Microsoft MQP
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Microkernel API for Fine-Grained Decomposition
A Microkernel API for Fine-Grained Decomposition Sebastian Reichelt Jan Stoess Frank Bellosa System Architecture Group, University of Karlsruhe, Germany freichelt,stoess,[email protected] ABSTRACT from the microkernel APIs in existence. The need, for in- Microkernel-based operating systems typically require spe- stance, to explicitly pass messages between servers, or the cial attention to issues that otherwise arise only in dis- need to set up threads and address spaces in every server for tributed systems. The resulting extra code degrades per- parallelism or protection require OS developers to adopt the formance and increases development effort, severely limiting mindset of a distributed-system programmer rather than to decomposition granularity. take advantage of their knowledge on traditional OS design. We present a new microkernel design that enables OS devel- Distributed-system paradigms, though well-understood and opers to decompose systems into very fine-grained servers. suited for physically (and, thus, coarsely) partitioned sys- We avoid the typical obstacles by defining servers as light- tems, present obstacles to the fine-grained decomposition weight, passive objects. We replace complex IPC mecha- required to exploit the benefits of microkernels: First, a nisms by a simple function-call approach, and our passive, lot of development effort must be spent into matching the module-like server model obviates the need to create threads OS structure to the architecture of the selected microkernel, in every server. Server code is compiled into small self- which also hinders porting existing code from monolithic sys- contained files, which can be loaded into the same address tems. Second, the more servers exist | a desired property space (for speed) or different address spaces (for safety). -
Openvms Record Management Services Reference Manual
OpenVMS Record Management Services Reference Manual Order Number: AA-PV6RD-TK April 2001 This reference manual contains general information intended for use in any OpenVMS programming language, as well as specific information on writing programs that use OpenVMS Record Management Services (OpenVMS RMS). Revision/Update Information: This manual supersedes the OpenVMS Record Management Services Reference Manual, OpenVMS Alpha Version 7.2 and OpenVMS VAX Version 7.2 Software Version: OpenVMS Alpha Version 7.3 OpenVMS VAX Version 7.3 Compaq Computer Corporation Houston, Texas © 2001 Compaq Computer Corporation Compaq, AlphaServer, VAX, VMS, the Compaq logo Registered in U.S. Patent and Trademark Office. Alpha, PATHWORKS, DECnet, DEC, and OpenVMS are trademarks of Compaq Information Technologies Group, L.P. in the United States and other countries. UNIX and X/Open are trademarks of The Open Group in the United States and other countries. All other product names mentioned herein may be the trademarks of their respective companies. Confidential computer software. Valid license from Compaq required for possession, use, or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license. Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information in this document is provided "as is" without warranty of any kind and is subject to change without notice. The warranties for Compaq products are set forth in the express limited warranty statements accompanying such products. Nothing herein should be construed as constituting an additional warranty. -
THINC: a Virtual and Remote Display Architecture for Desktop Computing and Mobile Devices
THINC: A Virtual and Remote Display Architecture for Desktop Computing and Mobile Devices Ricardo A. Baratto Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2011 c 2011 Ricardo A. Baratto This work may be used in accordance with Creative Commons, Attribution-NonCommercial-NoDerivs License. For more information about that license, see http://creativecommons.org/licenses/by-nc-nd/3.0/. For other uses, please contact the author. ABSTRACT THINC: A Virtual and Remote Display Architecture for Desktop Computing and Mobile Devices Ricardo A. Baratto THINC is a new virtual and remote display architecture for desktop computing. It has been designed to address the limitations and performance shortcomings of existing remote display technology, and to provide a building block around which novel desktop architectures can be built. THINC is architected around the notion of a virtual display device driver, a software-only component that behaves like a traditional device driver, but instead of managing specific hardware, enables desktop input and output to be intercepted, manipulated, and redirected at will. On top of this architecture, THINC introduces a simple, low-level, device-independent representation of display changes, and a number of novel optimizations and techniques to perform efficient interception and redirection of display output. This dissertation presents the design and implementation of THINC. It also intro- duces a number of novel systems which build upon THINC's architecture to provide new and improved desktop computing services. The contributions of this dissertation are as follows: • A high performance remote display system for LAN and WAN environments. -
Binary and Hexadecimal
Binary and Hexadecimal Binary and Hexadecimal Introduction This document introduces the binary (base two) and hexadecimal (base sixteen) number systems as a foundation for systems programming tasks and debugging. In this document, if the base of a number might be ambiguous, we use a base subscript to indicate the base of the value. For example: 45310 is a base ten (decimal) value 11012 is a base two (binary) value 821716 is a base sixteen (hexadecimal) value Why do we need binary? The binary number system (also called the base two number system) is the native language of digital computers. No matter how elegantly or naturally we might interact with today’s computers, phones, and other smart devices, all instructions and data are ultimately stored and manipulated in the computer as binary digits (also called bits, where a bit is either a 0 or a 1). CPUs (central processing units) and storage devices can only deal with information in this form. In a computer system, absolutely everything is represented as binary values, whether it’s a program you’re running, an image you’re viewing, a video you’re watching, or a document you’re writing. Everything, including text and images, is represented in binary. In the “old days,” before computer programming languages were available, programmers had to use sequences of binary digits to communicate directly with the computer. Today’s high level languages attempt to shield us from having to deal with binary at all. However, there are a few reasons why it’s important for programmers to understand the binary number system: 1. -
Middleware in Action 2007
Technology Assessment from Ken North Computing, LLC Middleware in Action Industrial Strength Data Access May 2007 Middleware in Action: Industrial Strength Data Access Table of Contents 1.0 Introduction ............................................................................................................. 2 Mature Technology .........................................................................................................3 Scalability, Interoperability, High Availability ...................................................................5 Components, XML and Services-Oriented Architecture..................................................6 Best-of-Breed Middleware...............................................................................................7 Pay Now or Pay Later .....................................................................................................7 2.0 Architectures for Distributed Computing.................................................................. 8 2.1 Leveraging Infrastructure ........................................................................................ 8 2.2 Multi-Tier, N-Tier Architecture ................................................................................. 9 2.3 Persistence, Client-Server Databases, Distributed Data ....................................... 10 Client-Server SQL Processing ......................................................................................10 Client Libraries .............................................................................................................. -
Introduction to Unix
Introduction to Unix Rob Funk <[email protected]> University Technology Services Workstation Support http://wks.uts.ohio-state.edu/ University Technology Services Course Objectives • basic background in Unix structure • knowledge of getting started • directory navigation and control • file maintenance and display commands • shells • Unix features • text processing University Technology Services Course Objectives Useful commands • working with files • system resources • printing • vi editor University Technology Services In the Introduction to UNIX document 3 • shell programming • Unix command summary tables • short Unix bibliography (also see web site) We will not, however, be covering these topics in the lecture. Numbers on slides indicate page number in book. University Technology Services History of Unix 7–8 1960s multics project (MIT, GE, AT&T) 1970s AT&T Bell Labs 1970s/80s UC Berkeley 1980s DOS imitated many Unix ideas Commercial Unix fragmentation GNU Project 1990s Linux now Unix is widespread and available from many sources, both free and commercial University Technology Services Unix Systems 7–8 SunOS/Solaris Sun Microsystems Digital Unix (Tru64) Digital/Compaq HP-UX Hewlett Packard Irix SGI UNICOS Cray NetBSD, FreeBSD UC Berkeley / the Net Linux Linus Torvalds / the Net University Technology Services Unix Philosophy • Multiuser / Multitasking • Toolbox approach • Flexibility / Freedom • Conciseness • Everything is a file • File system has places, processes have life • Designed by programmers for programmers University Technology Services -
Opportunities and Open Problems for Static and Dynamic Program Analysis Mark Harman∗, Peter O’Hearn∗ ∗Facebook London and University College London, UK
1 From Start-ups to Scale-ups: Opportunities and Open Problems for Static and Dynamic Program Analysis Mark Harman∗, Peter O’Hearn∗ ∗Facebook London and University College London, UK Abstract—This paper1 describes some of the challenges and research questions that target the most productive intersection opportunities when deploying static and dynamic analysis at we have yet witnessed: that between exciting, intellectually scale, drawing on the authors’ experience with the Infer and challenging science, and real-world deployment impact. Sapienz Technologies at Facebook, each of which started life as a research-led start-up that was subsequently deployed at scale, Many industrialists have perhaps tended to regard it unlikely impacting billions of people worldwide. that much academic work will prove relevant to their most The paper identifies open problems that have yet to receive pressing industrial concerns. On the other hand, it is not significant attention from the scientific community, yet which uncommon for academic and scientific researchers to believe have potential for profound real world impact, formulating these that most of the problems faced by industrialists are either as research questions that, we believe, are ripe for exploration and that would make excellent topics for research projects. boring, tedious or scientifically uninteresting. This sociological phenomenon has led to a great deal of miscommunication between the academic and industrial sectors. I. INTRODUCTION We hope that we can make a small contribution by focusing on the intersection of challenging and interesting scientific How do we transition research on static and dynamic problems with pressing industrial deployment needs. Our aim analysis techniques from the testing and verification research is to move the debate beyond relatively unhelpful observations communities to industrial practice? Many have asked this we have typically encountered in, for example, conference question, and others related to it. -
Addresssanitizer + Code Coverage Kostya Serebryany, Google Eurollvm 2014 New and Shiny -Fprofile-Instr-Generate
AddressSanitizer + Code Coverage Kostya Serebryany, Google EuroLLVM 2014 New and shiny -fprofile-instr-generate ● Coming this year ● Fast BB-level code coverage ● Increment a counter per every (*) BB ○ Possible contention on counters ● Creates special non-code sections ○ Counters ○ Function names, line numbers Meanwhile: ASanCoverage ● Tiny prototype-ish thing: ○ Part of AddressSanitizer ○ 30 lines in LLVM, 100 in run-time ● Function- or BB- level coverage ○ Booleans only, not counters ○ No contention ○ No extra sections in the binary At compile time: if (!*BB_Guard) { __sanitizer_cov(); *BB_Guard = 1; } At run time void __sanitizer_cov() { Record(GET_CALLER_PC()); } At exit time ● For every binary/DSO in the process: ○ Dump observed PCs in a separate file as 4-byte offsets At analysis time ● Compare/Merge using 20 lines of python ● Symbolize using regular DWARF % cat cov.c int main() { } % clang -g -fsanitize=address -mllvm -asan-coverage=1 cov. c % ASAN_OPTIONS=coverage=1 ./a.out % wc -c *sancov 4 a.out.15751.sancov % sancov.py print a.out.15751.sancov sancov.py: read 1 PCs from a.out.15751.sancov sancov.py: 1 files merged; 1 PCs total 0x4850b7 % sancov.py print *.sancov | llvm-symbolizer --obj=a.out main /tmp/cov.c:1:0 Fuzzing with coverage feedback ● Test corpus: N random tests ● Randomly mutate random test ○ If new BB is covered -- add this test to the corpus ● Many new bugs in well fuzzed projects! Feedback from our customers ● Speed is paramount ● Binary size is important ○ Permanent & temporary storage, tmps, I/O ○ Stripping non-code -
Tizen 2.4 Compliance Specification for Mobile Profile
Tizen® 2.4 Compliance Specification for Mobile Profile Version 1.0 Copyright© 2014, 2015 Samsung Electronics Co., Ltd. Copyright© 2014, 2015 Intel Corporation Linux is a registered trademark of Linus Torvalds. Tizen® is a registered trademark of The Linux Foundation. ARM is a registered trademark of ARM Holdings Plc. Intel® is a registered trademark of Intel Corporation in the U.S. and/or other countries * Other names and brands may be claimed as the property of others. Revision History Revision Date Author Reason for Changes Tizen 2.2.1 Compliance Specification for 11 Nov. 2013 Tizen TSG Official release Mobile Profile, v1.0 Tizen 2.3 Compliance Specification for 14 Nov 2014 Tizen TSG Official release Mobile Profile, 1.0 Tizen 2.3.1 Compliance Specification for 22 Sep 2015 Tizen TSG Official release Mobile Profile, 1.0 Tizen 2.4 Compliance Specification for 22 Oct 2015 Tizen TSG Official release Mobile Profile, 1.0 Glossary Term Definition Application Binary Interface, the runtime interface between a binary software ABI program and the underlying operating system. Application Programming Interface, the interface between software API components, including methods, data structures and processes. Compliance Certified for full conformance, which was verified by testing. Conformance How well the implementation follows a specification. Cascading Style Sheets, a simple mechanism for adding style such as fonts, CSS colors, and spacing to web documents. Document Object Model, a platform and language-neutral interface that will DOM allow programs and scripts to dynamically access and update the content, structure and style of documents. DTV Digital Television, a target of the TV Profile. -
The Following Documentation Is an Electronically‐ Submitted
The following documentation is an electronically‐ submitted vendor response to an advertised solicitation from the West Virginia Purchasing Bulletin within the Vendor Self‐Service portal at wvOASIS.gov. As part of the State of West Virginia’s procurement process, and to maintain the transparency of the bid‐opening process, this documentation submitted online is publicly posted by the West Virginia Purchasing Division at WVPurchasing.gov with any other vendor responses to this solicitation submitted to the Purchasing Division in hard copy format. Purchasing Division State of West Virginia 2019 Washington Street East Solicitation Response Post Office Box 50130 Charleston, WV 25305-0130 Proc Folder : 702868 Solicitation Description : Addendum No 2 Supplemental Staffing for Microsoft Applicatio Proc Type : Central Contract - Fixed Amt Date issued Solicitation Closes Solicitation Response Version 2020-06-10 SR 1300 ESR06012000000007118 1 13:30:00 VENDOR VS0000022405 TeXCloud Solutions, Inc Solicitation Number: CRFQ 1300 STO2000000002 Total Bid : $325,000.00 Response Date: 2020-06-10 Response Time: 11:31:14 Comments: FOR INFORMATION CONTACT THE BUYER Melissa Pettrey (304) 558-0094 [email protected] Signature on File FEIN # DATE All offers subject to all terms and conditions contained in this solicitation Page : 1 FORM ID : WV-PRC-SR-001 Line Comm Ln Desc Qty Unit Issue Unit Price Ln Total Or Contract Amount 1 Temporary information technology 2000.00000 HOUR $65.000000 $130,000.00 software developers Comm Code Manufacturer Specification Model # 80111608 Extended Description : Year 1 / Individual 1 2 Temporary information technology 2000.00000 HOUR $65.000000 $130,000.00 software developers 80111608 Year 1 / Individual 2 3 Temporary information technology 500.00000 HOUR $65.000000 $32,500.00 software developers 80111608 Three (3) Month Renewal Option Individual 1 4 Temporary information technology 500.00000 HOUR $65.000000 $32,500.00 software developers 80111608 Three (3) Month Renewal Option Individual 2 Page : 2 TeXCloud Solutions, Inc. -
Exposing Native Device Apis to Web Apps
Exposing Native Device APIs to Web Apps Arno Puder Nikolai Tillmann Michał Moskal San Francisco State University Microsoft Research Microsoft Research Computer Science One Microsoft Way One Microsoft Way Department Redmond, WA 98052 Redmond, WA 98052 1600 Holloway Avenue [email protected] [email protected] San Francisco, CA 94132 [email protected] ABSTRACT language of the respective platform, HTML5 technologies A recent survey among developers revealed that half plan to gain traction for the development of mobile apps [12, 4]. use HTML5 for mobile apps in the future. An earlier survey A recent survey among developers revealed that more than showed that access to native device APIs is the biggest short- half (52%) are using HTML5 technologies for developing mo- coming of HTML5 compared to native apps. Several dif- bile apps [22]. HTML5 technologies enable the reuse of the ferent approaches exist to overcome this limitation, among presentation layer and high-level logic across multiple plat- them cross-compilation and packaging the HTML5 as a na- forms. However, an earlier survey [21] on cross-platform tive app. In this paper we propose a novel approach by using developer tools revealed that access to native device APIs a device-local service that runs on the smartphone and that is the biggest shortcoming of HTML5 compared to native acts as a gateway to the native layer for HTML5-based apps apps. Several different approaches exist to overcome this running inside the standard browser. WebSockets are used limitation. Besides the development of native apps for spe- for bi-directional communication between the web apps and cific platforms, popular approaches include cross-platform the device-local service. -
HP Openvms Utility Routines Manual
HP OpenVMS Utility Routines Manual Order Number: BA554-90019 June 2010 This manual describes the OpenVMS utility routines, a set of routines that provide a programming interface to various OpenVMS utilities. Revision/Update Information: This manual supersedes the HP OpenVMS Utility Routines Manual, OpenVMS Alpha Version 8.3. Software Version: OpenVMS Version 8.4 for Integrity servers OpenVMS Alpha Version 8.4 Hewlett-Packard Company Palo Alto, California © Copyright 2010 Hewlett-Packard Development Company, L.P. Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license. The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. ZK4493 The HP OpenVMS documentation set is available on CD. This document was prepared using DECdocument, Version 3.3-1B. Contents Preface ............................................................ xvii 1 Introduction to Utility Routines 2 Access Control List (ACL) Editor Routine 2.1 Introduction to the ACL Editor Routine ........................... ACL–1 2.2 Using the ACL Editor Routine: An Example ....................... ACL–1 2.3 ACL Editor Routine . ........................................ ACL–2 ACLEDIT$EDIT ...........................................