Petrology of the Morrison Formation Dinosaur Quarry

Total Page:16

File Type:pdf, Size:1020Kb

Petrology of the Morrison Formation Dinosaur Quarry Petrology of the Morrison Formation, Dinosaur Quarry Quadrangle, Utah by S. A. Bi/bey, R. L. Kerns, Jr., and J. T. Bowman UTAH GEOLOGICAL AND MINERAL SURVEY a division of the UTAH DEPARTMENT OF NATURAL RESOURCES State Capitol, Salt Lake City, Utah SPECIAL STUDIES 48 PRICE $1.00 APRIL 1974 Petrology of the Morrison Formati~ Dinosaur Quarry Quadrangle, Uta by s. A. Bilbey, R. L. Kerns, Jr., and J. T. Bowman Dinosaur National Monument Quarry. Dinosaur National Monument, Utah. National Park Service, Department of the Interior. UTAH GEOLOGICAL AND MINERAL SURVEY a division of the UTAH DEPARTMENT OF NATURAL RESOURCES State Capitol, Salt Lake City, Utah SPECIAL STUDIES 48 PRICE $1.00 APRIL 1974 CONTENTS Page Page Abstract .................................... 1 References . ....... 13 Introduction ................................. 1 ILLUSTRATIONS Acknowledgements ............................. 2 Figure General Geology . .. 3 1. Index map of the western portion of Dinosaur National Monument ................ 4 Methods .................................... 3 2. Stratigraphic columns of measured sections in Dinosaur National Stratigraphy .................................. 3 Monument including Upper Jurassic through Lower Cretaceous Formations ......... 5 Mineralogy . .7 3. Relative abundances of montmorillonite, illite, and kaolinite above and below Petrography .................................. 9 unit boundaries in section 2 ................... 8 Stratigraphic Correlations ........................ 11 Table 1. Distribution of minerals in the Depositional Environments ....................... 11 Curtis, Morrison, Cedar Mountain, Models of Clay Formation ..................... 11 and Dakota Formations as determined Source Area .............................. 12 by X-ray diffractometry ...................... 8 Curtis Formation ........................... 12 2. Physical properties as determined by Morrison Formation, Salt Wash Member ........... 12 petrographic analyses of selected Morrison Formation, Brushy Basin Member ......... 12 samples from section 2 ......... ...... 9 Cedar Mountain Formation ................. 13 3. Mineralogical properties as determined by petrographic analyses of selected Conclusion . 13 samples from section 2 ..................... 10 iii PETROLOGY OF THE MORRISON FORMATION, DINOSAUR QUARRY QUADRANGLE, UTAH by Sue Ann Bilbeyl, Raymond L. Kerns, Jr.2, and James T. Bowman 3 ABSTRACT southern Idaho and central Utah to Iowa and Kansas (peterson, 1972). The strata later aSSigned to the Mineralogical and petrographic analyses of the Morrison Formation in Dinosaur National Monument Upper Jurassic-Lower Cretaceous units in the vicinity of were originally described as part of the Flaming Gorge the Dinosaur National Monument Quarry near Jensen, Group (Powell, 1876), until the discovery of the dino­ Utah, have clarified the units' characteristics and the saur beds near Jensen, Utah, caused the strata to be locations of formational boundaries. The lower part of formally recognized as the Morrison Formation the Morrison Formation is distinguished by less illite (Gilmore, 1916). and more kaolinite in contrast to the underlying Curtis Formation which contains approximately equal Due to the lack ofa diagnostic age indicator of amounts of illite and kaolinite. The Salt Wash Member the Morrison Formation, there has been considerable and the Brushy Basin Member of the Morrison are controversy over whether it is Jurassic, Cretaceous, or both lithologically and mineralogically identifiable in both. Eldridge (Emmons et ai., 1896) originally as­ this area. Above the boundary between the two, kao­ signed the unit to the Jurassic period, but others (Lee, linite decreases and illite increases. In the strata above 1915; Osborn, 1915) claimed that it is of Cretaceous the Morrison, here recognized as an extension of the age. The consensus of more recent reports is that the Cedar Mountain Formation, kaolinite is the dominant Morrison Formation represents the Upper Jurassic from clay mineral, and illite is almost completely absent. Kimmeridgian to early Portlandian (Simpson, 1926; The formations in the area represent differing deposi­ Baker et ai., 1936; Imlay, 1952). tional environments: the upper Curtis Formation is a ne ar-shore marine deposit, the members of the In the area of Dinosaur National Monument, the Morrison Formation are fluvial and lacustrine and Morrison Fonnation rests on the Upper Jurassic Curtis possible climatic or depositional changes during the Formation and underlies unnamed Lower Cretaceous depositional period are equated with the changes in the rocks (Reeside, 1923; Untermann and Untermann, clay content, and the Lower Cretaceous sediments now 1949; Bradley, 1952). Stokes (1952; 1955) identified comprising the Cedar Mountain Formation overlying the Cedar Mountain Formation as far north as the the Morrison were formed in a transitional zone south flank of the Uinta Mountains and speculated on (fluvial to littoral) and were eventually covered by the its correlation with the unnamed Lower Cretaceous Dakota Formation (littoral). rocks in Dinosaur National Monument. To facilitate the ensuing discussion, the unnamed unit above the INTRODUCTION Morrison and below the Dakota will be called the Cedar Mountain Formation. The Morrison Formation, originally defined as the variegated shales and sandstones found in the eastern The Morrison Fonnation has been divided into foothills of the Front Range of the Rocky Mountains four members~the Salt Wash Member (Lupton, 1914; near Morrison, Colorado, was named by Cross (I 894). Gilluly and Reeside, 1928), the Brushy Basin Member, Eldridge first described and placed definite boundaries the Westwater Canyon Member, and the Recapture on an incomplete section near Morrison (Emmons and Member (Gregory, 1938). Of these four, only the Salt others, 1896). These boundaries were redefined by Lee Wash and Brushy Basin Members extend into north­ (1920), but the type section was not completely de­ eastern Utah (Craig et ai., 1955). scribed until 1944 (Waldschmidt and Leroy, 1944). The formation has since been recognized over an area The Salt Wash Member is recognized as the oldest of more than 600,000 square miles from southern member of the Morrison Formation, correlative in part Canada to central Arizona and New Mexico, and from with the Recapture Member (Craig et ai., 1955), and is characterized by two lithologies~white to pale brown, 1 Department of Geology and Geophysics, University of Utah, massive, ridge-forming sandstones and greenish-gray to Salt Lake City, Utah 84112. dark reddish-brown siltstones and mudstones. The silt­ 2 Assistant Professor of Geology, Utah State University, Logan, Utah 84322. stones and mudstones are poorly resistant and thick­ 3 Associate Professor of Biology, Utah State University, Logan, bedded (Cadigan, 1967). The origin of these sediments Utah 84322. was mainly a sedimentary rock source with some 2 Utah Geological and Mineral Survey Special Studies 48, 1974 evidence for a minor volcanic source (Cadigan, 1967). The presence of dinosaur bones and uranium has The thickening of this deposit and the increase in grain stimulated extensive petrologic and petrographic work size to the west and southwest and the thinning to the on the Morrison. Mook's (1916) discussion of descrip­ east and northeast indicate major source areas in tive petrography and petrology laid the foundation for Arizona, southern Nevada, and western Utah (Mook, many of the studies which followed. Interest in radio­ 1915; Craig et at., 1955; Cadigan, 1967). active minerals has prompted several mineralogical analyses of the clay minerals in the formation (Weeks, The Brushy Basin Member is the younger of the 1953; Keller, 1953, 1959, 1962); other such studies two members present and is correlative with the have been directed toward clarifying the depositional Westwater Canyon Member in New Mexico (Cadigan, environment and source areas (Tank, 1956; Brady, 1967). This is the more easily distinguished of the 1969; Ballard, 1966; Cadigan, 1967; Suttner, 1968; members due to its diagnostic variegated shales and Furer, 1970). Wahlstrom (1966) included some geo­ mudstones. The beds vary in color from pale green to chemical data on the Morrison, and many workers have reddish-brown to purple. The lithology of this member investigated the ore deposits (see Brown, 1961, for a is not restricted, however, to shales. Between some of comprehensive bibliography). these shales are thick-bedded, lenticular, conglomeratic sandstones containing the well-known fossil dinosaur The Cedar Mountain Formation was originally fauna. The source area of the fine-grained sediments is defined on the southwestern flank of Cedar Mountain, the same as that of the Salt Wash, but with lower Emery County, Utah, by Stokes (1944), as part of the gradients, which account for the finer grain size (Craig Cedar Mountain Group which included both the Cedar et al., 1955; Cadigan, 1967). The Brushy Basin also Mountain Formation and the Buckhorn Conglomerate. contains large quantities of volcanic tuff fragments, in­ Stokes (1952) combined the two units. These Lower Cretaceous rocks are found above the Morrison Forma­ dicating a possible volcanic source area to the wes't tion in the Colorado Plateau area. Stokes (1952) (Hess, 1933; Stokes, 1944; Keller, 1953, 1962; Peter­ measured many sections of the Morrison Formation son, 1966; Cadigan, 1967; Suttner, 1968, 1969; Brady, and the strata above the Morrison along the south 1969; Furer, 1970). flank of the
Recommended publications
  • The Jackpile Sandstone Member of the Morrison Formation in West
    TheJackpile Sandstone Member 0f the MorrisonFormation in west-central New Mexico- a formaldefinition byDonald E. jwen,Consulting Geologist, Tulsa, 0K 74152,and Lester J. Walters,Jr. andRonald G. Beck, ARCO Oil and Gas Co., Dallas, IX75221 The JackpileSandstone Member of the uranium mine. The JackpileSandstone is stonelenses Contactswith the underlying Morrison Formation(Upper Jurassic)in west- typically a whitish, crossbeddedsubarkose Brushy BasinMember of the Morrison For- central New Mexico is named here formallv with clay matrix and interbedded, varie- mation may be gradational, scoured, or from a stratotype near the Jackpile-PaguatL gated, pale-greento red, bentonitic mud- interbedded. The Jackpileextends only a short distancesouth of the stratotvDedue R.5W. to truncation along the basal Dakota un- conformity. However, it extendsnortheast to Lamy, north to near Cuba, and a short distancewest and a longer distancenorth- west into the subsurfaceof the San Juan Basin.Thickness of the Jackpileranges from near zero to 300ft (91 m); at the stratotype it is 100 ft (30 m) thick. Crossbeddingin- dicatesa regional easterlypaleocurrent-flow direction for the braided-streamand distal alluvial-fan complexesin which the Jackpile was deposited. Source areas were to the west and southwest,south of Gallup, and in the Mogollon Highlands. Introduction The Jackpile sandstone of economic usage has been employed informally in strati- graphic nomenclature for a distinctive bed in the uppermost part of the Brushy Basin Member of the Morrison Formation in west- central New Mexico since the Jackpile ura- nium body was discovered in that bed dur- ing 1951.The stratigraphic name fackpile has Alsoin this issue Temperatureof.mineralization in Mogollonmining district p.
    [Show full text]
  • A New Microvertebrate Assemblage from the Mussentuchit
    A new microvertebrate assemblage from the Mussentuchit Member, Cedar Mountain Formation: insights into the paleobiodiversity and paleobiogeography of early Late Cretaceous ecosystems in western North America Haviv M. Avrahami1,2,3, Terry A. Gates1, Andrew B. Heckert3, Peter J. Makovicky4 and Lindsay E. Zanno1,2 1 Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA 2 North Carolina Museum of Natural Sciences, Raleigh, NC, USA 3 Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA 4 Field Museum of Natural History, Chicago, IL, USA ABSTRACT The vertebrate fauna of the Late Cretaceous Mussentuchit Member of the Cedar Mountain Formation has been studied for nearly three decades, yet the fossil-rich unit continues to produce new information about life in western North America approximately 97 million years ago. Here we report on the composition of the Cliffs of Insanity (COI) microvertebrate locality, a newly sampled site containing perhaps one of the densest concentrations of microvertebrate fossils yet discovered in the Mussentuchit Member. The COI locality preserves osteichthyan, lissamphibian, testudinatan, mesoeucrocodylian, dinosaurian, metatherian, and trace fossil remains and is among the most taxonomically rich microvertebrate localities in the Mussentuchit Submitted 30 May 2018 fi fi Accepted 8 October 2018 Member. To better re ne taxonomic identi cations of isolated theropod dinosaur Published 16 November 2018 teeth, we used quantitative analyses of taxonomically comprehensive databases of Corresponding authors theropod tooth measurements, adding new data on theropod tooth morphodiversity in Haviv M. Avrahami, this poorly understood interval. We further provide the first descriptions of [email protected] tyrannosauroid premaxillary teeth and document the earliest North American record of Lindsay E.
    [Show full text]
  • By HENRY FAIRFIELD OSBORN and CHARL
    VoL. 6, 1920 PALAEONTOLOGY: OSBORN AND MOOK IS RECONSTRUCTION OF THE SKELETON OF THE SAUROPOD DINOSAUR CAMARASA URUS COPE (MOROSA URUS MARSH) By HENRY FAIRFIELD OSBORN AND CHARLES CRAIG MOOK AMERICAN MusEUM or NATURAL HISTORY, NEW YORK CITY Read before the Academy, November 11, 1919 The principles of modern research in vertebrate palaeontology are illustrated in the fifteen years' work resulting in the restoration of the massive sauropod dinosaur known as Camarasaurus, the "chambered saurian.." The animal was found near Canyon City, Colorado, in March, 1877. The first bones were described by Cope, August 23, 1877. The first at- tempted restoration was by Ryder, December 21, 1877. The bones analyzed by this research were found probably to belong to six individuals of Camarasaurus mingled with the remains of some carnivorous dinosaurs, all from the summit of the Morrison formation, now regarded as of Jurassic- Cretaceous age. In these two quarries Cope named nine new genera and fourteen new species of dinosaurs, none of which have found their way into. palaeontologic literature, excepting Camarasaurus. Out of these twenty-three names we unravel three genera, namely: One species of Camarasaurus, identical with Morosaurus Marsh. One species of Amphicaclias, close to Diplodocus Marsh. One species of Epanterias, close to Allosaurus Marsh. The working out of the Camarasaurus skeleton results in both the artica ulated restoration and the restoration of the musculature. The following are the principal characters: The neck is very flexible; anterior vertebrae of the back also freely movable; the division between the latter and the relatively rigid posterior dorsals is sharp.
    [Show full text]
  • Stratigraphic Correlation Chart for Western Colorado and Northwestern New Mexico
    New Mexico Geological Society Guidebook, 32nd Field Conference, Western Slope Colorado, 1981 75 STRATIGRAPHIC CORRELATION CHART FOR WESTERN COLORADO AND NORTHWESTERN NEW MEXICO M. E. MacLACHLAN U.S. Geological Survey Denver, Colorado 80225 INTRODUCTION De Chelly Sandstone (or De Chelly Sandstone Member of the The stratigraphic nomenclature applied in various parts of west- Cutler Formation) of the west side of the basin is thought to ern Colorado, northwestern New Mexico, and a small part of east- correlate with the Glorieta Sandstone of the south side of the central Utah is summarized in the accompanying chart (fig. 1). The basin. locations of the areas, indicated by letters, are shown on the index map (fig. 2). Sources of information used in compiling the chart are Cols. B.-C. shown by numbers in brackets beneath the headings for the col- Age determinations on the Hinsdale Formation in parts of the umns. The numbers are keyed to references in an accompanying volcanic field range from 4.7 to 23.4 m.y. on basalts and 4.8 to list. Ages where known are shown by numbers in parentheses in 22.4 m.y. on rhyolites (Lipman, 1975, p. 6, p. 90-100). millions of years after the rock name or in parentheses on the line The early intermediate-composition volcanics and related rocks separating two chronostratigraphic units. include several named units of limited areal extent, but of simi- No Quaternary rocks nor small igneous bodies, such as dikes, lar age and petrology—the West Elk Breccia at Powderhorn; the have been included on this chart.
    [Show full text]
  • Paleopathological Analysis of a Sub-Adult Allosaurus Fragilis (MOR
    Paleopathological analysis of a sub-adult Allosaurus fragilis (MOR 693) from the Upper Jurassic Morrison Formation with multiple injuries and infections by Rebecca Rochelle Laws A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences Montana State University © Copyright by Rebecca Rochelle Laws (1996) Abstract: A sub-adult Allosaurus fragilis (Museum of the Rockies specimen number 693 or MOR 693; "Big Al") with nineteen abnormal skeletal elements was discovered in 1991 in the Upper Jurassic Morrison Formation in Big Horn County, Wyoming at what became known as the "Big Al" site. This site is 300 meters northeast of the Howe Quarry, excavated in 1934 by Barnum Brown. The opisthotonic position of the allosaur indicated that rigor mortis occurred before burial. Although the skeleton was found within a fluvially-deposited sandstone, the presence of mud chips in the sandstone matrix and virtual completeness of the skeleton showed that the skeleton was not transported very far, if at all. The specific goals of this study are to: 1) provide a complete description and analysis of the abnormal bones of the sub-adult, male, A. fragilis, 2) develop a better understanding of how the bones of this allosaur reacted to infection and trauma, and 3) contribute to the pathological bone database so that future comparative studies are possible, and the hypothesis that certain abnormalities characterize taxa may be evaluated. The morphology of each of the 19 abnormal bones is described and each disfigurement is classified as to its cause: 5 trauma-induced; 2 infection-induced; 1 trauma- and infection-induced; 4 trauma-induced or aberrant, specific origin unknown; 4 aberrant; and 3 aberrant, specific origin unknown.
    [Show full text]
  • Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field
    Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field June 12, 2007 ABSTRACT This is compilation of a technical analysis of existing paleontological data and a limited, selective paleontological field survey of the geologic bedrock formations that will be impacted on Federal lands by construction associated with energy development in the Jonah Field, Sublette County, Wyoming. The field survey was done on approximately 20% of the field, primarily where good bedrock was exposed or where there were existing, debris piles from recent construction. Some potentially rich areas were inaccessible due to biological restrictions. Heavily vegetated areas were not examined. All locality data are compiled in the separate confidential appendix D. Uinta Paleontological Associates Inc. was contracted to do this work through EnCana Oil & Gas Inc. In addition BP and Ultra Resources are partners in this project as they also have holdings in the Jonah Field. For this project, we reviewed a variety of geologic maps for the area (approximately 47 sections); none of maps have a scale better than 1:100,000. The Wyoming 1:500,000 geology map (Love and Christiansen, 1985) reveals two Eocene geologic formations with four members mapped within or near the Jonah Field (Wasatch – Alkali Creek and Main Body; Green River – Laney and Wilkins Peak members). In addition, Winterfeld’s 1997 paleontology report for the proposed Jonah Field II Project was reviewed carefully. After considerable review of the literature and museum data, it became obvious that the portion of the mapped Alkali Creek Member in the Jonah Field is probably misinterpreted.
    [Show full text]
  • Mesozoic Stratigraphy at Durango, Colorado
    160 New Mexico Geological Society, 56th Field Conference Guidebook, Geology of the Chama Basin, 2005, p. 160-169. LUCAS AND HECKERT MESOZOIC STRATIGRAPHY AT DURANGO, COLORADO SPENCER G. LUCAS AND ANDREW B. HECKERT New Mexico Museum of Natural History and Science, 1801 Mountain Rd. NW, Albuquerque, NM 87104 ABSTRACT.—A nearly 3-km-thick section of Mesozoic sedimentary rocks is exposed at Durango, Colorado. This section con- sists of Upper Triassic, Middle-Upper Jurassic and Cretaceous strata that well record the geological history of southwestern Colorado during much of the Mesozoic. At Durango, Upper Triassic strata of the Chinle Group are ~ 300 m of red beds deposited in mostly fluvial paleoenvironments. Overlying Middle-Upper Jurassic strata of the San Rafael Group are ~ 300 m thick and consist of eolian sandstone, salina limestone and siltstone/sandstone deposited on an arid coastal plain. The Upper Jurassic Morrison Formation is ~ 187 m thick and consists of sandstone and mudstone deposited in fluvial environments. The only Lower Cretaceous strata at Durango are fluvial sandstone and conglomerate of the Burro Canyon Formation. Most of the overlying Upper Cretaceous section (Dakota, Mancos, Mesaverde, Lewis, Fruitland and Kirtland units) represents deposition in and along the western margin of the Western Interior seaway during Cenomanian-Campanian time. Volcaniclastic strata of the overlying McDermott Formation are the youngest Mesozoic strata at Durango. INTRODUCTION Durango, Colorado, sits in the Animas River Valley on the northern flank of the San Juan Basin and in the southern foothills of the San Juan and La Plata Mountains. Beginning at the northern end of the city, and extending to the southern end of town (from north of Animas City Mountain to just south of Smelter Moun- tain), the Animas River cuts in an essentially downdip direction through a homoclinal Mesozoic section of sedimentary rocks about 3 km thick (Figs.
    [Show full text]
  • Oil and Gas Plays Ute Moutnain Ute Reservation, Colorado and New Mexico
    Ute Mountain Ute Indian Reservation Cortez R18W Karle Key Xu R17W T General Setting Mine Xu Xcu 36 Can y on N Xcu McElmo WIND RIVER 32 INDIAN MABEL The Ute Mountain Ute Reservation is located in the northwest RESERVATION MOUNTAIN FT HALL IND RES Little Moude Mine Xcu T N ern portion of New Mexico and the southwestern corner of Colorado UTE PEAK 35 N R16W (Fig. UM-1). The reservation consists of 553,008 acres in Montezu BLACK 666 T W Y O M I N G MOUNTAIN 35 R20W SLEEPING UTE MOUNTAIN N ma and La Plata Counties, Colorado, and San Juan County, New R19W Coche T Mexico. All of these lands belong to the tribe but are held in trust by NORTHWESTERN 34 SHOSHONI HERMANO the U.S. Government. Individually owned lands, or allotments, are IND RES Desert Canyon PEAK N MESA VERDE R14W NATIONAL GREAT SALT LAKE W Marble SENTINEL located at Allen Canyon and White Mesa, San Juan County, Utah, Wash Towaoc PARK PEAK T and cover 8,499 acres. Tribal lands held in trust within this area cov Towaoc River M E S A 33 1/2 N er 3,597 acres. An additional forty acres are defined as U.S. Govern THE MOUND R15W SKULL VALLEY ment lands in San Juan County, Utah, and are utilized for school pur TEXAS PACIFIC 6-INCH OIL PIPELINE IND RES UNITAH AND OURAY INDIAN RESERVATION Navajo poses. W Ramona GOSHUTE 789 The Allen Canyon allotments are located twelve miles west of IND RES T UTAH 33 Blanding, Utah, and adjacent to the Manti-La Sal National Forest.
    [Show full text]
  • (Morrison Formation: Brushy Basin Member) Peterson Quarry, Central New Mexico
    New Mexico Geological Society Guidebook, 54th Field Conference, Geology of the Zuni Plateau, 2003, p. 315-324. 315 GEOLOGY AND PALEONTOLOGY OF THE UPPER JURASSIC (MORRISON FORMATION: BRUSHY BASIN MEMBER) PETERSON QUARRY, CENTRAL NEW MEXICO ANDREW B. HECKERT1, KATE E. ZEIGLER1, SPENCER G. LUCAS1, JUSTIN A. SPIELMANN2, PATRICIA M. HESTER3, RONALD E. PETERSON1, RODNEY E. PETERSON1, AND N. V. “DAN” D’ANDREA1 1New Mexico Museum of Natural History, 1801 Mountain Road NW, Albuquerque, NM 87104-1375; 2Dartmouth College, Hinman Box 4571, Hanover, NH 03755; 3U.S. Bureau of Land Management, 435 Montaño NE, Albuquerque, NM 87107 ABSTRACT.—The Upper Jurassic Peterson quarry, located in Bernalillo County, central New Mexico, is New Mexico’s most extensive and productive Jurassic dinosaur locality. The quarry is developed in the upper part of the Brushy Basin Member of the Morrison Formation, approximately 26 m below its contact with the overlying Jackpile Member. Fossil bones occur low in a 1.1-m-thick sequence of well-indurated, trough-crossbedded, subarkosic sandstone. Preserved elements range from scattered bones to articulated assemblages of bones from a single individual, and the long bones are preferentially oriented along a generally east-west-trending axis. The occurrence of associated-to-articulated bones in a trough-crossbedded sandstone underlying a floodplain mudstone suggest deposition of the fossils in the mixed fill of an abandoned channel in a typical Brushy Basin Member fluvial system. Particularly important dinosaurs from the Peterson quarry include a large (1100 mm estimated femoral length) Saurophaganax-like allosaurid theropod and the anterior portion of a sauropod skull and lower jaws similar to Diplodocus.
    [Show full text]
  • Sedimentation, Pedogenesis, and Paleoclimate Conditions in the Paleocene San Juan Basin, New Mexico, U.S.A
    University of New Mexico UNM Digital Repository Earth and Planetary Sciences ETDs Electronic Theses and Dissertations 7-1-2016 Sedimentation, pedogenesis, and paleoclimate conditions in the Paleocene San Juan Basin, New Mexico, U.S.A. Kevin Hobbs Follow this and additional works at: https://digitalrepository.unm.edu/eps_etds Recommended Citation Hobbs, Kevin. "Sedimentation, pedogenesis, and paleoclimate conditions in the Paleocene San Juan Basin, New Mexico, U.S.A.." (2016). https://digitalrepository.unm.edu/eps_etds/104 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Earth and Planetary Sciences ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Kevin Michael Hobbs Candidate Earth and Planetary Sciences Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Peter Fawcett, Chairperson Dr. Leslie McFadden Dr. Gary Weissmann Dr. Thomas Williamson i SEDIMENTATION, PEDOGENESIS, AND PALEOCLIMATE CONDITIONS IN THE PALEOCENE SAN JUAN BASIN, NEW MEXICO, U.S.A. by KEVIN MICHAEL HOBBS B.S., Geology, The University of the South, 2006 M.S., Geological Sciences, The University of Idaho, 2010 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Earth and Planetary Sciences The University of New Mexico Albuquerque, New Mexico July 2016 ii ACKNOWLEDMENTS I thank the following persons for professional help in the form of discussions, critique of ideas, or suggestions during the research and writing of this dissertation: From the Earth and Planetary Sciences Department: Viorel Atudorei, Adrian Brearley, Ben Burnett, Jeff Carritt, Laura Crossey, Magdalena Donahue, Maya Elrick, John Geissmann, Nick George, Karl Karlstrom, Bekah Levine, Grant Meyer, Corrinne Myers, Lyman Persico, Jane Selverstone, Zach Sharp, Mike Spilde.
    [Show full text]
  • A Fossil Locality Predictive Model for the Early Cretaceous Cedar Mountain Formation, Utah, Usa
    A FOSSIL LOCALITY PREDICTIVE MODEL FOR THE EARLY CRETACEOUS CEDAR MOUNTAIN FORMATION, UTAH, USA A THESIS PRESENTED TO THE DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCE IN CANDIDACY FOR THE DEGREE OF MASTER OF SCIENCE By DANIEL BURK NORTHWEST MISSOURI STATE UNIVERSITY MARYVILLE, MISSOURI OCTOBER, 2014 FOSSIL LOCALITY PREDICTIVE MODEL A Fossil Locality Predictive Model for the Early Cretaceous Cedar Mountain Formation, Utah, USA Daniel Burk Northwest Missouri State University THESIS APPROVED Thesis Advisor, Dr. Yi-Hwa Wu Date Dr. Ming-Chih Hung Date Dr. John P. Pope Date Dean of Graduate School Date A Fossil Locality Predictive Model for the Early Cretaceous Cedar Mountain Formation, Utah, USA Abstract Hard work and chance are nearly always among the deciding factors in finding new, important, and productive paleontological localities. Fossil locality predictive models have the potential to reduce unproductive field time and maximize hard work thus increasing the chances researchers have to find important localities. This study uses remotely sensed data to design and test a fossil locality predictive model for the Early Cretaceous Cedar Mountain Formation. Landsat 8 OLI/TIRS data from known localities were summarized, reclassified and used in a weighted suitability analysis to categorize fossil locality potential of the study area. Field work was conducted to test model functionality. Field observations were used to refine the weighted suitability analysis. Landsat 8 OLI/TIRS data alone offers a less accurate prescription of fossil locality potential. Additional physical and environmental factors play a role in determining the chance of finding fossils. Slope degree and aspect data from known localities were summarized and analyzed to further refine the model.
    [Show full text]
  • A Jurassic Basal Eusauropod Clade from Iberia Finds Refuge In
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Descendants of the Jurassic turiasaurs from Iberia found refuge in the Early Cretaceous of western USA Rafael Royo-Torres, Paul Upchurch, James I. Kirkland, Donald D. DeBlieux, John R. Foster, Alberto Cobos, Luis Alcalá Supplementary Information: I. Abbreviations section II. Geological setting of the Doelling’s Bowl bonebed III. Phylogenetic analyses and list of synapomorphies IV. Holotype of Mierasaurus V. Measurements VI. References I. Abbreviations section BYU (Museum of Paleontology of Brigham Young University, Provo, Utah USA). DBBB Doelling’s Bowl bonebed; DBGI Doelling’s Bowl site; J-K Jurassic- Cretaceous transition; Ma million years ago; My million years; MPT most parsimonious trees; RD name for every dinosaur site from Riodeva in Teruel (Spain); TL Tree length; UMNH the Natural History Museum of Utah (USA); UGS Utah Geological Survey (USA). Anatomical abbreviations: bt basal tubera; bo basioccipital; bpt basipterygoid process; ca crista antotica; ct crista tuberalis; f frontal; fme fenestra metotic; fv fenestra vestivuli (=fenestra ovalis); osc otosphenoidal crest (= crista prootica); p parietal; pa parapophysis; prf prefontal; stf supratemporal fossa; so supraoccipital; eo exoccipital- opisthotic; bo basioccipital; popr paraoccipital process; cranial nerves: I olfactory nerve; II optic nerve; III oculomotor nerve; IV trochlear nerve; V trigeminal nerve (ophthalmic, maxillary, mandibular); VI abductor or abducens nerve; VII facialis nerve; VIII vestibulocochlear nerve. Abbreviations for laminae vertebral: acpl anterior centroparapophyseal lamina; ant. spdl anterior spinodiapophyseal lamina; cprl 1 centroprezygapophyseal lamina; cpol centropostzygapophyseal lamina; pcdl posterior centrodiapophyseal lamina; post. spdl posterior spinodiapophyseal lamina; ppdl paradiapophyseal lamina; prdl prezygodiapophyseal lamina; spol spinopostzygapophyseal lamina.
    [Show full text]