Open Source Software for Train Control Applications and Its Architectural Implications

Total Page:16

File Type:pdf, Size:1020Kb

Open Source Software for Train Control Applications and Its Architectural Implications Open Source Software for Train Control Applications and its Architectural Implications Dissertation zur Erlangung des Grades eines Doktors der Ingenieurwissenschaften – Dr.-Ing. – Vorgelegt im Fachbereich 3 (Mathematik/Informatik) der Universität Bremen von Dipl.-Ing. Johannes Feuser im Dezember 2012 Datum des Promotionskolloquiums: 21.02.2013 Gutachter: Prof. Dr. Jan Peleska (Universität Bremen) Prof. Dr. Martin Gogolla (Universität Bremen) To my father Matthias Feuser Acknowledgments I would like to thank the following persons and institutions for their support during the preparation of this work: The Siemens AG for supporting me during this work through a research grant of the Graduate School on Embedded Systems GESy1 at the University of Bremen. My supervisor Prof. Jan Peleska for his scientific guidance and support. My friends and former colleagues Erwin Wendland, Lothar Renner, and Dr. Oleg Ivlev, who supported me to form my interest for scientific research during my student years. My colleague Blagoy Genov for the inspiring, scientific discussions. My colleagues Dr. Uwe Schulze and Dr. Cecile Braunstein for their support during the finalisation of this document. My wife Diana Valbuena for her permanent support and help. Johannes Feuser Bremen, 18th March 2013 1http://www.informatik.uni-bremen.de/gesy v Zusammenfassung In dieser Arbeit werden die Forschungsergebnisse der Entwicklung sicherheitskritischer Soft- ware mittels den Prinzipien von Open-Source2-Software beschrieben. Es wurden verschiedene modellbasierte Entwürfe und Architekturen für das Gebiet des Schienenverkehrs, inklusive wiederverwendbare Formalismen zur Verifikation & Validation, untersucht. Außerdem wurden die Eindämmung von möglichen Sicherheitsbedrohungen3 durch plattform- oder hersteller- speziefische Anpassung der modellierten und offenen Kern-Software analysiert, und als Lösung der Einsatz von Hardware-Virtualisierung im Gegensatz zu traditionellen Speicherverwaltung entwickelt. Der Hauptteil dieser Arbeit besteht aus der Entwicklung einer Domänen-spezifischer Sprache (DSL), um Teile des europäischen Zug-Kontrollsystems (ETCS) zu modellieren, welche aus dem Spezifikationsdokument speziell abgeleitete Daten-, Kontrollflussformalismen und Sprachelemente verwendet. Das neue GOPPRR Meta-Metamodell wurde als Erweiterung des bereits existierenden GOPRR Meta-Metamodell entwickelt, um den Anforderungen an die Syntax-Definition für die Modellierung für sicherheitskritische Systeme zu genügen. GOPPRR bietet Methoden für die Definitionen von Randbedingungen4 mittels der Objekt-Randbedingung- Sprache (OCL), sodass eine statische Semantik definiert werden kann, um die Korrektheit von Modellen sicherzustellen. Teile der ETCS Spezifikation für die Kontrolleinheit in Zügen wurden mittels eines neuen Metamodells modelliert. Ein Domänen-Rahmenwerk5 und ein entsprechender Code-Generator mit integrierter Unterstützung für Verifikation & Validation wurden entworfen und entwickelt, um die Transformation des Modells in eine ausführbare Anwendung zu ermöglichen. Um zu demonstrieren, dass das Modell der Spezifikation kor- rekt ist, wurde die so generierte Anwendung in einer Simulationsumgebung ausgeführt und entsprechende Simulationsprotokolle erstellt. Die Übereinstimmung dieser Protokolle mit dem erwartetem Verhalten aus dem Spezifikationsdokument bestätigten die verwendeten Methoden und Strategien als mögliches Konzept. 2dt. offene Quellen 3eng. security threats 4eng. constraints 5eng. domain framework vi Abstract This document describes the research results that were obtained from the development of safety-critical software under the principles of open source. Different model-based designs and architectures within the railway control system application domain, including re-usable formalisms for verification & validation, were investigated. The reduction of possible security threats caused by platform or supplier specific adaptations of modelled open-core software was analysed, and a possible solution by the usage of hardware virtualisation, instead of traditional memory management, was elaborated. At core of this work, the development of a graphical domain-specific language for modelling parts of the European Train Control System (ETCS) is presented, which is based on specialised data, control flow formalisms, and language elements derived from the specification document. For a more precise and therefore more appropriate syntax definition for safety-critical systems, the already existing GOPRR meta meta model was extended to the newly developed GOPPRR meta meta model. GOPPRR includes methods for defining constraints by the object constraint language, which supports the definition of static semantics to ensure correct model instances. Parts of the ETCS specification related to the train on-board unit were modelled in a new meta model. To transform the developed model of the ETCS specification into an executable application, a domain framework, according to the new meta model and the corresponding code generator, were designed and implemented, which have implicitly an integrated support for the verification & validation process. To proof the correctness of the modelled specification, the resulting application was executed in a simulative environment to obtain simulation traces. The correspondence of traces to the expected data from the specification document supported the used methods and strategies in this dissertation as proof of concept. vii Contents Acknowledgments v Zusammenfassung vi Abstract vii Contents ix List of Figures xi 1. Introduction 1 1.1. Objectives ....................................... 1 1.2. Main Contributions .................................. 2 1.3. Related Work ..................................... 3 1.4. Structure of this Document . .......................... 6 I. Background 9 2. Concepts for Safe Railway Operation and Control 11 2.1. Requirements for a Train Control System as Open Source Software ....... 12 2.2. European Train Control System ........................... 13 2.2.1. General Purpose ............................... 13 2.2.2. Application Levels .............................. 15 2.2.3. Operational States .............................. 16 2.2.4. Mode Transitions . ............................ 19 2.3. openETCS ....................................... 19 2.4. Conclusion ....................................... 20 3. Domain-Specific Modelling 21 3.1. Meta Meta Models .................................. 23 3.1.1. Meta Object Facility ............................. 23 3.1.2. Ecore ..................................... 28 3.1.3. Extensible Markup Language with Schema Definition . ......... 28 3.1.4. Backus-Naur Form .............................. 30 3.1.5. Graph, Object, Property, Role, and Relationship ............. 31 3.2. Meta Meta Model Comparison ........................... 35 3.3. Domain-Specific Modelling Development Applications .............. 36 3.3.1. Xtext . ................................... 36 3.3.2. Graphical Modelling Framework ...................... 36 ix Contents 3.3.3. Rascal . ................................... 36 3.3.4. MetaEdit+ .................................. 37 3.4. Conclusion ....................................... 37 4. The GOPPRR Meta Meta Model – An Extension of GOPRR 39 4.1. Concrete Syntax Description Formalism . .................... 40 4.2. GOPPRR C++ Abstract Syntax Model ...................... 43 4.3. GOPPRR XML Schema Definition ......................... 46 4.4. MERL GOPPRR Generator ............................. 46 4.5. The Object Constraint Language for Static Semantics .............. 47 4.5.1. OCL Example: Global, Numerical Criteria ................. 48 4.5.2. OCL Example: Numerical Criteria within a Graph ............ 48 4.5.3. OCL Example: Boolean Criteria within a Graph by further Type Speci- fication .................................... 48 4.5.4. OCL Example: Port Connection Specification . ............. 49 4.5.5. OCL Example: Graphical Containment . ............... 49 4.5.6. Limitations .................................. 50 4.5.7. Conclusion . ................................ 50 4.6. Tool Chain ...................................... 50 4.7. Conclusion ....................................... 53 II. Dependability 55 5. Verification and Validation 57 5.1. Applicable and Related Standards ......................... 58 5.1.1. DIN EN 61508 ................................ 59 5.1.2. EN 50128, EN 50129, and EN 50126 .................... 59 5.1.3. DO-178B ................................... 60 5.2. Verification and Validation as Open Source Software ............... 60 5.3. Software Life Cycle with Domain-Specific Modelling ............... 61 5.4. Conclusion ....................................... 62 6. Security in Open Source Software 65 6.1. Memory Management ................................ 66 6.1.1. Partitioning .................................. 67 6.1.2. Paging ..................................... 68 6.1.3. Segmentation ................................. 68 6.1.4. Segmentation combined with Paging .................... 68 6.2. Hardware Virtualisation ............................... 69 6.2.1. Bandwidth Protection ............................ 71 6.2.2. Minimal Host Operating System . ................... 73 6.2.3. Hardware Assisted Virtualisation ...................... 73 6.2.4. Process Communication . .......................... 74 x Contents 6.2.5. Hardware Device Access ........................... 75 6.2.6. Hardware Virtualisation on Certified Supplier Hardware ......... 75 6.2.7. Hypervisor Requirements .......................... 76 6.3. Conclusion
Recommended publications
  • Code Structure by Miklos Vajna Senior Software Engineer at Collabora Productivity 2017-10-11
    LibreOffice: Code Structure By Miklos Vajna Senior Software Engineer at Collabora Productivity 2017-10-11 @CollaboraOffice www.CollaboraOffice.com About Miklos ● From Hungary ● More blurb: http://vmiklos.hu/ ● Google Summer of Code 2010/2011 ● Rewrite of the Writer RTF import/export ● Writer developer since 2012 ● Contractor at Collabora since 2013 LibreOffice Conference 2017, Rome | Miklos Vajna 2 / 30 Thanks ● This is an updated version of Michael Meeks’ talk from last year LibreOffice Conference 2017, Rome | Miklos Vajna 3 / 30 Overview ● Code-base overview ● Internal core modules, internal leaf ● Ignoring externals ● Building / packaging: gnumake, scp2 ● Code organisation, git bits ● Keep in mind: this is a 20 years old code-base ● The quality is much better than you would expect after knowing its age ● Things continue to improve over time LibreOffice Conference 2017, Rome | Miklos Vajna 4 / 30 Module overview lowest level Internal non-leaf modules: UNO modules ● Module = toplevel dir ● make dumps-deps-png ● Each module has a README ● e.g. sal/README ● sal: at the bottom ● The system abstraction layer ● tools is an obsolete internal (more or less) duplication of this ● salhelper: wrapper code around sal, also part of the URE LibreOffice Conference 2017, Rome | Miklos Vajna 6 / 30 What is the Uno Runtime Environment (URE)? ● We’ll come to UNO in detail a bit later, but for now: ● Uno Runtime Environment ● See also JRE, Java Runtime Env. ● Belongs to the idea that UNO would be reused somewhere else ● Provides an API/ABI-stable abstraction layer for the suite URE ● Allows writing C++ extensions ● Modify carefully: ● Should not change the ABI ● ABI control via C .map files LibreOffice Conference 2017, Rome | Miklos Vajna 7 / 30 UNO modules ● store: legacy .rdb format ● registry: UNO type regisistry ● unoidl: a .idl file compiler ● cppu: C++ UNO ● Implements basic UNO types and infrastructure for C++, e.g.
    [Show full text]
  • Art-Workbook-V0 84
    Intensity Frontier Common Offline Documentation: art Workbook and Users Guide Alpha Release 0.84 August 18, 2014 This version of the documentation is written for version v0_00_27 of the art-workbook code. Scientific Computing Division Future Programs and Experiments Department Scientific Software Infrastructure Group Principal Author: Rob Kutschke Editor: Anne Heavey art Developers: L. Garren, C. Green, J. Kowalkowski, M. Paterno and P. Russo 1 2 List of Chapters Detailed Table of Contents iv List of Figures xx List of Tables xxii List of Code and Output Listings xxii art Glossary xxvii I Introduction 1 1 How to Read this Documentation 2 2 Conventions Used in this Documentation 4 3 Introduction to the art Event Processing Framework 7 4 Unix Prerequisites 34 5 Site-Specific Setup Procedure 45 i 6 Get your C++ up to Speed 47 7 Using External Products in UPS 107 II Workbook 119 8 Preparation for Running the Workbook Exercises 120 9 Exercise 1: Running Pre-built art Modules 124 10 Exercise 2: Building and Running Your First Module 163 11 General Setup for Login Sessions 220 12 Keeping Up to Date with Workbook Code and Documentation 222 13 Exercise 3: Some other Member Functions of Modules 228 14 Exercise 4: A First Look at Parameter Sets 240 15 Exercise 5: Making Multiple Instances of a Module 265 16 Exercise 6: Accessing Data Products 272 17 Exercise 7: Making a Histogram 291 18 Exercise 8: Looping Over Collections 317 19 3D Event Displays 341 20 Troubleshooting 377 ii III User’s Guide 379 21 Obtaining Credentials to Access Fermilab Computing Resources 380 22 git 382 23 art Run-time and Development Environments 391 24 art Framework Parameters 399 25 Job Configuration in art: FHiCL 405 IV Appendices 424 A art Completion Codes 425 B Viewing and Printing Figure Files 428 C CLHEP 430 D Include Guards 446 V Index 448 Index 449 iii Detailed Table of Contents Detailed Table of Contents iv List of Figures xx List of Tables xxii List of Code and Output Listings xxii art Glossary xxvii I Introduction 1 1 How to Read this Documentation 2 1.1 If you are new to HEP Software..
    [Show full text]
  • Release 0.11 Todd Gamblin
    Spack Documentation Release 0.11 Todd Gamblin Feb 07, 2018 Basics 1 Feature Overview 3 1.1 Simple package installation.......................................3 1.2 Custom versions & configurations....................................3 1.3 Customize dependencies.........................................4 1.4 Non-destructive installs.........................................4 1.5 Packages can peacefully coexist.....................................4 1.6 Creating packages is easy........................................4 2 Getting Started 7 2.1 Prerequisites...............................................7 2.2 Installation................................................7 2.3 Compiler configuration..........................................9 2.4 Vendor-Specific Compiler Configuration................................ 13 2.5 System Packages............................................. 16 2.6 Utilities Configuration.......................................... 18 2.7 GPG Signing............................................... 20 2.8 Spack on Cray.............................................. 21 3 Basic Usage 25 3.1 Listing available packages........................................ 25 3.2 Installing and uninstalling........................................ 42 3.3 Seeing installed packages........................................ 44 3.4 Specs & dependencies.......................................... 46 3.5 Virtual dependencies........................................... 50 3.6 Extensions & Python support...................................... 53 3.7 Filesystem requirements........................................
    [Show full text]
  • GNAT User's Guide
    GNAT User's Guide GNAT, The GNU Ada Compiler For gcc version 4.7.4 (GCC) AdaCore Copyright c 1995-2009 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts and with no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License". About This Guide 1 About This Guide This guide describes the use of GNAT, a compiler and software development toolset for the full Ada programming language. It documents the features of the compiler and tools, and explains how to use them to build Ada applications. GNAT implements Ada 95 and Ada 2005, and it may also be invoked in Ada 83 compat- ibility mode. By default, GNAT assumes Ada 2005, but you can override with a compiler switch (see Section 3.2.9 [Compiling Different Versions of Ada], page 78) to explicitly specify the language version. Throughout this manual, references to \Ada" without a year suffix apply to both the Ada 95 and Ada 2005 versions of the language. What This Guide Contains This guide contains the following chapters: • Chapter 1 [Getting Started with GNAT], page 5, describes how to get started compiling and running Ada programs with the GNAT Ada programming environment. • Chapter 2 [The GNAT Compilation Model], page 13, describes the compilation model used by GNAT. • Chapter 3 [Compiling Using gcc], page 41, describes how to compile Ada programs with gcc, the Ada compiler.
    [Show full text]
  • Mvbluefox3 Technical Manual (Pdf)
    mvBlueFOX3 Technical Manual English - Version 3.04 i 1.1 About this manual............................................ 1 1.1.1 Goal of the manual ....................................... 1 1.1.2 Contents of the manual..................................... 1 1.2 Imprint.................................................. 2 1.2.1 Introduction ........................................... 3 1.2.2 wxWidgets............................................ 3 1.2.3 Sarissa ............................................. 3 1.2.4 GenICam ............................................ 3 1.2.5 libusb .............................................. 3 1.2.6 libusbK.............................................. 3 1.2.6.1 libusbK license .................................... 3 1.2.7 Doxygen............................................. 4 1.2.7.1 Doxygen license ................................... 4 1.2.8 SHA1 algorithm......................................... 4 1.2.9 Expat .............................................. 5 1.2.9.1 Expat Copyright.................................... 5 1.2.10 CppUnit ............................................ 5 1.2.11 NUnit.............................................. 5 1.2.11.1 NUnit License.................................... 5 1.3 Legal notice............................................... 6 1.3.1 Introduction ........................................... 6 1.3.2 cJSON.............................................. 6 1.3.3 Unity............................................... 6 1.4 Revisions ...............................................
    [Show full text]
  • An Infrastructure to Support Interoperability in Reverse Engineering Nicholas Kraft Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 5-2007 An Infrastructure to Support Interoperability in Reverse Engineering Nicholas Kraft Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Computer Sciences Commons Recommended Citation Kraft, Nicholas, "An Infrastructure to Support Interoperability in Reverse Engineering" (2007). All Dissertations. 51. https://tigerprints.clemson.edu/all_dissertations/51 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. AN INFRASTRUCTURE TO SUPPORT INTEROPERABILITY IN REVERSE ENGINEERING A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Computer Science by Nicholas A. Kraft May 2007 Accepted by: Dr. Brian A. Malloy, Committee Chair Dr. Harold C. Grossman Dr. James F. Power Dr. Roy P. Pargas ABSTRACT An infrastructure that supports interoperability among reverse engineering tools and other software tools is described. The three major components of the infrastruc- ture are: (1) a hierarchy of schemas for low- and middle-level program representation graphs, (2) g4re, a tool chain for reverse engineering C++ programs, and (3) a repos- itory of reverse engineering artifacts, including the previous two components, a test suite, and tools, GXL instances, and XSLT transformations for graphs at each level of the hierarchy. The results of two case studies that investigated the space and time costs incurred by the infrastructure are provided. The results of two empirical evaluations that were performed using the api module of g4re, and were focused on computation of object-oriented metrics and three-dimensional visualization of class template diagrams, respectively, are also provided.
    [Show full text]
  • Red Hat Enterprise Linux 7 7.8 Release Notes
    Red Hat Enterprise Linux 7 7.8 Release Notes Release Notes for Red Hat Enterprise Linux 7.8 Last Updated: 2021-03-02 Red Hat Enterprise Linux 7 7.8 Release Notes Release Notes for Red Hat Enterprise Linux 7.8 Legal Notice Copyright © 2021 Red Hat, Inc. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/ . In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
    [Show full text]
  • Red Hat Enterprise Linux 7 7.9 Release Notes
    Red Hat Enterprise Linux 7 7.9 Release Notes Release Notes for Red Hat Enterprise Linux 7.9 Last Updated: 2021-08-17 Red Hat Enterprise Linux 7 7.9 Release Notes Release Notes for Red Hat Enterprise Linux 7.9 Legal Notice Copyright © 2021 Red Hat, Inc. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/ . In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
    [Show full text]
  • Event-Driven Software-Architecture for Delay- and Disruption-Tolerant Networking
    Event-driven Software-Architecture for Delay- and Disruption-Tolerant Networking Der Carl-Friedrich-Gauß-Fakultät der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktoringenieurs (Dr.-Ing.) genehmigte Disseration von Johannes Morgenroth geboren am 28.08.1981 in Braunschweig Eingereicht am: 19.12.2014 Disputation am: 17.07.2015 1. Referent: Prof. Dr.-Ing. Lars Wolf 2. Referent: Prof. Dr.-Ing. Klaus Wehrle 2015 Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über www.dnb.de abrufbar. Diss., Technische Universität Carolo Wilhelmina zu Braunschweig, 2015 © 2015 Johannes Morgenroth Herstellung: BoD – Books on Demand, Norderstedt BoD Ref. 0011632925 Abstract Continuous end-to-end connectivity is not available all the time, not even in wired networks. Thus, the »Off-line first« paradigm is applied to applications of mobile devices to deal with intermittent connectivity without annoying the users every time the network is going to be flaky. But since mobile devices, particularly smart- phones, are typically bound to the Internet, they become almost useless as soon as their connectivity is gone. Delay- and Disruption-Tolerant Networking (DTN) al- lows devices to communicate even if there is no continuous path to the destination by replacing the end-to-end semantics with a hop-by-hop store-carry-and-forward approach. Since existing implementations of DTN software suffer from various limita- tions, this thesis presents an event-driven software architecture for Delay- and Disruption-Tolerant Networking and a lean, lightweight, and extensible imple- mentation of a bundle node.
    [Show full text]
  • Art-Documentation-Alpha-V0 82
    Intensity Frontier Common Offline Documentation: art Workbook and Users Guide Alpha Release 0.82 August 7, 2014 This version of the documentation is written for version v0_00_26 of the art-workbook code. Scientific Computing Division Future Programs and Experiments Department Scientific Software Infrastructure Group Principal Author: Rob Kutschke Editor: Anne Heavey art Developers: L. Garren, C. Green, J. Kowalkowski, M. Paterno and P. Russo 1 2 List of Chapters Detailed Table of Contents iv List of Figures xx List of Tables xxii List of Code and Output Listings xxii art Glossary xxv I Introduction 1 1 How to Read this Documentation 2 2 Conventions Used in this Documentation 4 3 Introduction to the art Event Processing Framework 7 4 Unix Prerequisites 34 5 Site-Specific Setup Procedure 45 i 6 Get your C++ up to Speed 47 7 Using External Products in UPS 105 II Workbook 117 8 Preparation for Running the Workbook Exercises 118 9 Exercise 1: Running Pre-built art Modules 122 10 Exercise 2: Building and Running Your First Module 161 11 General Setup for Login Sessions 218 12 Keeping Up to Date with Workbook Code and Documentation 220 13 Exercise 3: Some other Member Functions of Modules 226 14 Exercise 4: A First Look at Parameter Sets 238 15 Exercise 5: Making Multiple Instances of a Module 263 16 Exercise 6: Accessing Data Products 270 17 Exercise 7: Making a Histogram 289 18 Exercise 8: Looping Over Collections 314 19 Troubleshooting 338 ii III User’s Guide 340 20 Obtaining Credentials to Access Fermilab Computing Resources 341 21 git 343 22 art Run-time and Development Environments 352 23 art Framework Parameters 360 24 Job Configuration in art: FHiCL 366 IV Appendices 385 A art Completion Codes 386 B Viewing and Printing Figure Files 389 C CLHEP 391 V Index 407 iii Detailed Table of Contents Detailed Table of Contents iv List of Figures xx List of Tables xxii List of Code and Output Listings xxii art Glossary xxv I Introduction 1 1 How to Read this Documentation 2 1.1 If you are new to HEP Software..
    [Show full text]
  • IBM Content Manager Ondemand Web Enablement Kit Java Apis the Basics and Beyond
    Front cover IBM Content Manager OnDemand Web Enablement Kit Java APIs The Basics and Beyond Develop Web applications by using ODWEK V8.4 Java APIs Gain insightful best practices, hints, and tips Tune and troubleshoot OnDemand Web applications Wei-Dong Zhu Mark Mikeal Hassan A. Shazly Elliott Wade Sebastian Welter ibm.com/redbooks International Technical Support Organization IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond December 2008 SG24-7646-00 Note: Before using this information and the product it supports, read the information in “Notices” on page ix. First Edition (December 2008) This edition applies to Version 8 Release 4 of IBM Content Manager OnDemand (program number 5724-J33). © Copyright International Business Machines Corporation 2008. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . ix Trademarks . x Preface . xi The team that wrote this book . xii Become a published author . xiv Comments welcome. xiv Part 1. Programming with the ODWEK Java APIs . 1 Chapter 1. ODWEK Java API overview . 3 1.1 Origin of the ODWEK Java APIs . 4 1.2 Content Manager OnDemand system overview . 4 1.2.1 Content Manager OnDemand Library Server and Object Servers . 4 1.2.2 Content Manager OnDemand data . 6 1.2.3 Content Manager OnDemand data model . 7 1.2.4 Content Manager OnDemand data indexing and loading . 10 1.3 ODWEK Java APIs function overview. 11 1.3.1 Typical Web applications developed by using the ODWEK Java APIs .
    [Show full text]
  • An Automated Testing Suite for Computer Music Environments
    An Automated Testing Suite for Computer Music Environments Nils Peters Trond Lossius Timothy Place ICSI, CNMAT UC Berkeley BEK Electrotap [email protected] [email protected] [email protected] ABSTRACT temporary programming practice, making extensive use of solutions for running automated tests on a regular basis. Software development benefits from systematic testing In the sound and music computing community adop- with respect to implementation, optimization, and mainte- tion of systematic approaches to testing remain less wide- nance. Automated testing makes it easy to execute a large spread. Bugs often surface when making changes to the number of tests efficiently on a regular basis, leading to program, or the target environment or operating system, faster development and more reliable software. and for this reason many artists tend to be hesitant about Systematic testing is not widely adopted within the com- changing their performance computer system or software puter music community, where software patches tend to version because of the fear of unforeseen problems. They be continuously modified and optimized during a project. might also be reluctant to doing last-minute changes and Consequently, bugs are often discovered during rehearsal improvements to their patches. The programs or patches or performance, resulting in literal “show stoppers”. This developed are often custom developed for a particular paper presents a testing environment for computer music project, and with increasing complexity patches become systems, first developed for the Jamoma framework and increasingly vulnerable. Max. The testing environment works with Max 5 and 6, is independ from any 3rd-party objects, and can be used with 1.2 Importance of testing to Jamoma development non-Jamoma patches as well.
    [Show full text]