and tear production, with excess redness and swelling of the conjunctiva. Skin Contact: Causes irritation with discomfort, local redness, and possible swelling. Skin Absorption: Prolonged or widespread contact may result in the absorption of potentially harmful amounts of material. Swallowing: Slightly toxic. May cause abdominal discomfort, nausea, vomiting and diarrhea. May cause burning or painful sensations in the mouth, throat, chest, and abdomen. Aspiration into the lungs may occur during ingestion or vomiting, resulting in lung injury. Effects of Repeated Overexposure: Prolonged and repeated overexposure to butyl acrylate vapor may result in damage to the tissues of the nose and upper respiratory tract – an effect typically produced by irritant materials.
    [Show full text]
  • Facile Synthesis and Polymerization of Ether Substituted Methacrylates
    Polymer Journal, Vol. 27, No. 4, pp 325--338 (1995) Facile Synthesis and Polymerization of Ether Substituted Methacrylates Robert D. THOMPSON, Thomas B. BARCLAY, Kumar R. BASU, and Lon J. MATHIAS* Department of Polymer Science, University of Southern Mississippi, Hattiesburg, MS 39406-{)076, U.S.A. (Received May 12, 1994) ABSTRACT: New difunctional methacrylate monomers containing f3 heteroatoms have been synthesized from o:-hydroxymethylacrylate esters or o:-chloromethylacryloyl chloride. These monomers are more reactive than their alkane counterparts (e.g., ethacrylates), giving polymers with molecular weights comparable to poly(itaconate)s. The simple synthetic approach described allows a wide range of difunctionalized acrylate monomers to be produced. Variations in both ester and ether substituents were explored for ease of synthesis and polymerization. KEY WORDS Beta-Substituted Methacrylates / Disubstituted Ethylene / Functionalized Acrylates / Water-Soluble Acrylates / Poly(methacrylate)s / Ceiling Temperature/ Chain Transfer/ Acrylate monomers containing hydrocarbon alkyl ix-hydroxymethylacrylates8 with yields chains at the ex-position, such as the ethyl and ranging up to approximately 50% of readily propyl derivatives (1 and 2, Figure 1), display purified monomer. Reaction of the hydroxy­ very poor or no free radical polymerizability methyl group with appropriate reagents gives at room temperature. 1 Incorporation of an reactive ally! halides 7 •9 •10 capable of high­ oxygen atom fJ to the double bond (as in 3) yield conversion to a range of derivatives makes monomers which are much more reac­ (Figure 2). The ether's flexibility imparts tive. For example, the methyl ester of the ex­ unique properties to the monomer compared hydroxymethyl compound polymerizes faster to similar, more rigid ester derivatives; for than methyl methacrylate in free radical poly­ example, the ally! ether of ethyl ix-hydroxy­ merization, 2 although ether derivatives give methylacrylate undergoes efficient cyclopo­ molecular weights only up to ca.
    [Show full text]
  • European Patent Offi
    Europäisches Patentamt (19) European Patent Office Office européen des brevets (11) EP 1 078 942 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int. Cl.7: C08F 297/02, C08F 4/48 28.02.2001 Bulletin 2001/09 (21) Application number: 00117374.9 (22) Date of filing: 23.08.2000 (84) Designated Contracting States: • Ishiura, Kazushige AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Tsukuba-shi, Ibaraki-ken, 305-0841 (JP) MC NL PT SE • Kato, Masaji Designated Extension States: Tsukuba-shi, Ibaraki-ken, 305-0841 (JP) AL LT LV MK RO SI • Yaginuma, Sachie Tsukuba-shi, Ibaraki-ken, 305-0841 (JP) (30) Priority: 24.08.1999 JP 23644599 (74) Representative: (71) Applicant: Kuraray Co., Ltd. Müller-Boré & Partner Kurashiki-City, Okayama 710-8622 (JP) Patentanwälte Grafinger Strasse 2 (72) Inventors: 81671 München (DE) • Hamada, Kenichi Tsukuba-shi, Ibaraki-ken, 305-0841 (JP) (54) Anionic polymerization process, and process for producing a polymer by the anionic polymerization process (57) In anionic polymerization using an anionic polymerization initiator, a tertiary organoaluminum com- pound (A) having in the molecule thereof a chemical structure represented by a general formula: Al-O-Ar wherein Ar represents an aromatic ring, and at least one Lewis base (B) selected from the group consisting of an ether compound and a tertiary polyamine com- pound are caused to be present in the polymerization system. In this way, the polar monomer can be polymer- ized with a high polymerization initiation efficiency and a high living polymerization property and at a high polym- erization rate even if the used polymerization initiator is suitable for industrial use and a relatively mild cooling condition or a temperature condition near room temper- ature is adopted as a polymerization temperature condi- tion.
    [Show full text]
  • Butyl Acrylate Asia
    BA BUTYL ACRYLATE Cas number : 141-32-2 EINECS number : 205-480-7 CHEMICAL FORMULA CH2 CH C O O CH2 CH2 CH2 CH3 Molecular weight : 128 OTHER NAMES Acrylic acid, n-butyl ester 2-Propenoic acid, n-butyl ester SPECIFICATIONS (Ref. A004FS001) SPECIFICATION METHOD Appearance Clear liquid GB /T17529.4 -1998 Colour (APHA) 10 maximum GB/T17529.4-1998 Purity by gas-phase chromatography 99.5 % minimum GB/T17529.4-1998 Water content 500 ppm maximum GB/T17529.4-1998 Acidity (expressed as acrylic acid) 100 ppm maximum GB/T17529.4-1998 Inhibitor content (MEHQ)* 10 to 20 ppm GB/T17529.4-1998 * For some destinations, inhibitor standard is increased : Specifications, ref. A004FS009 (Drums), inhibitor (MEHQ) 50 ± 10 ppm All other properties and specifications remain the same HANDLING AND SAFETY ADVISES : We advise you to read carefully the safety data sheet. Butyl Acrylate MAIN PHYSICAL CHARACTERISTICS PACKAGING AND STORAGE Molecular weight .................................................... 128 Butyl acrylate is delivered : Boiling point, at 1013 mbar ................................ 147°C - in 24 and 53 tons protected ordinary steel rail tankcars Freezing point .................................................... - 64°C - in 25000 to 32000 litres stainless steel road tankcars Specific gravity at 20°C ....................... 0.898 at 25°C ....................... 0.894 - in ~=200 litres ordinary plastic drums, loaded at 180 Kg. Refractive index, n D at 20°C ....................... 1.419 at 25°C ....................... 1.416 The standard inhibition is 15 ppm Monomethyl Ether of HydroQuinone (MEHQ). Viscosity at 20°C ............ 0.900 mPa.s With this inhibitor, the product should be stored indoors at at 25°C ............ 0.808 mPa.s a temperature of no more than 25°C and away from light.
    [Show full text]
  • Title Stereoregular Polymerizations of Acrylic Ester and Its
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Stereoregular Polymerizations of Acrylic Ester and its Related Title Monomers Author(s) Tsuruta, Teiji; Furukawa, Junji Bulletin of the Institute for Chemical Research, Kyoto Citation University (1962), 40(3): 151-170 Issue Date 1962-07-20 URL http://hdl.handle.net/2433/75893 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Stereoregular Polymerizations of Acrylic Ester and its Related Monomers Teiji TSURUTAand Junji FURUKAWA5 (Oda Laboratory) (Received May 1, 1962) Stereoregular polymerizations of acrylic ester and its related monomers were studied with use of some organometallic compounds as catalyst. In a series of alkyl acrylate, ester of the more sterically hindered alcohol gave a polymer of the better crystalliza- bility. The situation was also true of the thiolacrylate polymerization. Some ate complexes such as strontium (or calcium) zinc tetraalkyl exhibited an ex- cellent stereoregulating ability in the polymerization of alkyl acrylate. Even methyl acrylate also was found to produce a stereoregular polymer under the action of these ate complexes. In polymerizations of alkyl methacrylates other than methyl methacrylate, no crystalline polymers have not yet been obtained, though we have had an evidence for the possibility of stereoregulation in some special methacrylic ester such as trimethylsilyl or benzyl ester. There were obtained no crystalline polymers in the polymerization of a- chloroacrylic ester, but sec-butyl a-chlorothiolacrylate did form a highly crystalline poly- mer with use of phenylmagnesium bromide as catalyst. Crystalline polymethyl vinyl ketone prepared by calcium zinc tetraethyl catalyst formed beautiful spherulites in its film which was cast from a formic acid solution.
    [Show full text]
  • N-BUTYL ACRYLATE 1. Exposure Data
    n-BUTYL ACRYLATE Data were last reviewed in IARC (1986) and the compound was classified in IARC Monographs Supplement 7 (1987). 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 141-32-2 Chem. Abstr. Name: 2-Propenoic acid, butyl ester IUPAC Systematic Name: Acrylic acid, n-butyl ester Synonym: Butyl 2-propenoate 1.1.2 Structural and molecular formulae and relative molecular mass O H2 C CH C O (CH2 )3 CH3 C7H12O2 Relative molecular mass: 128.17 1.1.3 Chemical and physical properties of the pure substance From American Conference of Governmental Industrial Hygienists (1991) unless otherwise noted. (a) Description: Colourless, flammable liquid (b) Boiling-point: 145°C (Lide, 1997) (c) Melting-point: –64.6°C (Lide, 1997) (d) Solubility: Very slightly soluble in water (0.14% at 20°C); soluble in ethanol, diethyl ether and acetone (e) Vapour pressure: 532 Pa at 20°C; relative vapour density (air = 1), 4.42 (f) Flash-point: 48.9°C, open cup (g) Conversion factor: mg/m3 = 5.24 × ppm 1.2 Production and use Production in the United States in 1993 was reported to be 340 035 tonnes (United States International Trade Commission, 1994). Information available in 1995 indicated that it was produced in nine countries (Chemical Information Services, 1995). –359– 360 IARC MONOGRAPHS VOLUME 71 n-Butyl acrylate is used in the production of polymers and resins for textile and leather finishes, solvent coatings, adhesives, paints, binders and emulsifiers (Lewis, 1993; United States National Library of Medicine, 1997).
    [Show full text]
  • Aldrich Polymer Products Applicaton & Reference Information
    Reference:Reference: PolymerPolymer PropertiesProperties Polymer Solutions: Solvents and Solubility Parameters Various applications require the selection of a polymer-sol- polymers do not dissolve, but usually swell in the presence of vent or polymer-plasticizer system. Dissolving a polymer is solvent. Table I is a quantitative guide1 for selecting solvents to unlike dissolving low molecular weight compounds because dissolve or swell polymers. The polymer is composed of the of the vastly different dimensions of solvent and polymer mol- stated Repeating Unit. Representative homopolymers from ecules. Dissolution is often a slow process. While some poly- each of the main polymer classes were selected. Since poly- mers dissolve readily in certain solvents resulting in a true mer solubility is a complex function of many variables includ- solution, others may require prolonged periods of heating at ing but not limited to molecular weight, degree of crystallinity, temperatures near the melting point of the polymer. Network extent of branching, and temperature, the solubility may vary greatly within a given polymer class. Table I: Solvents for Representative Homopolymers from Selected Polymer Classes Repeating Unit Solvents Acetylene Isopropylamine, aniline Acrylamide Morpholine, water Acrylate esters Aromatic hydrocarbons, chlorinated hydrocarbons, THF, esters, ketones Acrylic acid Alcohols, water, dilute aqueous alkali Acrylonitrile Phenylenediamines, ethylene carbonate, sulfuric acid Alkyl vinyl ethers Benzene, halogenated hydrocarbons, methyl
    [Show full text]
  • Isobutyl Nitrite, Β-Picoline, and Some Acrylates Volume 122
    ISOBUTYL NITRITE, β-PICOLINE, AND SOME ACRYLATES VOLUME 122 This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon, 5–12 June 2018 LYON, FRANCE - 2019 IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS 2-ETHYLHEXYL ACRYLATE 1. Exposure Data 1.1.3 Chemical and physical properties 1.1 Identification of the agent Description: colourless liquid (HSDB, 2018) Boiling point: 214–218 °C (HSDB, 2018) 1.1.1 Nomenclature Melting point: −90 °C (HSDB, 2018) Density: specific gravity, 0.880 g/cm3 at 25 °C Chem. Abstr. Serv. Reg. No.: 103-11-7 (HSDB, 2018) Deleted Chem. Abstr. Serv. Reg. Nos: 78733- Solubility: slightly soluble in water (< 0.01% 32-1; 84948-57-2; 93460-77-6 by weight, wt%, at 20 °C); soluble in alcohols, Chem. Abstr. Serv. name: 2-propenoic acid; ethers, and many organic solvents (acetone, 2-ethylhexyl ester benzene, ethyl ether, heptane, methanol, and IUPAC systematic name: acrylic acid; 2-ethyl- carbon tetrachloride) (Union Carbide Corp., hexyl ester 1982) Synonyms: 2-ethylhexyl 2-propenoate; 2- Vapour pressure: 0.14 mm Hg [19 Pa] at 20 °C ethyl hexyl acrylate; 2-ethyl-1-hexyl acrylate; Relative vapour density (air = 1): 6.4 at 20 °C 2-ethylhexanol acrylate; 2-ethylhexyl prop- (Hoechst Celanese Corp., 1992) 2-enoate. Flash point: 92 °C (open cup); rapid, uncon- trolled polymerization can cause explosion 1.1.2 Structural and molecular formulae, and (Tyler, 1993) relative molecular mass Conversion factor: 1 ppm = 7.54 mg/m3 at 1 atm, 25 °C.
    [Show full text]
  • Iégi?Iziliii
    Patented Junev 13, 1950 2,511,424 UNITED STATES PATENT, OFFICE CHLORINATED ACRYLIC ESTERS Vigen K. Babayan, Teaneck, N. J.,'assignor, by ' mesne assignments, to Pierce Laboratory, Inc., New York, N. Y., a corporation of New York No Drawing. Application September 15, 1945, Serial No. 616,659 3 Claims. (or. 260-895) ' 2 This invention relates to chlorinated acrylic product made in this way has a softening point acid ester polymers, such polymers being here of about 140° C. after referred to as acrylates. Various factors to be kept in mind in connec As is known, polymerized acrylates, for ex tion with the foregoing are as follows: ample of molecular weight upwards of about‘ First, with reference to the polymers contem 2,000, constitute more or less plastic or waxy plated for use according to this invention, it is masses, some of which are of rubbery consistency. noted that the polymeric acrylic acid esters are These materials have a number of industrial uses, assumed to have a structural formula such as but because of the physical consistency, and also given just below, in which R represents an alkyl for other reasons, the materials are not well or aryl group of‘ at least 57 molecular weight. suited for certain other purposes requiring a more solid or harder type of resin. I have found that by extensive chlorination of certain ones of the acrylate polymers, it is pos iégi?iziliii sible to alter the physical consistency so as to H Li Jni yield products which are solids, having softening The acrylate radical of the polymer is enclosed points upwards of 80° 0., sometimes even as high in large brackets in the above formula, and this as about 175° 0., and no longer manifesting the radical or unit is, of course, repeated a multi characteristic rubbery or waxy nature of the un plicity of times in the molecule, depending upon chlorinated materials.
    [Show full text]
  • UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations
    UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Machine Learning for Addressing Data Deficiencies in Life Cycle Assessment Permalink https://escholarship.org/uc/item/2vc7t19w Author Song, Runsheng Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Santa Barbara Machine Learning for Addressing Data Deficiencies in Life Cycle Assessment A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Environmental Science and Management by Runsheng Song Committee in charge: Professor Sangwon Suh, Co-Chair Professor Arturo A. Keller, Co-Chair Professor Krzysztof Janowicz March 2019 The dissertation of Runsheng Song is approved. _____________________________________________ Arturo A. Keller _____________________________________________ Krzysztof Janowicz _____________________________________________ Sangwon Suh, Committee Chair March 2019 Machine Learning for Addressing Data Deficiencies in Life Cycle Assessment Copyright © 2019 by Runsheng Song iii ACKNOWLEDGEMENTS I have the privilege to work with a group of smart people during my stay at the Bren School of Environmental Science and Management, UC Santa Barbara. I would like to first give my thanks to Prof. Sangwon Suh, my PhD advisor, who provides me countless guide, and offered invaluable helps during many difficult times over my PhD career. I would like to thank Prof. Arturo A. Keller, who is always encouraging and generous when I was confused or making mistake over the development of my research. I also want to thank Prof. Krzysztof Janowicz, who shines his wisdom from another field to my PhD research, and always pointing out the room for improvement in my study which I could never figure out without him.
    [Show full text]
  • Department of Labor
    Vol. 79 Friday, No. 197 October 10, 2014 Part II Department of Labor Occupational Safety and Health Administration 29 CFR Parts 1910, 1915, 1917, et al. Chemical Management and Permissible Exposure Limits (PELs); Proposed Rule VerDate Sep<11>2014 17:41 Oct 09, 2014 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\10OCP2.SGM 10OCP2 mstockstill on DSK4VPTVN1PROD with PROPOSALS2 61384 Federal Register / Vol. 79, No. 197 / Friday, October 10, 2014 / Proposed Rules DEPARTMENT OF LABOR faxed to the OSHA Docket Office at Docket: To read or download (202) 693–1648. submissions or other material in the Occupational Safety and Health Mail, hand delivery, express mail, or docket go to: www.regulations.gov or the Administration messenger or courier service: Copies OSHA Docket Office at the address must be submitted in triplicate (3) to the above. All documents in the docket are 29 CFR Parts 1910, 1915, 1917, 1918, OSHA Docket Office, Docket No. listed in the index; however, some and 1926 OSHA–2012–0023, U.S. Department of information (e.g. copyrighted materials) Labor, Room N–2625, 200 Constitution is not publicly available to read or [Docket No. OSHA 2012–0023] Avenue NW., Washington, DC 20210. download through the Web site. All submissions, including copyrighted RIN 1218–AC74 Deliveries (hand, express mail, messenger, and courier service) are material, are available for inspection Chemical Management and accepted during the Department of and copying at the OSHA Docket Office. Permissible Exposure Limits (PELs) Labor and Docket Office’s normal FOR FURTHER INFORMATION CONTACT: business hours, 8:15 a.m.
    [Show full text]
  • High-Throughput Polymer Screening in Microreactors: Boosting the Passerini-Three Component Reaction J
    Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2017 Supporting Information High-Throughput Polymer Screening in Microreactors: Boosting the Passerini-Three Component Reaction J. J. Haven,a E. Baeten,a J. Claes,a J. Vandenbergha and T. Junkersa,b [a] Polymer Reaction Design Group Institute for Materials Research (IMO-IMOMEC), Universiteit Hasselt, Agoralaan Building D, B-3590 Diepenbeek, Belgium [b] IMEC, division IMOMEC, Wetenschapspark 1, 3590 Diepenebeek, Belgium Table of contents: 1. Materials 2. Characterization 3. On-line ESI-MS/Microreactor Coupling 4. Experimental procedures 5. References 1. Materials The monomers n-butyl acrylate (nBA, Acros, 99%), ethylene glycol methyl ether acrylate ( ) and methyl acrylate (MA, Acros, 99%) were deinhibited over a column of activated basic alumina prior to use. 1,1’- azobis(isobutyronitrile) (AIBN, Sigma-Aldrich, 98%) was recrystallized twice from ethanol prior to use. Ethylisocyano acetate (Sigma-Aldrich, 98%) was used as received. All solvents used are obtained from commercial sources (Acros and Sigma-Aldrich) and used without further purification. 2. Characterization NMR spectra were recorded in deuterated chloroform with a Varian Inova 300 spectrometer at 300 MHz for 1H NMR and at 75 MHz for 13C NMR using a Varian probe (5 mm-4-nucleus AutoSWPFG) and a pulse delay of 12 s. NMR spectra were analyzed in MestReNova software. Analysis of the MWDs of the polymer samples were performed on a Tosoh EcoSEC operated by PSS WinGPC software, equipped with a PLgel 5.0 μm guard column (50 × 8 mm), followed by three PLgel 5 μm Mixed-C columns (300 × 8 mm) and a differential refractive index detector using THF as the eluent at 40 °C with a flow rate of 1 mL·min-1.
    [Show full text]