MSE3 Ch15 Thunderstorm Hazards

Total Page:16

File Type:pdf, Size:1020Kb

MSE3 Ch15 Thunderstorm Hazards Chapter 15 Copyright © 2011, 2015 by Roland Stull. Meteorology for Scientists and Engineers, 3rd Ed. thunderstorm hazards Contents The basics of thunderstorms were cov- ered in the previous chapter. Here we Precipitation and Hail 545 cover the dangerous aspects of thun- Heavy Rain 545 15 derstorms, including: Hail 548 • hail and intense precipitation, Downbursts and Gust Fronts 554 • downbursts and gust fronts, Characteristics 554 • lightning and thunder, and Precipitation Drag 555 • mesocyclones and tornadoes. Evaporative Cooling 556 Two other hazards were covered in the previous Downdraft CAPE (DCAPE) 557 chapter: vigorous updrafts and turbulence. Pressure Perturbation 559 Outflow Winds & Gust Fronts 560 In spite of their danger, thunderstorms can also produce the large-diameter rain drops that enable Lightning And Thunder 563 beautiful rainbows (Fig. 15.1). Origin of Electric Charge 564 Lightning Behavior & Appearance 566 Lightning Detection 568 Lightning Hazards and Safety 569 Thunder 571 preCipitation and hail Shock Front 571 Sound 575 Tornadoes 577 heavy rain Tangential Velocity & Tornado Intensity 577 Thunderstorms are deep clouds that can create: Types of Tornadoes & Other Vortices 582 • large raindrops (2 - 8 mm diameter), in Evolution as Observed by Eye 583 • scattered showers (order of 5 to 10 km Tornado Outbreaks 583 diameter rain shafts moving across the Storm-relative Winds 584 ground, resulting in brief-duration rain Origin of Tornadic Rotation 586 [1 - 20 min] over any point), of Mesocyclones and Helicity 587 • heavy rainfall rate (10 to over Tornadoes and Swirl Ratio 592 1000 mm/h rainfall rates). Summary 593 The Precipitation chapter lists world-record rainfall Threads 593 rates, some of which were caused by thunderstorms. Exercises 594 Numerical Problems 594 Understanding & Critical Evaluation 597 Web-Enhanced Questions 600 Synthesis Questions 601 TVCTJEFODF VQ ESBGU TVO SBJO TVOCFBN [ SBJOCPX 8FTU &BTU “Meteorology for Scientists and Engineers, 3rd Edi- Figure 15.1 tion” by Roland Stull is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike Rainbow under an evening thunderstorm. Updraft in the thun- 4.0 International License. To view a copy of the license, visit derstorm is compensated by weak subsidence around it to con- http://creativecommons.org/licenses/by-nc-sa/4.0/ . This work is serve air mass, causing somewhat clear skies that allow rays of available at http://www.eos.ubc.ca/books/Practical_Meteorology/ . sunlight to strike the falling large raindrops. 545 546 chapter 15 thunderstorm HAzARDS Compare this to nimbostratus clouds, that create • Second, the vertical stacking of the deep cloud al- smaller-size drizzle drops (0.2 - 0.5 mm) and small lows precipitation forming in the top of the storm rain drops (0.5 - 2 mm diameter) in widespread to grow by collision and coalescence or accretion as regions (namely, regions hundreds by thousands it falls through the middle and lower parts of the of kilometers in size, ahead of warm and occluded cloud, as already mentioned, thus sweeping out a lot fronts) of light to moderate rainfall rate that can last of water in a short time. for many hours over any point on the ground. • Third, long lasting storms such as supercells or Why do thunderstorms have large-size drops? orographic storms can have continual inflow of hu- Thunderstorms are so tall that their tops are in very mid boundary-layer air to add moisture as fast as it cold air in the upper troposphere, allowing cold- rains out, thereby allowing the heavy rainfall to per- cloud microphysics even in mid summer. Once a sist. As was discussed in the previous chapter, the spectrum of different hydrometeor sizes exists, the heaviest precipitation often falls closest to the main heavier ice particles fall faster than the smaller ones updraft in supercells (see Fig. 15.5). and collide with them. If the heavier ice particles Rainbows are a by-product of having large are falling through regions of supercooled liquid numbers of large-diameter drops in a localized re- cloud droplets, they can grow by riming (as the liq- gion surrounded by clear air (Fig. 15.1). Because uid water instantly freezes on contact to the outside thunderstorms are more likely to form in late after- of ice crystals) to form dense, conical-shaped snow noon and early evening when the sun angle is rela- pellets called graupel (< 5 mm diameter). Alter- tively low in the western sky, the sunlight can shine nately, if smaller ice crystals fall below the 0°C level, under cloud base and reach the falling raindrops. their outer surface partially melts, causing them to In North America, where thunderstorms generally stick to other partially-melted ice crystals and grow move from the southwest toward the northeast, this into miniature fluffy snowballs by a process called means that rainbows are generally visible just after aggregation to sizes as large as 1 cm in diameter. the thundershowers have past, so you can find the The snow aggregates and graupel can reach the rainbow looking toward the east (i.e., look toward ground still frozen or partially frozen, even in sum- your shadow). Rainbow optics are explained in mer. This occurs if they are protected within the more detail in the last chapter. cool, saturated downdraft of air descending from Any rain that reached the ground is from wa- thunderstorms (downbursts will be discussed lat- ter vapor that condensed and did not re-evaporate. er). At other times, these large ice particles falling Thus, rainfall rate (RR) can be a surrogate measure through the warmer boundary layer will melt com- of the rate of latent-heat release: pletely into large raindrops just before reaching the ground. These rain drops can make a big splat on HLRR = ρL·· v RR (15.1) your car windshield or in puddles on the ground. Why scattered showers in thunderstorm? Of- where HRR = rate of energy release in the storm over –1 –2 ten large-size, cloud-free, rain-free subsidence re- unit area of the Earth’s surface (J·s ·m ), ρL is the gions form around and adjacent to thunderstorms density of pure liquid water, Lv is the latent heat of due to air-mass continuity. Namely, more air mass vaporization (assuming for simplicity all the pre- is pumped into the upper troposphere by thunder- cipitation falls out in liquid form), and RR = rainfall storm updrafts than can be removed by in-storm rate. Ignoring variations in the values of water den- precipitation-laden downdrafts. Much of the re- sity and latent heat of vaporization, this equation maining excess air descends more gently outside the reduces to: storm. This subsidence (Fig. 15.1) tends to suppress other incipient thunderstorms, resulting in the orig- HRR = a · RR •(15.2) inal cumulonimbus clouds that are either isolated (surrounded by relatively cloud-free air), or are in where a = 694 (J·s–1·m–2) / (mm·h–1) , for rainfall rates a thunderstorm line with subsidence ahead and be- in mm/h. hind the line. The corresponding warming rate averaged over Why do thunderstorms often have heavy rain- the tropospheric depth (assuming the thunderstorm fall? fills the troposphere) was shown in the Heat chapter • First, the upper portions of the cumulonimbus to be: cloud is so high that the rising air parcels become ∆T/∆t = b · RR (15.3) so cold (due to the moist-adiabatic cooling rate) that virtually all of the water vapor carried by the air is where b = 0.33 K/(mm of rain). forced to condense, deposit, or freeze out. From the Moisture chapter recall that precipi- table water, dw, is the depth of water in a rain gauge R. STULL • METEOROLOGy FOR SCIENTISTS AND ENGINEERS 547 USPQPQBVTF BOWJM Solved Example A thunderstorm near Holt, Missouri, dropped 305 mm of rain during 0.7 hour. How much net latent heat energy was released into the atmosphere over each square meter of Earth’s surface, and how much did it [ Z warm the air in the troposphere? Solution Given: RR = 305 mm / 0.7 h = 436 mm/h. CPVOEBSZMBZFS Duration ∆t = 0.7 h. Find: H ·∆t = ? (J·m–2) ; ∆T = ? (°C) Y RR First, use eq. (15.2): –1 –2 –1 Figure 15.2 HRR = [694 (J·s ·m )/(mm·h )]·[436 mm/h]·[0.7 h]· [3600s/h] = 762.5 MJ·m–2 The thunderstorm updraft draws in a larger area of warm, hu- mid boundary-layer air, which is fuel for the storm. Next, use eq. (15.3): ∆T = b·RR·∆t = (0.33 K/mm)·(305 mm) = 101 °C if all of the moisture in a column of air were to pre- Check: Units OK, but values seem too large??? cipitate out. As an extension of this concept, sup- Discussion: After the thunderstorm has finished raining itself out and dissipating, why don’t we ob- pose that pre-storm boundary-layer air of mixing serve air that is 101°C warmer where the storm used to ratio 20 g/kg was drawn up into a column filling be? One reason is that in order to get 305 mm of rain the troposphere by the action of convective updrafts out of the storm, there had to be a continual inflow of (Fig. 15.2). If cloud base was at a pressure altitude of humid air bringing in moisture. This same air then 90 kPa and cloud top was at 30 kPa, and if half of the carries away the heat as the air is exhausted out of the water in the cloudy domain were to condense and anvil of the storm. precipitate out, then eq. (4.33) says that the depth of Thus, the warming is spread over a much larger water in a rain gauge is expected to be dw = 61 mm.
Recommended publications
  • Meteorological Overview of the Devastating 27 April 2011 Tornado Outbreak
    METEOROLOGICAL OVERVIEW OF THE DEVASTATING 27 APRIL 2011 TORNADO OUTBREAK BY KEVIN R. KNUPP, TODD A. MURPHY, TIMOTHY A. COLEMAN, RYAN A. WADE, STEPHANIE A. MULLINS, CHRISTOPHER J. SCHULTZ, ELISE V. SCHULTZ, LAWRENCE CAREY, ADAM SHERRER, EUGENE W. MCCAUL JR., BRIAN CARCIONE, STEPHEN LATIMER, ANDY KULA, KEVIN LAWS, PATRIck T. MARSH, AND KIM KLOckOW The outbreak of 199 tornadoes on 27 April 2011, the most significant since the dawn of reliable records, was generated by parent storm systems ranging from quasi-linear convective systems to long-lived discrete supercell storms. large number of tornadoes were recorded during 170 tornadoes, mostly EF-0 to EF-2 on the enhanced the spring 2011 season, particularly a record Fujita (EF) scale over primarily three regions: A number (around 758) during the month of April Oklahoma (OK)–Arkansas (AR), southern Mississippi (NOAA 2011; NOAA 2012; Simmons and Sutter (MS)/Alabama (AL), and the mid-Atlantic] and 25–28 2012a,b). A few tornado outbreaks accounted for the April from Texas (TX) to eastern Virginia (VA) (~350 majority of the most damaging and lethal tornadoes, tornadoes, 321 fatalities) and 1-day outbreaks on 22 including extended outbreaks on 14–16 April [about May [~48 tornadoes from OK to Wisconsin (WI), including the lethal EF-5 tornado in Joplin, Missouri AFFILIATIONS: KNUPP, MURPHY, COLEMAN, WADE, MULLINS, C. J. (MO)] and 24 May [~47 tornadoes in Kansas (KS), SCHULTZ, E. V. SCHULTZ, CAREY, AND SHERRER—University of Alabama OK, AR, and TX, including one EF-5 in OK]. in Huntsville, Huntsville, Alabama; MCCAUL—Universities Space In this overview paper, we summarize the tornado Research Association, Columbia, Maryland; CARCIONE, LATIMER, super outbreak of 27 April 2011, defined herein as the AND KULA—National Weather Service, Huntsville, Alabama; 24-h period midnight–midnight central daylight time Laws—National Weather Service, Birmingham, Alabama; (CDT) (0500 UTC).
    [Show full text]
  • Florida's Tornado Climatology: Occurrence Rates, Casualties, and Property Losses Emily Ryan
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2018 Florida's Tornado Climatology: Occurrence Rates, Casualties, and Property Losses Emily Ryan Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF SOCIAL SCIENCES & PUBLIC POLICY FLORIDA'S TORNADO CLIMATOLOGY: OCCURRENCE RATES, CASUALTIES, AND PROPERTY LOSSES By EMILY RYAN A Thesis submitted to the Department of Geography in partial fulfillment of the requirements for the degree of Master of Science 2018 Copyright c 2018 Emily Ryan. All Rights Reserved. Emily Ryan defended this thesis on April 6, 2018. The members of the supervisory committee were: James B. Elsner Professor Directing Thesis David C. Folch Committee Member Mark W. Horner Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the thesis has been approved in accordance with university requirements. ii TABLE OF CONTENTS List of Tables . v List of Figures . vi Abstract . viii 1 Introduction 1 1.1 Definitions . 1 1.2 Where Tornadoes Occur . 3 1.3 Tornadoes in Florida . 4 1.4 Goals and Objectives . 6 1.5 Tornado Climatology as Geography . 6 1.6 Outline of the Thesis . 7 2 Data and Methods 9 2.1 Data . 9 2.1.1 Tornado Data . 9 2.1.2 Tropical Cyclone Tornado Data . 11 2.1.3 Property Value Data . 13 2.2 Statistical Methods . 15 2.3 Analysis Variables . 16 2.3.1 Occurrence Rates . 16 2.3.2 Casualties . 16 2.3.3 Property Exposures .
    [Show full text]
  • Synoptic Meteorology
    Lecture Notes on Synoptic Meteorology For Integrated Meteorological Training Course By Dr. Prakash Khare Scientist E India Meteorological Department Meteorological Training Institute Pashan,Pune-8 186 IMTC SYLLABUS OF SYNOPTIC METEOROLOGY (FOR DIRECT RECRUITED S.A’S OF IMD) Theory (25 Periods) ❖ Scales of weather systems; Network of Observatories; Surface, upper air; special observations (satellite, radar, aircraft etc.); analysis of fields of meteorological elements on synoptic charts; Vertical time / cross sections and their analysis. ❖ Wind and pressure analysis: Isobars on level surface and contours on constant pressure surface. Isotherms, thickness field; examples of geostrophic, gradient and thermal winds: slope of pressure system, streamline and Isotachs analysis. ❖ Western disturbance and its structure and associated weather, Waves in mid-latitude westerlies. ❖ Thunderstorm and severe local storm, synoptic conditions favourable for thunderstorm, concepts of triggering mechanism, conditional instability; Norwesters, dust storm, hail storm. Squall, tornado, microburst/cloudburst, landslide. ❖ Indian summer monsoon; S.W. Monsoon onset: semi permanent systems, Active and break monsoon, Monsoon depressions: MTC; Offshore troughs/vortices. Influence of extra tropical troughs and typhoons in northwest Pacific; withdrawal of S.W. Monsoon, Northeast monsoon, ❖ Tropical Cyclone: Life cycle, vertical and horizontal structure of TC, Its movement and intensification. Weather associated with TC. Easterly wave and its structure and associated weather. ❖ Jet Streams – WMO definition of Jet stream, different jet streams around the globe, Jet streams and weather ❖ Meso-scale meteorology, sea and land breezes, mountain/valley winds, mountain wave. ❖ Short range weather forecasting (Elementary ideas only); persistence, climatology and steering methods, movement and development of synoptic scale systems; Analogue techniques- prediction of individual weather elements, visibility, surface and upper level winds, convective phenomena.
    [Show full text]
  • SUBSIDENCE in MARITIME AIR OVER the COLUMBIA and SNAKE RIVER BASINS by ARCHERB
    JANUARY1936 MONTHLY WEATRER REVIEW 9 SUBSIDENCE IN MARITIME AIR OVER THE COLUMBIA AND SNAKE RIVER BASINS By ARCHERB. CARPENTER [Weather Bureau, Portland, Oreg., October 18361 The Columbia and Snake River Basins arc surrounded direction of movement is favorable to development of by theRocky Mountains to the northeast, east, and south- stagnation in the drainage areas of the Columbia and east; a high plateau to the south; and the Cmcade Range Snake Rivers. The air mass that followed was charac- to the west. In addition to this almost continuous rim teristically polar Pacific (PP),with showers over Washing- that surrounds the combined basins, there is the ridge of ton and parts of Oregon for several days. No airplane the Blue Mountains between them. The most notablc observations were available in this air mass to further and most effective outlet for this great area is the Co- identify it. Surface radiation and air drainage in the lumhia River Gorge. Columbia River Basin produced the first patches of fog The period co\--ered in the present study extended from and low clouds on the east, slope of the Cascade Range on January 19 to February 10, 1935; and the problem inves- the morning of January 34. These fog patches increased tigated is that of subsidence in the maritime air associated with low stratus clouds and fog. This type of stagnation is not uncommon in the Columbia River Basin east of the Cascade Range, but it is less common for the effects of this stagnation to reach over into the Snake River Basin, and to be persistent for such a long period.
    [Show full text]
  • Microbursts As an Aviation Wind Shear Hazard TT Fujita, University Of
    0 AIAA-81-0386 Microbursts as an Aviation Wind Shear Hazard T. T. Fujita, University of Ch ica go , 111. '· AIAA 19th AEROSPACE SCIENCES MEETl'NG January12-15, 1981/St. Louis, Missouri .for permission to copy or republish, contact the American Institute of Aeron1ut1cs and Astronautlc.s • 1290 Avenue of the Americas, New Yark, N.Y. 10104 .. NOTES •• MICROBURSTS AS AN AVIATION WIND SHEAR HAZARD T. Theodore Fujita* The University of Chicago Chicago, Illinois Introduction Aircraft operations, for both comfort and ABSTRACT safety , are closely related to the weather situ­ ations along the flight path. High pressure Since the Eastern 66 accident in 1975 at regions {anticyclones) are generally dominated JFK International Airport, downburst-related by fine weather, while turbulent weather occurs accidents or near-miss cases of jet aircraft in or near the frontal zone. Nonetheless, we have been occurring at the rate of once or cannot always generalize these simple relation­ twice a year. A microburst with its field, ships irrespective of the scales of atmospheric comparable to the length of runways, could disturbances. induce a wind shear that endan9ers landing or l ift-off aircraft. Latest near-miss landing The high pressure vs. fine weather relation­ {go around) of a 727 aircraft at Atlanta, Ga., ship is no longer valid in mesoscale high­ on 22 August 1979 implied that some micro­ pressure systems, cal led the "pressure dome" by bursts are so smal l that they may not trigger Byers and Braham (1949). They also defined the the warnina device of the anemometer network "pressure nose" to be a sma ll mesoscale high­ installed and operated at major U.S.
    [Show full text]
  • Variability of Marine Fog Along the California Coast
    VARIABILITY OF MARINE FOG ALONG THE CALIFORNIA COAST Maria K. Filonczuk, Daniel R. Cayan, and Laurence G. Riddle Climate Research Division Scripps Institution of Oceanography University of California, San Diego La Jolla, California 92093-0224 SIO REFERENCE NO. 95-2 July 1995 Table of Contents 1. Introduction ......................................................................1 2 . Climatological and Topographic Influences ................................2 2.1. General Climatology ...................................................2 2.2. Topography .............................................................3 3 . Background and Objectives ...................................................5 3.1 . Fog Mechanisms .......................................................5 3 .2. Objectives ...............................................................6 4 . Data .............................................................................6 5 . Climatology of West Coast Fog .............................................13 5.1. Seasonal Variability .................................................. 13 5.1.1. Coastal Station Fog Climatology .................................. 13 5.1.2. Marine Fog Climatology .............................................16 5.2. Interannual Variability ...............................................21 5.2.1. Coastal Stations .......................................................21 5.2.2. Marine Observations .................................................31 6 . Local Connections with Marine Fog ......................................
    [Show full text]
  • Observational Analysis of the Interaction Between a Baroclinic Boundary and Supercell Storms on 27 April 2011
    OBSERVATIONAL ANALYSIS OF THE INTERACTION BETWEEN A BAROCLINIC BOUNDARY AND SUPERCELL STORMS ON 27 APRIL 2011 by ADAM THOMAS SHERRER A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in The Department of Atmospheric Science to The School of Graduate Studies of The University of Alabama in Huntsville HUNTSVILLE, ALABAMA 2014 ABSTRACT The School of Graduate Studies The University of Alabama in Huntsville Degree Master of Science College/Dept. Science/Atmospheric Science Name of Candidate Adam Sherrer Title Observational Analysis of the Interaction Between a Baroclinic Boundary and Supercell Storms on 27 April 2011 A thermal boundary developed during the morning to early afternoon hours on 27 April as a result of rainfall evaporation and shading from reoccurring deep convection. This boundary propagated to the north during the late afternoon to evening hours. The presence of the boundary produced an area more conducive for the formation of strong violent tornadoes through several processes. These processes included the production of horizontally generated baroclinic vorticity, increased values in storm- relative helicity, and decreasing lifting condensation level heights. Five supercell storms formed near and/or propagated alongside this boundary. Supercells that interacted with this boundary typically produced significant tornadic damage over long distances. Two of these supercells formed to the south (warm) side of the boundary and produced a tornado prior to crossing to the north (cool) side of the boundary. These two storms exhibited changes in appearance, intensity, and structure. Two other supercells formed well south of the boundary. These two storms remained relatively weak until they interacted with the boundary.
    [Show full text]
  • Downloaded 10/11/21 06:05 AM UTC FIG
    Some Noteworthy Aspects ^m! D ld w B )n5S of the Hesston,7 Kansas,1 anT!d Joh.n cF. rWeave''r Tornado Family of 13 March 1990 Abstract eastern Kansas that produced a family of five torna- does, including a violent tornado that struck the town This paper considers a tornadic storm that struck south-central of Hesston, north-northwest of Wichita, Kansas. and eastern Kansas on 13 March 1990. Most of the devastation was The Hesston supercell produced a family of at least associated with the first tornado from the storm as it passed through five tornadoes, with a combined path of nearly 170 km Hesston, Kansas. From the synoptic-scale and mesoscale view- points, the event was part of an outbreak of tornadoes on a day when (105 mi). The first three tornadoes in the series were the tornado threat was synoptically evident. Satellite imagery, com- particularly well documented photographically. With bined with conventional data, suggest that the Hesston storm was good visibility and timely warnings from the National affected by a preexisting, mesoscale outflow boundary laid down by Weather Service, several citizens were able to obtain morning storms. Radar and satellite data give clear indication of the excellent photographs and video recordings of the supercellular character of the storm, despite limited radar data coverage. event from a number of vantage points. The resulting Because of the considerable photographic coverage, several visual record provides an opportunity to examine interesting features of the storm were recorded and are analyzed some of the noteworthy events associated with the here.
    [Show full text]
  • Influence of the Trade-Wind Inversion on the Climate of a Leeward Mountain Slope in Hawaii
    CLIMATE RESEARCH Vol. 1: 207-216, 1991 Published December 30 Clim. Res. Influence of the trade-wind inversion on the climate of a leeward mountain slope in Hawaii Thomas W. ~iarnbelluca'~~,Dennis ~ullet',* ' Department of Geography, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA 'Water Resources Research Center, University of Hawaii at Manoa. Honolulu, Hawaii 96822, USA ABSTRACT: The climate of oceanic islands in the trade-wind belts is strongly influenced by the persistent subsidence inversion characteristic of the regions. In the middle and upper elevations of high volcanic peaks in Hawaii, climate is directly affected by the presence and movement of the inversion. The natural vegetation and wildlife of these areas are vulnerable to long-term shifts in the inversion height that may accompany global climate change. Better understanding of the climatic effects of the inversion will allow prediction of global-warming-induced changes in tropical mountain climate. To evaluate the influence of the inversion on the present climate of the mountain, solar radiation, net radiation, air temperature, humidity, and wind measurements were taken along a transect on the leeward slope of Haleakala, Maui. Much of the diurnal and annual variability at a given location is related to proximity to the inversion level, where moist surface air grades rapidly into dry upper air. The diurnal cycle of upslope and downslope winds on the mountain is evident in all measurements. Measurements indicate that the climate of Haleakala can be described with reference to 4 zones: a marine zone, below about 1200 m, of moist well-mixed air in contact with the oceanic moisture source; a fog zone found approximately between 1200 and 1800 m, where the cloud layer is frequently in contact with the surface; a transitional zone, from about 1800 to 2400 m, with a highly variable climate; and an arid zone, above 2400 m, usually above the inversion where air is extremely dry due to its isolation from the oceanic moisture source.
    [Show full text]
  • The Fargo F5 Tornado of 20 June 1957: Historical Re-Analysis and Overview of the Environmental Conditions
    THE FARGO F5 TORNADO OF 20 JUNE 1957: HISTORICAL RE-ANALYSIS AND OVERVIEW OF THE ENVIRONMENTAL CONDITIONS Chauncy J. Schultz National Weather Service NorthDavid Platte, J. Kellenbenz Nebraska National Weather Service Grand Forks, North Dakota Jonathan Finch National Weather Service Dodge City, Kansas Abstract On the evening of 20 June 1957, an F5 tornado struck the city of Fargo, North Dakota killing 13 people and injuring over 100. This tornado was researched extensively by Dr. Tetsuya Fujita, and became a basis for his creation of the F scale (later developed in 1971) and coining of the phrases wall cloud, collar cloud and tail cloud cyclic supercell. Observational data from 1957 were used to examine the synoptic and mesoscale environment (Fujita 1960).The Fargo tornado was one in a family of at least five tornadoes produced by a single, long-lived, from the perspective of present-day tornado research, with a focus on the possibility of an outflow boundary enhancing the tornado potential near Fargo. Strong instability, strong vertical wind shear, high storm-relative tohelicity be enhanced (SRH), favorable via evapotranspiration storm-relative (ET)flow (SRF)and moisture and lowered convergence. lifted condensation Approximately levels 200 (LCLs) photographs seemed toof play a pivotal role in the strength and longevity of the tornado. In addition, boundary-layer moisture appeared understood in 1957. the supercell and tornado also provided better insight to the storm-scale environment, which was not well NOAA/National Weather Service Corresponding Author: Chauncy J. Schultz 5250 E. Lee Bird Drive, North Platte, NE 69101-2473 email: [email protected] Schultz, et al.
    [Show full text]
  • Mcminnville, Oregon EF-1 Tornado: Lessons Learned About Cold Core Tornado Forecasting in the Western United States
    McMinnville, Oregon EF-1 Tornado: Lessons Learned about Cold Core Tornado Forecasting in the Western United States KEVIN M. DONOFRIO National Weather Service, Portland, Oregon 1. Introduction A short lived, but intense tornado impacted an industrial area of McMinnville, Oregon during the afternoon of June 13, 2013. The NWS Portland storm survey team rated the tornado in McMinnville as an EF-1. The path length was only 0.25 miles, with a path width of about 50 yards. Fortunately there were no injuries or fatalities from the tornado. There was extensive damage to a large metal structure and shop, trailers were thrown from vehicles, and debris crashed through the roof of a mobile home into the sleeping quarters. At least 4 other funnel clouds were reported on social media this same afternoon, all located on the west side of the Willamette Valley in Northwest Oregon. This paper will outline what we can do as forecasters to provide some additional “heads-up” for these types of events. A combination of conceptual and meteorological challenges surrounded this event, and the purpose of this document is to provide tools that can be applied to the forecasting of cold core funnels and non-supercell tornadoes. A brief summary of antecedent synoptic conditions will follow, along with a discussion on observations, model output, and radar signatures. Some tools are then discussed to help aid in situational awareness of the ingredients common to cold core tornadic development. 2. Portland County Warning Area (CWA) WFO Portland has forecast responsibility for an area 60 nautical miles offshore to the crest of the Cascade Mountain Range.
    [Show full text]
  • A Guide to F-Scale Damage Assessment
    A Guide to F-Scale Damage Assessment U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service Silver Spring, Maryland Cover Photo: Damage from the violent tornado that struck the Oklahoma City, Oklahoma metropolitan area on 3 May 1999 (Federal Emergency Management Agency [FEMA] photograph by C. Doswell) NOTE: All images identified in this work as being copyrighted (with the copyright symbol “©”) are not to be reproduced in any form whatsoever without the expressed consent of the copyright holders. Federal Law provides copyright protection of these images. A Guide to F-Scale Damage Assessment April 2003 U.S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary National Oceanic and Atmospheric Administration Vice Admiral Conrad C. Lautenbacher, Jr., Administrator National Weather Service John J. Kelly, Jr., Assistant Administrator Preface Recent tornado events have highlighted the need for a definitive F-scale assessment guide to assist our field personnel in conducting reliable post-storm damage assessments and determine the magnitude of extreme wind events. This guide has been prepared as a contribution to our ongoing effort to improve our personnel’s training in post-storm damage assessment techniques. My gratitude is expressed to Dr. Charles A. Doswell III (President, Doswell Scientific Consulting) who served as the main author in preparing this document. Special thanks are also awarded to Dr. Greg Forbes (Severe Weather Expert, The Weather Channel), Tim Marshall (Engineer/ Meteorologist, Haag Engineering Co.), Bill Bunting (Meteorologist-In-Charge, NWS Dallas/Fort Worth, TX), Brian Smith (Warning Coordination Meteorologist, NWS Omaha, NE), Don Burgess (Meteorologist, National Severe Storms Laboratory), and Stephan C.
    [Show full text]